1
|
Zhang Q, Ma X, Zhang L, Wang H, Chen Y, Fu L, Zhou J, Xing Z, Xia J. Dual-function reusable SERS substrate based on Ag/Ag 3PO 4/MXene heterojunction: Efficient detection and photocatalytic degradation of organic pollutants. J Colloid Interface Sci 2025; 685:826-842. [PMID: 39864392 DOI: 10.1016/j.jcis.2025.01.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
A flexible cotton-based Ag/Ag3PO4/MXene (APMX) ternary composite material was successfully synthesized, serving as a dual-function and reusable surface-enhanced Raman scattering (SERS) substrate for both sensitive detection and efficient organic dye degradation. The remarkable SERS properties of the composite can be attributed to the combined effects of electromagnetic enhancement by Ag nanoparticles (Ag NPs), charge transfer enhancement from Ag3PO4, and the chemical enhancement mechanisms associated with MXene. When employed for the detection of crystal violet (CV), the material exhibits outstanding sensitivity, achieving a limit of detection (LOD) as low as 3.82 × 10-11 M. Moreover, the synergistic effects between the localized surface plasmon resonance (LSPR) of Ag NPs and the high electrical conductivity of MXene significantly improve charge transfer on the Ag3PO4 surface, thereby enhancing photocatalytic efficiency. Under visible light irradiation, the composite achieves an 83.64 % degradation rate of CV within 90 min. By integrating the composite material onto cotton, its flexibility and practical applicability are enhanced, allowing for in-situ SERS detection and effective analysis on irregular surfaces. Additionally, the photocatalytic degradation function imparts a self-cleaning property, greatly improving its reusability and sustainability. As a high-performance, dual-function material, the APMX cotton shows great potential in environmental monitoring and pollution control by providing sensitive SERS detection and efficient wastewater pollutant degradation.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| | - Xiaoyan Ma
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Ling Zhang
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Huiting Wang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Yaxian Chen
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Longfei Fu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jie Zhou
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Zhiqiang Xing
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jiarui Xia
- Institute of Health Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Xu J, Shi X, Yi M, Chi Y, Mao Z, Yang B, Jung YM. Lithium-doped ZrO 2 nanoparticles for SERS-based norfloxacin drug detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125239. [PMID: 39383546 DOI: 10.1016/j.saa.2024.125239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy is a highly specific and ultrasensitive analytical technique; thus, it is an ideal candidate for therapeutic drug monitoring. However, SERS measurements of drugs in a sample are inevitably affected by the environment. In this study, we synthesized ZrO2 nanoparticles (NPs) doped with the first group of elements (Li, Na, and K) in the main block and evaluated their SERS performance. The results showed that Li-ion doping could significantly enhance the SERS effect, and the degree of enhancement depended on the type and concentration of the doped ions. Compared with the highly stable ZrO2, Li ion-doped ZrO2 (Li-ZrO2) exhibited a significant increase in SERS activity. In particular, 1 % Li-ZrO2 NPs exhibited excellent SERS enhancement with an enhancement factor (EF) of 2.60 × 104, which was attributed to the decreased band gap and improved the charge transfer (CT) process after Li ion doping. The adsorption capacity of the Li-ZrO2 NPs for norfloxacin (NOR) molecules was gradually saturated with time. In addition, both acidic and alkaline conditions were unfavorable for NOR detection by the substrate. The SERS intensity exhibited a linear relationship within the NOR concentration range of 10-3-10-6 mol/L, and approximately 97.51 % of the active ingredients were detected, with a competitive detection limit of 10-6 mol/L. Furthermore, NOR detection is cost-effective and time-efficient, and the results of our study can aid in the research process and support practical applications. The proposed study provides a guidance for improving the SERS activity of semiconductors for sensing.
Collapse
Affiliation(s)
- Jiawen Xu
- College of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China
| | - Xiumin Shi
- College of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China.
| | - Mingyue Yi
- Jilin Zijin Copper Co., Ltd., Hunchun 133300, PR China
| | - Yanze Chi
- College of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China
| | - Zhu Mao
- College of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China
| | - Bo Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, South Korea.
| |
Collapse
|
3
|
Wang B, Han Y, Zhang L, Chen Z, Zhang W, Ren M, Shi J, Xu X, Yang Y. Surface-enhanced Raman scattering based on noble metal nanoassemblies for detecting harmful substances in food. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39388195 DOI: 10.1080/10408398.2024.2413656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Residues of harmful substances in food can severely damage human health. The content of these substances in food is generally low, making detection difficult. Surface-enhanced Raman scattering (SERS), based on noble metal nanomaterials, mainly gold (Au) and silver (Ag), has exhibited excellent capabilities for trace detection of various substances. Noble metal nanoassemblies, in particular, have extraordinary flexibility and tunable optical properties, which cannot be offered by single nanoparticles (NPs). These nanoassemblies, with their various morphologies synthesized using NPs through artificially induced self-assembly or template-driven preparation, can significantly enhance the local electric field and create "hot spots" due to the gaps between adjacent NPs. Consequently, the SERS properties of NPs become more prominent, leading to improved performance in the trace detection of various substances and detection limits that are considerably lower than the current relevant standards. Noble metal nanoassemblies show promising potential in ensuring food safety. This review discusses the synthesis methods and SERS properties of noble metal nanoassemblies and then concentrates on their application in detecting biotoxins, drug residues, illegal additives, and heavy metals. The study provides valuable references for further research into the application of nanoassemblies in food safety detection.
Collapse
Affiliation(s)
- Baojun Wang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Lu Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Zikuo Chen
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Wenqi Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Mengyu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xiaoguang Xu
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| |
Collapse
|
4
|
Hou D, Zhu Q, Wang J, Deng M, Qiao XQ, Sun B, Han Q, Chi R, Li DS. Direct Z-scheme system of UiO-66 cubes wrapped with Zn 0.5Cd 0.5S nanoparticles for photocatalytic hydrogen generation synchronized with organic pollutant degradation. J Colloid Interface Sci 2024; 665:68-79. [PMID: 38513409 DOI: 10.1016/j.jcis.2024.03.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/26/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Optimized fabrication of Z-scheme photocatalyst based on MOF materials offers sustainable energy generation and environmental improvement due to their attractive properties. The Z-scheme heterojunctions consisting of UiO-66 cubes covered with Zn0.5Cd0.5S nanoparticles were fabricated by a facile solvothermal method. Thanks to the Z-scheme carrier transport under simulated sunlight irradiation, UiO-66@Zn0.5Cd0.5S exhibited enhanced photocatalytic performance of H2 generation synchronized with organic pollutant degradation in fluoroquinolone antibiotic wastewater. Synergistically, the highest comprehensive performance was obtained in ciprofloxacin solution. The H2 yield reached 224 μmol∙ g-1∙ h-1 and simultaneously the removal efficiency was up to 83.6 %. The degradation pathways revealed that the process of piperazine ring cleavage and decarboxylation also generates H protons, further promoting the production of H2. Therefore, the effective spatial separation and transfer of the photoinduced carriers are attributed to the good band structure, large specific surface area, and cooperative reduction and oxidation reactions of UiO-66@Zn0.5Cd0.5S, resulting in significant photocatalytic activity. The toxicity assessment of antibiotics and intermediate products during the photocatalytic reaction also verifies the reduction of environmental risk. This study highlights a promising way to expand the application of the MOFs-based photocatalyst in clean energy conversion coupling with water remediation.
Collapse
Affiliation(s)
- Dongfang Hou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, PR China.
| | - Qian Zhu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Junjie Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Min Deng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Xiu-Qing Qiao
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, PR China
| | - Bojing Sun
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, PR China
| | - Qingwen Han
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, PR China
| | - Ruan Chi
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, PR China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, PR China.
| |
Collapse
|
5
|
Zhao Z, Yin H, Xiao J, Cui M, Huang R, Su R. Efficient Sequential Detection of Two Antibiotics Using a Fiber-Optic Surface Plasmon Resonance Sensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:2126. [PMID: 38610339 PMCID: PMC11013968 DOI: 10.3390/s24072126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Antibiotic residues have become a worldwide public safety issue. It is vital to detect multiple antibiotics simultaneously using sensors. A new and efficient method is proposed for the combined detection of two antibiotics (enrofloxacin (Enro) and ciprofloxacin (Cip)) in milk using surface plasmon resonance (SPR) sensors. Based on the principle of immunosuppression, two antibiotic antigens (for Enro and Cip) were immobilized on an optical fiber surface with conjugates of bovine serum albumin using dopamine (DA) polymerization. Each single antigen was bound to its corresponding antibody to derive standard curves for Enro and Cip. The fiber-optic sensor's sensitivity was 2900 nm/RIU. Detection limits were calculated to be 1.20 ng/mL for Enro and 0.81 ng/mL for Cip. The actual system's recovery rate was obtained by testing Enro and Cip in milk samples; enrofloxacin's and ciprofloxacin's mean recoveries from the milk samples were 96.46-120.46% and 96.74-126.9%, respectively. In addition, several different regeneration solutions were tested to analyze the two target analytes' regeneration ability; NaOH and Gly-HCl solutions were found to have the best regeneration ability.
Collapse
Affiliation(s)
- Ze Zhao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
| | - Huiting Yin
- Zhejiang Institute of Tianjin University, Ningbo 315201, China;
| | - Jingzhe Xiao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
| | - Renliang Huang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Z.Z.)
- Zhejiang Institute of Tianjin University, Ningbo 315201, China;
| |
Collapse
|