1
|
Tunali Akar S, Rüstemoğlu S, Turkyilmaz S, Sayin F, Akar T. ANN-assisted comprehensive screening of silica gel-alunite composite sorbent system for efficient adsorption of toxic nickel ions: Batch and continuous mode water treatment applications. CHEMOSPHERE 2025; 373:144127. [PMID: 39892072 DOI: 10.1016/j.chemosphere.2025.144127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 02/03/2025]
Abstract
Through batch and fixed-bed column operations, nickel ions were extracted from a contaminated aqueous media by adsorption onto silica gel-immobilized alunite (Sg@Aln). A three-layer backward-propagating network with an ideal pattern of 5-10-1 and 4-10-1 was used to train and validate an artificial neural network (ANN) model for process modeling and optimization in batch and continuous systems, respectively. For the test dataset, the model outputs of the model pointed out a satisfactory alignment between the anticipated and experimental response. The Sg@Aln dosage and contact time were recorded as the most relevant parameters in Ni2+ elimination. The Sg@Aln-metal interactions were also characterized using a variety of instrumental approaches. The maximum Ni2+ adsorption was achieved by utilizing 2 g/L of the adsorbent at a solution pH of 5.0 after 10 min of contact time, equating to 89.11%. The data corresponded well with the non-linear shape of the Langmuir isotherm (R2 = 0.99), and the computed maximal adsorption capacity was 96.01 mg/g (1.64 × 10-3 mol/g) at 25 °C. Kinetic analysis reveals that the adsorption process is consistent with the pseudo-second-order model, with R2 = 0.9998. Thermodynamic findings indicated endothermicity, spontaneity, and adsorption favorability. Sg@Aln could remove 41.23 mg/g and 33.20 mg/g of Ni2+ from actual wastewater in batch and continuous processes, respectively. While the Sg@Aln column's breakthrough curve is consistent with Chu's simplistic model, the breakthrough capacity was 69.35 mg/g. Overall, the results might open new possibilities for treating metal pollution in the aquatic environment.
Collapse
Affiliation(s)
- Sibel Tunali Akar
- Eskişehir Osmangazi University, Faculty of Science, Department of Chemistry, 26040, Eskişehir, Turkey.
| | - Suzan Rüstemoğlu
- Eskişehir Osmangazi University, Graduate School of Natural and Applied Sciences, Department of Chemistry, 26040, Eskişehir, Turkey
| | - Serpil Turkyilmaz
- Bilecik Şeyh Edebali University, Faculty of Science, Department of Statistics and Computer Sciences, 11230, Bilecik, Turkey
| | - Fatih Sayin
- Eskişehir Osmangazi University, Faculty of Science, Department of Chemistry, 26040, Eskişehir, Turkey
| | - Tamer Akar
- Eskişehir Osmangazi University, Faculty of Science, Department of Chemistry, 26040, Eskişehir, Turkey
| |
Collapse
|
2
|
Sathasivam J, Rajaraman PV, Narayanasamy S. Assessment of cerium adsorption potential of phosphoric acid activated biochar in aqueous system: Modelling and mechanistic insights. ENVIRONMENTAL RESEARCH 2025; 264:120301. [PMID: 39505131 DOI: 10.1016/j.envres.2024.120301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Cerium pollution in waterbodies by improper industrial waste disposal is a major concern due to its detrimental impacts on the environment. Therefore, treatment of cerium-contaminated water is inevitable. Hence, this study is focused on the remediation of cerium pollution using phosphoric acid-activated biochar (PPMB) as an adsorbent, synthesized upon pyrolytic activation of palmyra palm male flower-based pristine biochar (PMFB) with H3PO4 at 500 °C. The physico-chemical surface properties of PMFB and PPMB were evaluated through various microscopic and spectroscopic analyses. The key parameters such as biochar dosage, pH, temperature, contact time and initial cerium concentration were optimized as 0.5 g/L, 5.0, 303 K, 180 min and 50 mg/L respectively via batch adsorption. Pseudo-second order kinetic and Toth isotherm are the best-fitted models. The thermodynamic parameters including ΔG◦ (-30.4707 ± 0.7618 kJ/mol at 303 K), ΔH◦ (16.1499 ± 0.78 kJ/mol), and ΔS◦ (153.617 ± 3.8404 J/mol/K) conveying that cerium adsorption onto PPMB was spontaneous, endothermic, and highly disordered at PPMB-bulk adsorption medium interface. Precipitation, electrostatic attraction, and surface complexation are predicted to be the predominant mechanisms for the chosen PPMB-cerium adsorption system. Moreover, cerium phytotoxicity on Vigna radiata explains the real-time applicability and feasibility of cerium adsorption using PPMB. Thus, the key findings of this study specified that the higher adsorption capacity of PPMB (141.3484 ± 6.9856 mg/g) contributed by the incorporated phosphate groups, predominant mesoporosity, SSABET of 230.559 m2/g and anionic surface at a wider pH range (pH>3.08) make PPMB as efficient, economically feasible and environmentally friendly adsorbent for cerium adsorption in aqueous system.
Collapse
Affiliation(s)
- Jeevanantham Sathasivam
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | | | - Selvaraju Narayanasamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
3
|
Alehegn M, Gonfa G, Vivekanand PA, Lal B, Baigenzhenov O, Hosseini-Bandegharaei A, Bokov DO, Baisalova G. Valorization of castor seed shell waste as lead adsorbent by treatment with hot phosphoric acid: Optimization and evaluation of adsorption properties. CHEMOSPHERE 2024; 362:142655. [PMID: 38908444 DOI: 10.1016/j.chemosphere.2024.142655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Lead is used in many industries such as refining, mining, battery manufacturing, smelting. Releases of lead from these industries is one of the major public health concerns due to widespread persistence in the environment and its resulting poisoning character. In this work, the castor seed shell (CSS) waste was exploited for preparing a beneficial bio-adsorbent for removal of Pb(II) ions from water. The raw CSS was modified with H3PO4 at different acid concentrations, impregnation ratios, activation times, and temperatures. An optimum adsorption capacity was observed for CSS modified with 2 M acid, 5 mL g-1 solid to liquid ratio, treated at 95 °C for 160 min. Exploiting acid modification, the SEM, XRD, and FTIR analyses show some alterations in functional groups and the surface morphology of the biomass. The impacts of physiochemical variables (initial lead ions concentration, pH, adsorbent dose and adsorption time) on the lead removal percentage were investigated, using response surface methodology (RSM). Maximum removal of 72.26% for raw CSS and 97.62% for modified CSS were obtained at an initial lead concentration (50 mg L-1), pH (5.7), adsorption time (123 min) and adsorbent dosage (1.1 g/100 mL). Isothermal and kinetics models were fitted to adsorption equilibrium data and kinetics data for the modified CSS and the adsorption system was evaluated thermodynamically and from the energy point of view. Isothermal scrutinization indicated the mono-layer nature of adsorption, and the kinetics experimental outcomes best fitted with the pseudo-second-order, implying that the interaction of lead ions and hot acid-treated CSS was the rate-controlling phenomenon of process. Overall, results illustrated that the hot acid-treated biomass-based adsorbent can be considered as an alternative bio-adsorbent for removing lead from water media.
Collapse
Affiliation(s)
- Mulusew Alehegn
- Department of Chemical Engineering, Addis Ababa Science and Technology University, 16417 Addis Ababa, Ethiopia
| | - Girma Gonfa
- Department of Chemical Engineering, Addis Ababa Science and Technology University, 16417 Addis Ababa, Ethiopia; Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, 16417 Addis Ababa, Ethiopia
| | - P A Vivekanand
- Department of Chemistry, Bharath Institute of Higher Education and Research, Selaiyur, Chennai-600073, India
| | - Basant Lal
- Department of Chemistry, Institute of Applied Science and Humanities, GLA University, Mathura-281406, India
| | - Omirserik Baigenzhenov
- Department of Metallurgical Engineering, Satbayev University, 22a Satbaev Str., Almaty, 050013, Kazakhstan.
| | - Ahmad Hosseini-Bandegharaei
- Faculty of Chemistry, Semnan University, Semnan, Iran; University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai-602105, Tamil Nadu, India
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Galiya Baisalova
- Department of Chemistry, L.N. Gumilyov Eurasian National University, 2 Satpayev Street, Astana, 010008, Kazakhstan
| |
Collapse
|
4
|
Djekoune L, Maaliou A, Salem Z, Ziani D, Kamel R, Ouakouak A, Baigenzhenov O, Bokov DO, Ivanets A, Hosseini-Bandegharaei A. Phosphate adsorption on dried alum sludge: Modeling and application to treatment of dairy effluents. ENVIRONMENTAL RESEARCH 2024; 252:118976. [PMID: 38705451 DOI: 10.1016/j.envres.2024.118976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
This study evaluates Alum sludge from drinking water treatment plants for the efficient and cost-effective removal of phosphates from aqueous solutions. Extensive characterization and batch experiments have established that optimal phosphate removal was achieved with a sludge dosage of 20 g L-1 (at an initial phosphate concentration of 100 mg L-1), a pH of 5, a temperature of 23 °C, and a stirring speed of 200 rpm. These conditions significantly reduced phosphate levels, ensuring compliance with legal discharge limits. The Langmuir isotherm, pseudo-second-order kinetic and intraparticle diffusion models best described the adsorption process, highlighting the spontaneous and endothermic nature of the phenomenon. The sludge effectively reduced phosphate concentrations to acceptable levels when applied to dairy effluents. This study underscores the potential of Alum sludge as a viable solution for phosphate management in environmental cleanup efforts.
Collapse
Affiliation(s)
- Leila Djekoune
- Faculty of Mechanical and Process Engineering, University of Science and Technology Houari Boumediene, Laboratory of Sciences and Industrial Process Ingeneering, PB 32 El-Alia, Bab - Ezzouar, 16311, Algiers, Algeria
| | - Aziz Maaliou
- Faculty of Civil Engineering, University of Science and Technology Houari Boumediene, LEGHYD Laboratory, PB 32 El-Alia, Bab - Ezzouar, 16311, Algiers, Algeria
| | - Zineb Salem
- Faculty of Mechanical and Process Engineering, University of Science and Technology Houari Boumediene, Laboratory of Sciences and Industrial Process Ingeneering, PB 32 El-Alia, Bab - Ezzouar, 16311, Algiers, Algeria
| | - Dalila Ziani
- Faculty of Civil Engineering, University of Science and Technology Houari Boumediene, LEGHYD Laboratory, PB 32 El-Alia, Bab - Ezzouar, 16311, Algiers, Algeria
| | - Raouf Kamel
- Faculty of Mechanical and Process Engineering, University of Science and Technology Houari Boumediene, Laboratory of Sciences and Industrial Process Ingeneering, PB 32 El-Alia, Bab - Ezzouar, 16311, Algiers, Algeria
| | - Abdelkader Ouakouak
- Hydraulic and Civil Engineering Department, University of El Oued, POBox 789, El Oued, 39000, Algeria
| | | | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Andrei Ivanets
- Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus, 9/1, Surganova st., 220072, Minsk, Belarus
| | - Ahmad Hosseini-Bandegharaei
- Faculty of Chemistry, Semnan University, Semnan, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
5
|
Jia Z, Liang F, Wang F, Zhou H, Liang P. Selective adsorption of Cr(VI) by nitrogen-doped hydrothermal carbon in binary system. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:121. [PMID: 38483644 DOI: 10.1007/s10653-024-01889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/25/2024] [Indexed: 03/19/2024]
Abstract
Selective adsorption of heavy metal ions from industrial effluent is important for healthy ecosystem development. However, the selective adsorption of heavy metal pollutants by biochar using lignin as raw material is still a challenge. In this paper, the lignin carbon material (N-BLC) was synthesized by a one-step hydrothermal carbonization method using paper black liquor (BL) as raw material and triethylene diamine (TEDA) as nitrogen source. N-BLC (2:1) showed excellent selectivity for Cr(VI) in the binary system, and the adsorption amounts of Cr(VI) in the binary system were all greater than 150 mg/g, but the adsorption amounts of Ca(II), Mg(II), and Zn(II) were only 19.3, 25.5, and 6.3 mg/g, respectively. The separation factor (SF) for Cr(VI) adsorption was as high as 120.0. Meanwhile, FTIR, elemental analysis and XPS proved that the surface of N-BLC (2:1) contained many N- and O- containing groups which were favorable for the removal of Cr(VI). The adsorption of N-BLC (2:1) followed the Langmuir model and its maximum theoretical adsorption amount was 618.4 mg/g. After 5th recycling, the adsorption amount of Cr(VI) by N-BLC (2:1) decreased about 15%, showing a good regeneration ability. Therefore, N-BLC (2:1) is a highly efficient, selective and reusable Cr(VI) adsorbent with wide application prospects.
Collapse
Affiliation(s)
- Zuoyu Jia
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Fengkai Liang
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| | - Haifeng Zhou
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Peng Liang
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
6
|
Wang H, Miao D, Yu Y, Zhang Z, Zhu Y, Wang Q. PVA/PAA/DMTD electrospun nanofibrous membrane for the selective adsorption of Pb(II) ions in liquid foods. iScience 2024; 27:108737. [PMID: 38269099 PMCID: PMC10805650 DOI: 10.1016/j.isci.2023.108737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024] Open
Abstract
Lead (Pb(II)) contamination is common in liquid foods and can result from Pb(II) being present in the raw materials or during handling processes. However, due to the complexity of food matrices, there is limited data available concerning Pb(II) ion removal from food sources. This study focused on fabricating a PVA/PAA/DMTD electrospun nanofibrous membrane (ENFM) to efficiently and selectively remove Pb(II) ions from liquid foods. The PVA/PAA/DMTD ENFM had a maximum adsorption capacity of 138.3 mg/g for Pb(II) ions and demonstrated high selectivity toward the removal of Pb(II) ions. Negative values of the Gibbs free energy (ΔG°) showed that the spontaneous nature of the adsorption process was feasible at different temperatures. Moreover, it successfully removed Pb(II) ions from selected samples of commercially available drinks. Therefore, this adsorbent exhibits significant potential for removing Pb(II) ions from liquid food products, thereby reducing daily dietary exposure to Pb(II).
Collapse
Affiliation(s)
- Han Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dongtian Miao
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongjiang Yu
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihan Zhang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Youlong Zhu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
7
|
Wang Y, Nakano T, Chen X, Xu YL, He YJ, Wu YX, Zhang JQ, Tian W, Zhou MH, Wang SX. Studies on adsorption properties of magnetic composite prepared by one-pot method for Cd(II), Pb(II), Hg(II), and As(III): Mechanism and practical application in food. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133437. [PMID: 38246063 DOI: 10.1016/j.jhazmat.2024.133437] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
A one-pot synthesis afforded a magnetic, crosslinked polymer adsorbent (m-P6) with a variety of functional groups to realize simultaneous adsorption of Cd2+, Pb2+, Hg2+, and As3+. The material was characterized by TEM-EDS, XRD, FT-IR, VSM, and XPS. Kinetic and isothermal analyses suggested mainly chemisorption processes of heavy metal ions that form multiple layers on heterogeneous surfaces. Theoretical adsorption capacities calculated by a pseudo-2nd-order kinetic model and the Sips isothermal model were 282.88 mg/g for Cd2+, 326.18 mg/g for Pb2+, 117.85 mg/g for Hg2+, and 320.29 mg/g for As3+. m-P6 not only can efficiently adsorb divalent heavy metals (Cd2+, Pb2+, Hg2+), but also demonstrate a process of adsorption-driven catalytic oxidation by single-electron transfer (SET) from As3+ to As5+. In application, in addition to adsorption in water, m-P6 is capable of minimizing matrix interference, and extracting trace heavy metals in a complex environment (cereal) through easy operations for improving the detection accuracy, as well as it is potential for application in detection of trace heavy metals in foodstuffs. m-P6 can be readily regenerated and efficiently recycled for 5 cycles using eluent E12 and dilute acid.
Collapse
Affiliation(s)
- Yue Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Tamaki Nakano
- l̥Institute for Catalysis (ICAT), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Xi Chen
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yu-Long Xu
- Department of Applied Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying-Jie He
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yan-Xiang Wu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Jie-Qiong Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Wei Tian
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Ming-Hui Zhou
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Song-Xue Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| |
Collapse
|
8
|
Deivasigamani P, Senthil Kumar P, Sundaraman S, Soosai MR, Renita AA, M K, Bektenov N, Baigenzhenov O, D V, Kumar J A. Deep insights into kinetics, optimization and thermodynamic estimates of methylene blue adsorption from aqueous solution onto coffee husk (Coffee arabica) activated carbon. ENVIRONMENTAL RESEARCH 2023; 236:116735. [PMID: 37517489 DOI: 10.1016/j.envres.2023.116735] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
In the current study, an attempt was made to synthesize coffee husk (CH) activated carbon by chemical modification approach (sulphuric acid-activated CH (SACH) activated carbon) and was used as a valuable and economical sorbent for plausible remediation of Methylene blue (MB) dye. Batch mode trials were carried out by carefully varying the batch experimental variables: SACH activated carbon (SACH AC) dosage, pH, initial dye concentration, temperature, and contact time. The optimum equilibrium time for adsorption by SACH activated carbon was obtained as 60 min, and the maximum adsorption took place at 30 °C. Morphological and elemental composition, crystallinity behaviour, functional groups, and thermal stability were examined using SEM with EDX, XRD, FTIR, BET, TGA, and DTA and these tests showed successful production of activated carbon. The outcomes showed that chemical activation enhanced the number of pores and roughness which possibly maximized the adsorptive potential of coffee husk. The Box-Benken design (BBD) was used to optimize the MB dye adsorption studies and 99.48% MB dye removed at SACH AC dosage of 4.83 g/L at 30 °C for 60 min and pH 8.12, and the maximum adsorption was yielded for sulphuric acid-activated coffee husk carbon carbon with 88.1 mg/g maximum MB adsorption capacity. Langmuir- Freundlich model deliberately provided a better fit to the equilibrium data. The SACH AC-MB dye system kinetics showed a high goodness-of-fit with pseudo second order model, compared to other studied models. Change in Gibbs's free energy (ΔGo) of the system indicated spontaneity whereas low entropy value (ΔSo) suggested that the removal of MB dye on the SACH activated carbon was an enthalpy-driven process. The exothermic nature of the sorption cycle was affirmed by the negative enthalpy value (ΔHo). The adsorptive-desorptive studies reveal that SACH AC could be restored with the maximum adsorption efficiency being conserved after the fifth cycles. Overall, the outcomes revealed that sulphuric acid-activated coffee husk activated carbon (SACH AC) can be used as prompt alternative for low-cost sorbent for treating dye-laden synthetic wastewaters.
Collapse
Affiliation(s)
- Prabu Deivasigamani
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, Tamilnadu, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Sathish Sundaraman
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Michael Rahul Soosai
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - A Annam Renita
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Karthikeyan M
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Nessipkhan Bektenov
- Institute of Natural Sciences and Geography, Abai University, Almaty, 050010, Kazakhstan; JSC «Institute of Chemical Sciences named after A.B. Bekturov», Almaty, 050010, Kazakhstan
| | | | - Venkatesan D
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Aravind Kumar J
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamilnadu, 602105, India.
| |
Collapse
|
9
|
Benhiti R, Ait Ichou A, Aboussabek A, Carja G, Zerbet M, Sinan F, Chiban M. Efficient removal of Cr (VI) from aqueous solution using memory effect property of layered double hydroxide material. CHEMOSPHERE 2023; 341:140127. [PMID: 37690565 DOI: 10.1016/j.chemosphere.2023.140127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Treating wastewater containing pollutants with layered double hydroxide (LDH) material attracts excellent interest. LDH materials are known by the memory effect property, which leads to the reconstruction of the LDH structure after its calcination and rehydration. In this study, LDH material was prepared, calcined, and then rehydrated in an aqueous Cr(VI) solution. XRD, FTIR, and SEM-EDS analysis confirm the successful reconstruction of LDH-loading chromium on its surface and layered space. Response surface methodology (RSM) results showed that LDH mass, contact time, and chromium concentration are the main factors controlling the removal of Cr(VI). The heterogeneous sorption of chromium was described by fitting the equilibrium data to the Freundlich model. Analytical techniques, thermodynamic data, activation, and adsorption energies confirm that the removal process of Cr(VI) is endothermic, spontaneous, and physical nature. LDH exhibits good reusability performance with only a 7% reduction of initial adsorption capacity after five cycles of the calcination-rehydration process. These results show that the memory effect of LDH is helpful for the intercalation and the removal of emergent pollutants, especially for wastewater treatment.
Collapse
Affiliation(s)
- Ridouan Benhiti
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Abdeljalil Ait Ichou
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Abdelali Aboussabek
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Gabriela Carja
- Laboratory of Materials Nanoarchitectonics, Faculty of Chemical Engineering and Environment Protection, Technical University of 'Gheorghe Asachi' of Iasi, Romania
| | - Mohamed Zerbet
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Fouad Sinan
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Mohamed Chiban
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco.
| |
Collapse
|