1
|
Ma J, Zou M, Peijnenburg W, Chen F. Priming agents combat copper stress in wheat (Triticum aestivum L.) under hydroponic conditions: Insights in impacts on morpho-physio-biochemical traits and health risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117899. [PMID: 39961189 DOI: 10.1016/j.ecoenv.2025.117899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/03/2025]
Abstract
In recent years, the use of priming agents, such as silicon, melatonin, salicylic acid, glycine betaine, and ascorbic acid has gained significant attention for their role in mitigating abiotic stresses across various plant species. While previous research has been conducted on the individual impact of silicon, melatonin, salicylic acid, glycine betaine, and ascorbic acid in metal stress resistance among various crop species, their combined effects in the context of heavy metal stressed conditions remain underexplored. Wheat (Triticum aestivum L.) seedlings was grown under the toxic concentration of copper (Cu) i.e., 100 µM which were applied with silicon, melatonin, salicylic acid, glycine betaine, and ascorbic acid under hydroponic conditions for 21 days. The research outcomes indicated that the toxic concentration of Cu in the nutrient solution notably reduced plant growth and biomass, photosynthetic pigments, and gas exchange attributes. However, Cu stress also induced oxidative stress in the plants by increasing malondialdehyde (MDA), hydrogen peroxide (H2O2) which also induced increased compounds of various enzymatic and non-enzymatic antioxidants, health risk index (HRI) and also the gene expression and sugar content. Furthermore, a significant increase in proline metabolism, the AsA-GSH cycle, and the pigmentation of cellular components was observed. Although, the application of different priming agents, such as silicon, melatonin, salicylic acid, glycine betaine, and ascorbic acid showed a significant increase in plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and their gene expression and also decreased oxidative stress and HRI. In addition, the application of different priming agents enhanced cellular fractionation and decreased the proline metabolism and AsA-GSH cycle in T. aestivum seedlings. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
- Jing Ma
- School of Public Administration, Hohai University, Nanjing 211000, China.
| | - Ming Zou
- School of Public Administration, Hohai University, Nanjing 211000, China.
| | - Willie Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300 RA, the Netherland; Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, 3720 BA, the Netherland.
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing 210009, China.
| |
Collapse
|
2
|
Danish S, Sana S, Hussain MB, Dawar K, Almoallim HS, Ansari MJ, Hareem M, Datta R. Effect of methyl jasmonate and GA3 on canola (Brassica napus L.) growth, antioxidants activity, and nutrient concentration cultivated in salt-affected soils. BMC PLANT BIOLOGY 2024; 24:363. [PMID: 38724910 PMCID: PMC11080209 DOI: 10.1186/s12870-024-05074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Salinity stress is a significant challenge in agricultural production. When soil contains high salts, it can adversely affect plant growth and productivity due to the high concentration of soluble salts in the soil water. To overcome this issue, foliar applications of methyl jasmonate (MJ) and gibberellic acid (GA3) can be productive amendments. Both can potentially improve the plant's growth attributes and flowering, which are imperative in improving growth and yield. However, limited literature is available on their combined use in canola to mitigate salinity stress. That's why the current study investigates the impact of different levels of MJ (at concentrations of 0.8, 1.6, and 3.2 mM MJ) and GA3 (0GA3 and 5 mg/L GA3) on canola cultivated in salt-affected soils. Applying all the treatments in four replicates. Results indicate that the application of 0.8 mM MJ with 5 mg/L GA3 significantly enhances shoot length (23.29%), shoot dry weight (24.77%), number of leaves per plant (24.93%), number of flowering branches (26.11%), chlorophyll a (31.44%), chlorophyll b (20.28%) and total chlorophyll (27.66%) and shoot total soluble carbohydrates (22.53%) over control. Treatment with 0.8 mM MJ and 5 mg/L GA3 resulted in a decrease in shoot proline (48.17%), MDA (81.41%), SOD (50.59%), POD (14.81%) while increase in N (10.38%), P (15.22%), and K (8.05%) compared to control in canola under salinity stress. In conclusion, 0.8 mM MJ + 5 mg/L GA3 can improve canola growth under salinity stress. More investigations are recommended at the field level to declare 0.8 mM MJ + 5 mg/L GA3 as the best amendment for alleviating salinity stress in different crops.
Collapse
Affiliation(s)
- Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Sundas Sana
- Department of Botany, The Islamia University of Bahawalpur, Sub-campus Rahim Yar Khan, Rahim Yar Khan, Pakistan
| | - Muhammad Baqir Hussain
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Punjab, Pakistan
| | - Khadim Dawar
- Department of Soil and Environmental Science, The University of Agriculture, Peshawar, Pakistan
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, Riyadh, 11545, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Misbah Hareem
- Department of Environmental Sciences, Woman University Multan, Multan, Punjab, Pakistan.
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, Brno, 61300, Czech Republic.
| |
Collapse
|
3
|
Hafeez A, Ali S, Javed MA, Iqbal R, Khan MN, Çiğ F, Sabagh AE, Abujamel T, Harakeh S, Ercisli S, Ali B. Breeding for water-use efficiency in wheat: progress, challenges and prospects. Mol Biol Rep 2024; 51:429. [PMID: 38517566 DOI: 10.1007/s11033-024-09345-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/12/2024] [Indexed: 03/24/2024]
Abstract
Drought poses a significant challenge to wheat production globally, leading to substantial yield losses and affecting various agronomic and physiological traits. The genetic route offers potential solutions to improve water-use efficiency (WUE) in wheat and mitigate the negative impacts of drought stress. Breeding for drought tolerance involves selecting desirable plants such as efficient water usage, deep root systems, delayed senescence, and late wilting point. Biomarkers, automated and high-throughput techniques, and QTL genes are crucial in enhancing breeding strategies and developing wheat varieties with improved resilience to water scarcity. Moreover, the role of root system architecture (RSA) in water-use efficiency is vital, as roots play a key role in nutrient and water uptake. Genetic engineering techniques offer promising avenues to introduce desirable RSA traits in wheat to enhance drought tolerance. These technologies enable targeted modifications in DNA sequences, facilitating the development of drought-tolerant wheat germplasm. The article highlighted the techniques that could play a role in mitigating drought stress in wheat.
Collapse
Affiliation(s)
- Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Shehzad Ali
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan
| | - Muhammad Nauman Khan
- Department of Botany, Islamia College Peshawar, Peshawar, 25120, Pakistan
- Biology Laboratory, University Public School, University of Peshawar, Peshawar, 25120, Pakistan
| | - Fatih Çiğ
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, 56100, Turkey
| | - Ayman El Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, 56100, Turkey
| | - Turki Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum, 25240, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, 25240, Türkiye
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
4
|
Thiruvengadam R, Easwaran M, Rethinam S, Madasamy S, Siddiqui SA, Kandhaswamy A, Venkidasamy B. Boosting plant resilience: The promise of rare earth nanomaterials in growth, physiology, and stress mitigation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108519. [PMID: 38490154 DOI: 10.1016/j.plaphy.2024.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/21/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Rare earth elements (REE) have been extensively used in a variety of applications such as cell phones, electric vehicles, and lasers. REEs are also used as nanomaterials (NMs), which have distinctive features that make them suitable candidates for biomedical applications. In this review, we have highlighted the role of rare earth element nanomaterials (REE-NMs) in the growth of plants and physiology, including seed sprouting rate, shoot biomass, root biomass, and photosynthetic parameters. In addition, we discuss the role of REE-NMs in the biochemical and molecular responses of plants. Crucially, REE-NMs influence the primary metabolites of plants, namely sugars, amino acids, lipids, vitamins, enzymes, polyols, sorbitol, and mannitol, and secondary metabolites, like terpenoids, alkaloids, phenolics, and sulfur-containing compounds. Despite their protective effects, elevated concentrations of NMs are reported to induce toxicity and affect plant growth when compared with lower concentrations, and they not only induce toxicity in plants but also affect soil microbes, aquatic organisms, and humans via the food chain. Overall, we are still at an early stage of understanding the role of REE in plant physiology and growth, and it is essential to examine the interaction of nanoparticles with plant metabolites and their impact on the expression of plant genes and signaling networks.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Maheswaran Easwaran
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Senthil Rethinam
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Sivagnanavelmurugan Madasamy
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, D-Quakenbrück, Germany
| | - Anandhi Kandhaswamy
- Post Graduate Research Department of Microbiology, Dhanalakshmi Srinivasan College of Arts and Science for Women (Autonomous), Perambalur, 621212, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
5
|
Qian L, Huang S, Song Z, Fahad S, Dawar K, Danish S, Saif H, Shahzad K, Ansari MJ, Salmen SH. Effect of carboxymethyl cellulose and gibberellic acid-enriched biochar on osmotic stress tolerance in cotton. BMC PLANT BIOLOGY 2024; 24:137. [PMID: 38408939 PMCID: PMC10895763 DOI: 10.1186/s12870-024-04792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
The deleterious impact of osmotic stress, induced by water deficit in arid and semi-arid regions, poses a formidable challenge to cotton production. To protect cotton farming in dry areas, it's crucial to create strong plans to increase soil water and reduce stress on plants. The carboxymethyl cellulose (CMC), gibberellic acid (GA3) and biochar (BC) are individually found effective in mitigating osmotic stress. However, combine effect of CMC and GA3 with biochar on drought mitigation is still not studied in depth. The present study was carried out using a combination of GA3 and CMC with BC as amendments on cotton plants subjected to osmotic stress levels of 70 (70 OS) and 40 (40 OS). There were five treatment groups, namely: control (0% CMC-BC and 0% GA3-BC), 0.4%CMC-BC, 0.4%GA3-BC, 0.8%CMC-BC, and 0.8%GA3-BC. Each treatment was replicated five times with a completely randomized design (CRD). The results revealed that 0.8 GA3-BC led to increase in cotton shoot fresh weight (99.95%), shoot dry weight (95.70%), root fresh weight (73.13%), and root dry weight (95.74%) compared to the control group under osmotic stress. There was a significant enhancement in cotton chlorophyll a (23.77%), chlorophyll b (70.44%), and total chlorophyll (35.44%), the photosynthetic rate (90.77%), transpiration rate (174.44%), and internal CO2 concentration (57.99%) compared to the control group under the 40 OS stress. Thus 0.8GA3-BC can be potential amendment for reducing osmotic stress in cotton cultivation, enhancing agricultural resilience and productivity.
Collapse
Affiliation(s)
- Lisheng Qian
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Shoucheng Huang
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Zhihua Song
- College of Food Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.
| | - Khadim Dawar
- Department of Soil and Environmental Science, the University of Agriculture Peshawar, Peshawar, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Hina Saif
- Department of Environmental Sciences, Woman University Multan, Multan, Punjab, Pakistan
| | - Khurram Shahzad
- Department of Soil Science, University College of Dera Murad Jamali, LUAWMS, Dera Murad Jamali, Balochistan, Pakistan
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), Moradabad, 244001, India
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11461, Saudi Arabia
| |
Collapse
|
6
|
Rasheed A, Al-Huqail AA, Ali B, Alghanem SMS, Shah AA, Azeem F, Rizwan M, Al-Qthanin RN, Soudy FA. Molecular characterization of genes involved in tolerance of cadmium in Triticum aestivum (L.) under Cd stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132955. [PMID: 37976857 DOI: 10.1016/j.jhazmat.2023.132955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/21/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
The NRAMPs (natural resistance-associated macrophage proteins) are major transporters for the absorption and transport of metals like Pb, Zn, Mn, Fe, and Cd in plants. While NRAMP gene family members have been extensively studied as metal transporters in model and other plants, little information has been reported on their role in Triticum aestivum, particularly in response to Cd stress. Current study reported 13 NRAMP candidates in the genome of T. aestivum. Phylogenetic analysis divided these into three clades. Motif and gene structure study showed that members in the same clades shared the same location and pattern, which further supported the phylogenetic analysis. The analysis of cis-acting elements in promoter sequences of NRAMP genes in wheat identified stress-responsive transcription factor binding sites. Multiple sequence alignment identified the conservation of important residues. Based on RNA-seq and qRT-PCR analysis, Cd stress-responsive variations of TaNRAMP gene expression were reported. This study provides comprehensive data to understand the TaNRAMP gene family, its features, and its expression, which will be a helpful framework for functional research.
Collapse
Affiliation(s)
- Asima Rasheed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Asad Ali Shah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Rahmah N Al-Qthanin
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia; Prince Sultan Bin Abdelaziz for Environmental Research and Natural Resources Sustainability Center, King Khalid University, Abha 61421, Saudi Arabia
| | - Fathia A Soudy
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
7
|
Al-Huqail AA, Alghanem SMS, Abbas ZK, Al Aboud NM, Masood N, Irshad MA, Abbas T, Abeed AHA, Darwish DBE. Evaluation of nanoceria on cadmium uptake in Triticum aestivum (L.) and its implications for dietary health risk. CHEMOSPHERE 2023; 341:140115. [PMID: 37689157 DOI: 10.1016/j.chemosphere.2023.140115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
In recent times, significant attention has been directed toward the synthesis and application of nanoparticles (NPs) in agriculture sector. In current study, nanoceria (CeO2 NPs) synthesized by green method were employed to address cadmium (Cd) accumulation in wheat (Triticum aestivum L.) cultivated in field with excess Cd. The application of CeO2 NPs was carried out through foliar spraying, performed twice during the growth of T. aestivum. Four levels of CeO2 NPs were used: T0, T1, T2, and T3 as 0, 50, 75, and 100 mgL-1, respectively. Results highlighted the positive effects of CeO2 NPs on various growth parameters, including plant height, spike length, photosynthetic related attributes, as well as straw and grain of grains in comparison to T1 (control group). Furthermore, CeO2 NPs led to a reduction in oxidative stress in the leaves and enhanced in enzyme activities in comparison to T1. Notably, Cd concentrations in straw, roots, and grains exhibited a decline following the treatment with CeO2 NPs, in contrast to the control group. In terms of health implications, the calculated health risk index associated with dietary consumption of grains by adults remained below the defined threshold with supply of nanoparticles. Foliar application of CeO2 NPs proved to be an effective approach in reducing cadmium content in wheat grains. This reduction holds significant potential for minimizing the risk of cadmium exposure to human health through the food chain. Employing the green synthesis method amplifies the potential for extensive production and a wide array of environmental applications for CeO2 NPs. This dual capacity makes them proficient in tackling environmental stresses while concurrently mitigating adverse ecological effects.
Collapse
Affiliation(s)
- Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Nora M Al Aboud
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nasir Masood
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Tarlai Kalan Chak, Shehzad Park Road, Islamabad, 45550, Pakistan.
| | | | - Tahir Abbas
- Department of Environmental Sciences, University of Jhang, Pakistan
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Doaa Bahaa Eldin Darwish
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia; Botany Department, Faculty of Science, Mansoura University, Mansoura, 35511, Egypt
| |
Collapse
|
8
|
Alotaibi MO, Alotaibi NM, Ghoneim AM, Ain NU, Irshad MA, Nawaz R, Abbas T, Abbas A, Rizwan M, Ali S. Effect of green synthesized cerium oxide nanoparticles on fungal disease of wheat plants: A field study. CHEMOSPHERE 2023; 339:139731. [PMID: 37557994 DOI: 10.1016/j.chemosphere.2023.139731] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Recently, there has been considerable attention towards the production of environmentally friendly nanoparticles (NPs). In this investigation, the successful synthesis of cerium oxide nanoparticles (CeO2 NPs) was achieved by employing an eco-friendly technique that utilized an extract from the leaves of local plant quinoa (Chenopodium quinoa L.). The synthesized CeO2 NPs were subjected to characterization using state-of-the-art methods. The prepared CeO2 NPs contained a round shape with clusters and have a size of 7-10 nm. To assess how effective CeO2 NPs derived from C. quinoa were against Ustilago tritici, a fungal disease that negatively affects wheat crop globally, a study was performed on two varieties of wheat crop comprised of Arooj (V1) and Akber (V2), cultivated under field conditions. CeO2 NPs were applied foliarly twice to the wheat crop at four different concentrations: T0 (0 mg/L), T1 (50 mg/L), T2 (75 mg/L), and T3 (100 mg/L). The results revealed that the control group (T0) exhibited the highest disease severity index (DSI) with a value of 75% compared to the other concentrations of CeO2 NPs on both varieties. At a concentration of 100 mg/L of CeO2 NPs, the DSI dropped to a minimum of 35% and 37% on both V1 and V2 respectively. These findings indicated that an increase in the concentration of CeO2 NPs has a beneficial impact on disease severity. Similar patterns have also been observed with disease incidence (DI), with the greatest efficacy observed at a concentration of 100 mg/L of CeO2 NPs. Our investigation has shown that CeO2 NPs exhibitd significant antifungal potential against U. tritici which may be a promising strategy to mitigate fungal disease and crop losses globally.
Collapse
Affiliation(s)
- Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Nahaa M Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Adel M Ghoneim
- Agricultural Research Center, Field Crops Research Institute, Giza 12112, Egypt
| | - Noor Ul Ain
- Department of Environmental Sciences, The University of Lahore, 54000, Pakistan
| | | | - Rab Nawaz
- Research and Knowledge Transfer, INTI International University, Putra Nilai 71800, Malaysia; Department of Environmental Sciences, The University of Lahore, 54000, Pakistan
| | - Tahir Abbas
- Department of Environmental Sciences, University of Jhang, Pakistan
| | - Amjad Abbas
- Department of Plant Pathology, University of Agriculture Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, 38000, Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, 38000, Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|