1
|
He Z, Zhou X, Qu L, Jin W, Li X, Liu H, Wang Q. Integrating electrochemical pretreatment with microalgae treatment for nitrogen and phosphorus removal and resource recovery from swine wastewater. BIORESOURCE TECHNOLOGY 2024; 414:131559. [PMID: 39357607 DOI: 10.1016/j.biortech.2024.131559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
This study integrates electrochemical pretreatment with microalgae (Scenedesmus obliquus) treatment to enhance nitrogen and phosphorus removal and resource recovery from swine wastewater. By optimizing electrochemical and microalgae treatment conditions, the dilution factor and the hydraulic retention time for microalgae treatment were reduced to 5 times and 7 days, respectively. Under the optimized operational conditions, removal efficiencies of total nitrogen and ammonia could reach over 89 %and 96 %,respectively, and the removal efficiency of total phosphorus was over 99 %. The study also found that aluminum was more suitable than iron for anode as it produced fewer residues. Additionally, the electrochemical pretreatment reduced Cu2+ and Zn2+ concentrations, mitigating negative impacts on microalgal growth. The microalgae biomass harvested from developed processes was rich in saturated fatty acids, which was desirable for biodiesel production. This approach addresses the challenges of nutrient removal for swine wastewater treatment with high quality biomass recovery.
Collapse
Affiliation(s)
- Zhongqi He
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| | - Luyao Qu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Wenbiao Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
2
|
Manikandan S, Deena SR, Subbaiya R, Vijayan DS, Vickram S, Preethi B, Karmegam N. Waves of change: Electrochemical innovations for environmental management and resource recovery from water - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121879. [PMID: 39043086 DOI: 10.1016/j.jenvman.2024.121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/27/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Environmental electrochemistry and water resource recovery are covered in this review. The study discusses the growing field's scientific basis, methods, and applications, focusing on innovative remediation tactics. Environmental electrochemistry may solve water pollution and extract resources. Electrochemical methods may effectively destroy or convert pollutants. This method targets heavy metals, organic compounds, and emerging water contaminants such as pharmaceuticals and microplastics, making it versatile. Environmental electrochemistry and resource recovery synergize to boost efficiency and sustainability. Innovative electrochemical methods can extract or synthesise metals, nutrients, and energy from wastewater streams, decreasing treatment costs and environmental effect. The study discusses electrocoagulation, electrooxidation, and electrochemical advanced oxidation processes and their mechanics and performance. Additionally, it discusses current electrode materials, reactor designs, and process optimisation tactics to improve efficiency and scalability. Resource recovery in electrochemical remediation methods is also examined for economic and environmental feasibility. Through critical examination of case studies and techno-economic evaluations, it explains the pros and cons of scaling up these integrated techniques. This study covers environmental electrochemistry and resource recovery's fundamental foundations, technology advances, and sustainable water management consequences.
Collapse
Affiliation(s)
- S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - S R Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia; Oliver R. Tambo Africa Research Chair Initiative (ORTARChI) Environment and Development, The Copperbelt University, P.O. Box 21692, Kitwe, Zambia
| | - D S Vijayan
- Department of Civil Engineering, Aarupadai Veedu Institute of Technology, Vinayaka Mission Research Foundation (VMRF - DU), Paiyanur, Chennai, 603104, Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - B Preethi
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
3
|
Li J, Li T, Sun D, Guan Y, Zhang Z. Treatment of agricultural wastewater using microalgae: A review. ADVANCES IN APPLIED MICROBIOLOGY 2024; 128:41-82. [PMID: 39059843 DOI: 10.1016/bs.aambs.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The rapid development of agriculture has led to a large amount of wastewater, which poses a great threat to environmental safety. Microalgae, with diverse species, nutritional modes and cellular status, can adapt well in agricultural wastewater and absorb nutrients and remove pollutants effectively. Besides, after treatment of agricultural wastewater, the accumulated biomass of microalgae has broad applications, such as fertilizer and animal feed. This paper reviewed the current progresses and further perspectives of microalgae-based agricultural wastewater treatment. The characteristics of agricultural wastewater have been firstly introduced; Then the microalgal strains, cultivation modes, cellular status, contaminant metabolism, cultivation systems and biomass applications of microalgae for wastewater treatment have been summarized; At last, the bottlenecks in the development of the microalgae treatment methods, as well as recommendations for optimizing the adaptability of microalgae to wastewater in terms of wastewater pretreatment, microalgae breeding, and microalgae-bacterial symbiosis systems were discussed. This review would provide references for the future developments of microalgae-based agricultural wastewater treatment.
Collapse
Affiliation(s)
- Jiayi Li
- School of Life Sciences, Hebei University, Baoding, P.R. China
| | - Tong Li
- School of Life Sciences, Hebei University, Baoding, P.R. China
| | - Dongzhe Sun
- College of Life Sciences, Hebei Normal University, Shijiazhuang, P.R. China
| | - Yueqiang Guan
- School of Life Sciences, Hebei University, Baoding, P.R. China.
| | - Zhao Zhang
- School of Life Sciences, Hebei University, Baoding, P.R. China; College of Life Sciences, Hebei Normal University, Shijiazhuang, P.R. China.
| |
Collapse
|
4
|
Zhou L, Liang M, Zhang D, Niu X, Li K, Lin Z, Luo X, Huang Y. Recent advances in swine wastewater treatment technologies for resource recovery: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171557. [PMID: 38460704 DOI: 10.1016/j.scitotenv.2024.171557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Swine wastewater (SW), characterized by highly complex organic and nutrient substances, poses serious impacts on aquatic environment and public health. Furthermore, SW harbors valuable resources that possess substantial economic potential. As such, SW treatment technologies place increased emphasis on resource recycling, while progressively advancing towards energy saving, sustainability, and circular economy principles. This review comprehensively encapsulates the state-of-the-art knowledge for treating SW, including conventional (i.e., constructed wetlands, air stripping and aerobic system) and resource-utilization-based (i.e., anaerobic digestion, membrane separation, anaerobic ammonium oxidation, microbial fuel cells, and microalgal-based system) technologies. Furthermore, this research also elaborates the key factors influencing the SW treatment performance, such as pH, temperature, dissolved oxygen, hydraulic retention time and organic loading rate. The potentials for reutilizing energy, biomass and digestate produced during the SW treatment processes are also summarized. Moreover, the obstacles associated with full-scale implementation, long-term treatment, energy-efficient design, and nutrient recovery of various resource-utilization-based SW treatment technologies are emphasized. In addition, future research prospective, such as prioritization of process optimization, in-depth exploration of microbial mechanisms, enhancement of energy conversion efficiency, and integration of diverse technologies, are highlighted to expand engineering applications and establish a sustainable SW treatment system.
Collapse
Affiliation(s)
- Lingling Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Ming Liang
- Bureau of Ecology and Environment, Maoming 525000, PR China
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Xiaojun Niu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Sino-Singapore International Joint Research Institute, Guangzhou 510700, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Kai Li
- The Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China.
| | - Zitao Lin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Xiaojun Luo
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Yuying Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| |
Collapse
|
5
|
Wu H, Li A, Gao S, Xing Z, Zhao P. The performance, mechanism and greenhouse gas emission potential of nitrogen removal technology for low carbon source wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166491. [PMID: 37633391 DOI: 10.1016/j.scitotenv.2023.166491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
Excessive nitrogen can lead to eutrophication of water bodies. However, the removal of nitrogen from low carbon source wastewater has always been challenging due to the limited availability of carbon sources as electron donors. Biological nitrogen removal technology can be classified into three categories: heterotrophic biological technology (HBT) that utilizes organic matter as electron donors, autotrophic biological technology (ABT) that relies on inorganic electrons as electron donors, and heterotrophic-autotrophic coupling technology (CBT) that combines multiple electron donors. This work reviews the research progress, microbial mechanism, greenhouse gas emission potential, and challenges of the three technologies. In summary, compared to HBT and ABT, CBT shows greater application potential, although pilot-scale implementation is yet to be achieved. The composition of nitrogen removal microorganisms is different, mainly driven by electron donors. ABT and CBT exhibit the lowest potential for greenhouse gas emissions compared to HBT. N2O, CH4, and CO2 emissions can be controlled by optimizing conditions and adding constructed wetlands. Furthermore, these technologies need further improvement to meet increasingly stringent emission standards and address emerging pollutants. Common measures include bioaugmentation in HBT, the development of novel materials to promote mass transfer efficiency of ABT, and the construction of BES-enhanced multi-electron donor systems to achieve pollutant prevention and removal. This work serves as a valuable reference for the development of clean and sustainable low carbon source wastewater treatment technology, as well as for addressing the challenges posed by global warming.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Sicong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
6
|
Leong WH, Rawindran H, Ameen F, Alam MM, Chai YH, Ho YC, Lam MK, Lim JW, Tong WY, Bashir MJK, Ravindran B, Alsufi NA. Advancements of microalgal upstream technologies: Bioengineering and application aspects in the paradigm of circular bioeconomy. CHEMOSPHERE 2023; 339:139699. [PMID: 37532206 DOI: 10.1016/j.chemosphere.2023.139699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Sustainable energy transition has brought the attention towards microalgae utilization as potential feedstock due to its tremendous capabilities over its predecessors for generating more energy with reduced carbon footprint. However, the commercialization of microalgae feedstock remains debatable due to the various factors and considerations taken into scaling-up the conventional microalgal upstream processes. This review provides a state-of-the-art assessment over the recent developments of available and existing microalgal upstream cultivation systems catered for maximum biomass production. The key growth parameters and main cultivation modes necessary for optimized microalgal growth conditions along with the fundamental aspects were also reviewed and evaluated comprehensively. In addition, the advancements and strategies towards potential scale-up of the microalgal cultivation technologies were highlighted to provide insights for further development into the upstream processes aimed at sustainable circular bioeconomy.
Collapse
Affiliation(s)
- Wai Hong Leong
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Algal Bio Co. Ltd, Todai-Kashiwa Venture Plaza, 5-4-19 Kashiwanoha, Kashiwa, Chiba, 277-0082, Japan.
| | - Hemamalini Rawindran
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Yee Ho Chai
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Yeek Chia Ho
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Man Kee Lam
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| | - Woei-Yenn Tong
- Universiti Kuala Lumpur, Institute of Medical Science Technology, A1-1, Jalan TKS 1, Taman Kajang Sentral, 43000, Kajang, Selangor, Malaysia
| | - Mohammed J K Bashir
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900, Kampar, Perak, Malaysia
| | - Balasubramani Ravindran
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Nizar Abdallah Alsufi
- Department of Management Information System and Production Management, College of Business & Economics, Qassim University, P.O. BOX 6666, Buraydah, 51452, Saudi Arabia
| |
Collapse
|