1
|
Shi H, Wang W, Mao L, Zhang L, Zhu L, Wu C, Liu X. Visible light photocatalytic degradation of pesticides and antibiotics by H 3PO 4-activated biochar combined with g-C 3N 4: Effects, mechanism, degradation pathway, and toxicity assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124929. [PMID: 40101488 DOI: 10.1016/j.jenvman.2025.124929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
In recent decades, aquatic environmental pollution resulting from the extensive use of pesticides and antibiotics in the agriculture and livestock industries has become a major concern. In this study, a H3PO4-activated biochar-g-C3N4 composite photocatalyst (PBC-g-C3N4(0.15)) was synthesized for the degradation of pesticides (imidacloprid (IMI), atrazine (ATR), azoxystrobin (AZO)) and antibiotics (tetracycline (TC), ofloxacin (OFX), sulfadiazine (SDZ)) under visible light. PBC-g-C3N4(0.15) achieved 89.7% degradation efficiency for IMI within 120 min, 1.8 times higher than g-C3N4, mainly due to 4.4 times increase in photocurrent density. Active species identified mainly included 1O2, ·O2-, and ∙OH. Density functional theory and UHPLC-Q Exactive MS analysis suggested three degradation pathways for IMI, with most intermediates predicted to be less toxic than the parent compound. Additionally, PBC-g-C3N4(0.15) was largely unaffected by environmental factors and achieved over 94% degradation efficiencies for AZO, TC, and OFX within 60 min, and over 34% for ATR and SDZ in 120 min. The degradation efficiencies for IMI and TC remained 61.0% and 76.1% after eight cycles, respectively. In natural water, the degradation efficiencies for IMI and TC exceeded 30% and 65%, respectively. This research offers valuable insights into the modification of g-C3N4 and the treatment of pesticides and antibiotics in wastewater.
Collapse
Affiliation(s)
- Haojie Shi
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chi Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
2
|
Ramírez
Hernandez MC, Nogueira Bandeira J, Rosero Alpala DA, Pacheco Batista L, Silvestre Araújo MA, das Chagas PSF, Valadao Silva D, Costa de Morais ER. Aquatic Macrophytes in the Remediation of Atrazine in Water: A Study on Herbicide Tolerance and Degradation Using Eichhornia crassipes, Pistia stratiotes, and Salvinia minima. ACS OMEGA 2025; 10:11264-11273. [PMID: 40160780 PMCID: PMC11948152 DOI: 10.1021/acsomega.4c10903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025]
Abstract
Aquatic macrophytes can be used for herbicide remediation provided they exhibit tolerance to the contaminants. This research assessed the remediation potential of Salvinia minima, Echhornia crassipes, and Pistia stratiotes, some common aquatic macrophytes native to Brazil, and their tolerance to atrazine, an herbicide commonly detected in waterbodies. Plants were cultivated under controlled conditions with five atrazine concentrations (0, 2, 20, 200, and 1000 μg L-1) for 15 days. S. minima and E. crassipes tolerated atrazine concentrations equal to or less than 20 μg L-1 and died at 200 and 1000 μg L-1, indicating the herbicide's potential toxicity and its selectivity against sensitive species. P. stratiotes tolerated the herbicide concentration up to 200 μg L-1 and had its growth reduced at 1000 μg L-1. All species demonstrated the ability to reduce atrazine concentrations in water at 20 μg L-1 or lower, E. crassipes being the most efficient, reducing concentrations by 43% and 22% at 2 and 20 μg L-1, respectively. Atrazine levels within Brazilian (2 μg L-1 by CONAMA 2005) and European (0.1 μg L-1 by Directive 2013/33) regulatory limits do not selectively affect these species. Thus, they show potential for use in arazine phytoremediation programs.
Collapse
Affiliation(s)
- María Carolina Ramírez
Hernandez
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Jesley Nogueira Bandeira
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Deisy Alexandra Rosero Alpala
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Lucrecia Pacheco Batista
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Mayara Alana Silvestre Araújo
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Paulo Sergio Fernandes das Chagas
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Daniel Valadao Silva
- Department
of Agronomic and Forest Sciences, Federal
University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres. Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| | - Elis Regina Costa de Morais
- Engineering
Center, Federal University of the Semiarid-UFERSA, AV. Francisco Mota, 572 - Pres.
Costa E Silva, RN, Mossoró, 59625-900 Rio Grande do Norte, Brazil
| |
Collapse
|
3
|
Murthy MK. Environmental dynamics of pesticides: sources, impacts on amphibians, nanoparticles, and endophytic microorganism remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7860-7893. [PMID: 40069476 DOI: 10.1007/s11356-025-36216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
Pesticides, which are widely used in agriculture, have elicited notable environmental concern because they persist and may be toxic. The environmental dynamics of pesticides were reviewed with a focus on their sources, impacts on amphibians, and imminent remediation options. Pesticides are directly applied in ecosystems, run off into water bodies, are deposited in the atmosphere, and often accumulate in the soil and water bodies. Pesticide exposure is particularly problematic for amphibians, which are sensitive indicators of the environment's health and suffer from physiological, behavioral, and developmental disruption that has "pushed them to the brink of extinction." Finally, this review discusses the nanoparticles that can be used to tackle pesticide pollution. However, nanoparticles with large surface areas and reactivity have the potential to degrade or adsorb pesticide residues during sustainable remediation processes. Symbiotic microbes living inside plants, known as endophytic microorganisms, can detoxify pesticides. Reducing pesticide bioavailability improves plant resilience by increasing the number of metabolizing microorganisms. Synergy between nanoparticle technology and endophytic microorganisms can mitigate pesticide contamination. Results show that Interdisciplinary research is necessary to improve the application of these strategies to minimize the ecological risk of pesticides. Eco-friendly remediation techniques that promote sustainable agricultural practices, while protecting amphibian populations and ecosystem health, have advanced our understanding of pesticide dynamics.
Collapse
Affiliation(s)
- Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab - 140401, India.
| |
Collapse
|
4
|
Guimarães-Ervilha LO, Assis MQ, Bento IPDS, Lopes IDS, Iasbik-Lima T, Carvalho RPR, Machado-Neves M. Exploring the endocrine-disrupting potential of atrazine for male reproduction: A systematic review and meta-analysis. Reprod Biol 2025; 25:100989. [PMID: 39708576 DOI: 10.1016/j.repbio.2024.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Atrazine is an herbicide widely used on plantations worldwide. Experimental studies suggest that the herbicide impairs male reproductive function in mammals. This systematic review and meta-analysis aimed to evaluate the impact of atrazine exposure on the levels of hormones from the hypothalamic-pituitary-testicular axis using murine as the animal model. After an extensive literature search, we selected 25 articles for the systematic review. Bias analysis and methodological quality assessments were examined using the SYRCLE Risk of Bias tool. Moreover, 20 out of the 25 studies were eligible for performing a meta-analysis to evaluate the intensity of atrazine damage on the levels of intratesticular testosterone and serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, estradiol, and progesterone. The meta-analysis revealed that atrazine exposure decreased serum FSH, LH, and testosterone levels, besides increased serum estradiol and progesterone levels. Atrazine also caused a reduction in intratesticular testosterone levels. Exposure to atrazine in high concentrations (≥ 100 mg Kg-1) was the main cause of endocrine disruption, regardless of the exposure time. None of the studies have tested doses relevant to human health risk. Oxidative stress and inflammation are involved in atrazine toxicity, impairing the gonadotropin release by the pituitary, disturbing steroidogenesis, and affecting the male hormone regulatory system. We may conclude that hormone disturbances lead to a failure in testicular steroidogenesis, with possible implications for male reproductive function. The registration number on the Prospero platform is CRD42024495626.
Collapse
Affiliation(s)
| | | | | | | | - Thainá Iasbik-Lima
- Universidade Federal de Viçosa, Departamento de Biologia Geral, Vicosa, Brasil
| | | | | |
Collapse
|
5
|
Li T, Wu X, Zheng L, Cheng Y, Zhao L, Chen Z. Quantitative tracing of typical herbicides and their metabolites in sorghum agrosystems for fate tendency and cumulative risk. Food Chem 2025; 464:141638. [PMID: 39432965 DOI: 10.1016/j.foodchem.2024.141638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
Elucidating the combined exposure of agrochemicals is essential for safeguarding human health and agroecosystem safety. A rapid and high-sensitivity UHPLC-MS/MS method was developed for simultaneous quantification of nine compounds in sorghum by an assembly-line optimization process with a limit of quantitation of 0.001 mg/kg. The concentration variation of atrazine, quinclorac, fluroxypyr-meptyl and metabolites was reflected by terminal magnitudes of ≤0.0665 mg/kg. Additionally, atrazine was dealkylated to deethyl atrazine and desethyl desisopropyl atrazine at concentrations of 0.0014-0.0058 mg/kg during the sorghum harvest. Acceptable health hazardous of atrazine and quinclorac for all life cycle populations were comparatively assessed via deterministic and probabilistic models, in which atrazine gained an 83.55 % share of cumulative dietary risks. Rural residents had significantly higher risks than urban residents, and children were the most sensitive group. Despite the low health risks, combined exposure to herbicides and their metabolites should be continuously stressed, given their cumulative amplification effects.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Tianjin Agricultural University, Tianjin 300384, PR China
| | - Xujin Wu
- Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, PR China
| | - Lufei Zheng
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Youpu Cheng
- Tianjin Agricultural University, Tianjin 300384, PR China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
6
|
Silva SB, Grigio V, Ruiz TFR, Calmon MDF, Rahal P, Santos FCAD, Taboga SR, Vilamaior PSL. Individual and combined effects of commercial glyphosate, atrazine and 2,4-D herbicides on the gerbil ventral prostate. CHEMOSPHERE 2024; 367:143626. [PMID: 39461442 DOI: 10.1016/j.chemosphere.2024.143626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/03/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Exposure to pesticides, individually or in a mixture, in drinking water is one of the main sources of human contamination, which causes adverse effects on the reproductive system. Our study aimed to investigate, the effects of a 90-day exposure to low concentrations of glyphosate (GLY), atrazine (ATZ), and 2,4-dichlorophenoxyacetic acid (2,4-D), in commercial formulations, on morphological, molecular, and hormonal parameters of the ventral prostate of gerbils (Meriones unguiculatus). The animals were exposed via drinking water to individual concentrations of GLY: 700 μg/L, ATZ: 3 μg/L, and 2,4-D: 70 μg/L, as well as to their mixture (MIX). Our findings showed an increase in prostatic complex relative weight in ATZ-exposed animals. Stereological and morphometric techniques indicated an increase in the percentage and thickness of muscular stroma, following an increase in the amount of collagen and reticular fibers in the MIX group. Histopathological analysis showed a decrease in the incidence of epithelial atrophy, subepithelial inflammation, and microacini in the MIX. On the other hand, ATZ-exposed animals showed an increase in hyperplasia and total prostatic intraepithelial neoplasia (PIN). The expression of caspase-3 decreased and estrogen receptor alpha (ERα) increased in the 2,4-D and MIX. Western blotting showed an increase in estrogen receptor beta (ERβ) expression in MIX-exposed animals. Testosterone levels decreased in animals from the GLY, ATZ and 2,4-D groups. Our findings provide evidence that individual or combined exposure to herbicides causes hormonal imbalance and morphological alterations, besides favoring the incidence of proliferative lesions in the prostate, predisposing the gland to more severe injuries.
Collapse
Affiliation(s)
- Stella Bicalho Silva
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.
| | - Vitor Grigio
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.
| | - Thalles Fernando Rocha Ruiz
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Marília de Freitas Calmon
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.
| | - Paula Rahal
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.
| | - Fernanda Cristina Alcantara Dos Santos
- Department of Histology, Embryology and Cell Biology, Laboratory of Microscopy Applied to Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil.
| | - Sebastião Roberto Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil; Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Patrícia Simone Leite Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
7
|
Wang S, Yang Y, Li D, Xie L, Wu Y, Li G. Current Research Status, Opportunities, and Future Challenges of Nine Representative Persistent Herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21959-21972. [PMID: 39331366 DOI: 10.1021/acs.jafc.4c04537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Pesticides are extensively utilized in contemporary agriculture to manage pests, enhance crop yields, and sustain productivity. Nevertheless, the persistent herbicide represents a dual-edged weapon. On one hand, their prolonged efficacy enables reduced application frequency during crop growth seasons, resulting in cost savings on labor. However, the presence of these residues within fields poses safety risks to soil quality, sensitive crops in subsequent rotations, agricultural product quality, and the ecological environment. This review presents a comprehensive review on the mechanisms of action, application risks, ecotoxicology, and residue analysis methods of nine representative persistent herbicides (namely, atrazine, imazethapyr, imazapic, mesosulfuron-methyl, halosulfuron-methyl, fomesafen, diflufenican, quinclorac, and pyroxasulfone). The objective is to guide their scientific and rational utilization in agricultural practices while minimizing phytotoxicity risks and effectively monitoring and controlling soil pollution. These can not only provide practical recommendations for mitigating potential plant toxicity and ecological environmental risks but also contribute valuable technical insights for efficient soil pollution monitoring and prevention. Additionally, unaddressed research objectives were also anticipated.
Collapse
Affiliation(s)
- Shoumeng Wang
- Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yang Yang
- Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Dongzhi Li
- Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lanfen Xie
- Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yanbing Wu
- Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Guangling Li
- Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
8
|
Gajendra G, Pulimi M, Natarajan C, Mukherjee A. Occurrence, Toxicodynamics, and Mechanistic Insights for Atrazine Degradation in the Environment. WATER, AIR, & SOIL POLLUTION 2024; 235:649. [DOI: 10.1007/s11270-024-07439-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/11/2024] [Indexed: 01/12/2025]
|
9
|
Aguzie IO, Oriaku CU, Agbo FI, Ukwueze VO, Asogwa CN, Ikele CB, Aguzie IJ, Ossai NI, Eyo JE, Nwani CD. Single and mixture exposure to atrazine and ciprofloxacin on Clarias gariepinus antioxidant defense status, hepatic condition and immune response. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104523. [PMID: 39089401 DOI: 10.1016/j.etap.2024.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Atrazine (ATRA) and ciprofloxacin (CPRO) are widely detected, persistent and co-existing aquatic pollutants. This study investigated effects of 14-day single and joint ATRA and CPRO exposure on juvenile Clarias gariepinus. Standard bioassay methods were used to determine responses of oxidative stress, hepatic condition, and immunological biomarkers on days 7 and 14. Seven groups were used: Control, CPROEC, CPROSubl, ATRAEC, ATRASubl, CPROEC+ATRAEC, and CPROSubl+ATRASubl. The test substances caused decreased activity of superoxide dismutase, catalase, and glutathione peroxidase. Lipid peroxidation was elevated, especially in CPRO-ATRA mixtures. Serum aminotransferases (ALT, and AST), and alkaline phosphatase activity increased significantly. Total protein, albumin, total immunoglobulin, and respiratory burst decreased significantly. Therefore, single and joint exposure to CPRO and ATRA poses adverse consequences on aquatic life.
Collapse
Affiliation(s)
- Ifeanyi O Aguzie
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria.
| | | | - Faith I Agbo
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Vera O Ukwueze
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Chinweike N Asogwa
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Chika B Ikele
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Ijeoma J Aguzie
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Nelson I Ossai
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Joseph E Eyo
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Christopher D Nwani
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| |
Collapse
|
10
|
Hassanin HM, Kamal AA, Ismail OI. Resveratrol ameliorates atrazine-induced caspase-dependent apoptosis and fibrosis in the testis of adult albino rats. Sci Rep 2024; 14:17743. [PMID: 39085279 PMCID: PMC11291673 DOI: 10.1038/s41598-024-67636-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Pesticides like atrazine which are frequently present in everyday surroundings, have adverse impacts on human health and may contribute to male infertility. The work aimed to analyze the histological and biochemical effects of atrazine on the testis in adult albino rats and whether co-administration with resveratrol could reverse the effect of atrazine. Forty adult male albino rats in good health participated in this study. They were categorized at random into four groups: the Group Ӏ received water through a gastric tube for two months every day, the Group ӀӀ received resveratrol (20 mg/kg body weight (b.w.)) through a gastric tube for two months every day, the Group ӀӀӀ received atrazine (50 mg/kg bw) through a gastric tube for two months every day, the Group ӀV received concomitant doses of atrazine and resveratrol for two months every day. The testes of the animals were then carefully removed and prepared for biochemical, immunohistochemical, light, and electron microscopic studies. Atrazine exposure led to a significant decrease in serum testosterone hormone level, upregulation of caspase 3 and iNOS mRNA levels, destructed seminiferous tubules with few sperms in their lumens, many collagen fibres accumulation in the tunica albuginea and the interstitium, abnormal morphology of some sperms as well as many vacuolations, and damaged mitochondria in the cytoplasm of many germ cells. Concomitant administration of resveratrol can improve these adverse effects. It was concluded that atrazine exposure is toxic to the testis and impairs male fertility in adult rat and coadministration of resveratrol guards against this toxicity.
Collapse
Affiliation(s)
- Hala Mohamed Hassanin
- Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Asmaa A Kamal
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Omnia I Ismail
- Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| |
Collapse
|
11
|
Santos VS, Vidal C, Bisinoti MC, Moreira AB, Montagner CC. Integrated occurrence of contaminants of emerging concern, including microplastics, in urban and agricultural watersheds in the State of São Paulo, Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173025. [PMID: 38723955 DOI: 10.1016/j.scitotenv.2024.173025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Contaminants of emerging concern (CECs), including microplastics, have been the focus of many studies due to their environmental impact, affecting biota and human health. The diverse land uses and occupation of watersheds are important parameters driving the occurrence of these contaminants. CECs such as pesticides, drugs, hormones, and industrial-origin substances were analyzed in urban/industrial (Atibaia) and agricultural (Preto/Turvo) watersheds located in São Paulo state, Brazil. A total of 24 CECs were investigated, and, as a result, only 5 (caffeine, carbendazim, atrazine, ametrine and 2-hydroxytrazine) were responsible for 81.73 % of the statistical difference between watersheds contamination profile. The Atibaia watershed presented considerable concentrations of caffeine (ranging from 75 to 2025 ng L-1), while carbendazim (44 to 1144 ng L-1) and atrazine (3 to 266 ng L-1) presented highest levels in Preto/Turvo watershed. In all sampling points, the cumulative potential aquatic life risk assessed by the NORMAN database indicates some level of environmental concern associated to pesticides and caffeine (risk quotient >1). Microplastics had been analyzed in both watersheds, being the white/transparent fragments in size between 100 and 250 μm the most detected in this study. The estimated abundance in the Atibaia watershed ranged from 349 to 2898 items m-3 presenting some influence of pluviosity, while in Rio Preto/Turvo ranged from 169 to 6370 items m-3, being more abundant in the dam area without a clear influence of pluviosity. In both basins, polyethylene and polypropylene were the most detected polymers, probably due to the intense use of single-use plastics in urban areas. Possibly, due to the distinct physic-chemical properties of microplastics and organic CECs, no correlations were observed between their occurrence, which makes us conclude that they have different transport mechanism, behavior, and fate in the environment.
Collapse
Affiliation(s)
- Vinicius S Santos
- University of Campinas (UNICAMP), Institute of Chemistry, Campinas, SP 13083-970, Brazil
| | - Cristiane Vidal
- University of Campinas (UNICAMP), Institute of Chemistry, Campinas, SP 13083-970, Brazil
| | - Marcia C Bisinoti
- São Paulo State University, Department of Chemistry and Environmental Sciences, São José do Rio Preto, SP 15054-000, Brazil
| | - Altair B Moreira
- São Paulo State University, Department of Chemistry and Environmental Sciences, São José do Rio Preto, SP 15054-000, Brazil
| | - Cassiana C Montagner
- University of Campinas (UNICAMP), Institute of Chemistry, Campinas, SP 13083-970, Brazil.
| |
Collapse
|
12
|
Gomes-Andrade D, Guerra-Carvalho B, Carrageta DF, Bernardino RL, Braga PC, Oliveira PF, de Lourdes Pereira M, Alves MG. Exposure to toxicologically relevant atrazine concentrations impair the glycolytic function of mouse Sertoli cells through the downregulation of lactate dehydrogenase. Toxicol Appl Pharmacol 2024; 486:116929. [PMID: 38608961 DOI: 10.1016/j.taap.2024.116929] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Atrazine (ATZ), a widely used herbicide with potent endocrine-disrupting properties, has been implicated in hormonal disturbances and fertility issues. Sertoli cells (SCs) play a crucial role in providing mechanical and nutritional support of spermatogenesis. Herein, we aimed to study the effects of environmentally relevant ATZ concentrations on the nutritional support of spermatogenesis provided by SCs. For that, mouse SCs (TM4) were exposed to increasing ATZ concentrations (in μg/L: 0.3, 3, 30, 300, or 3000). After 24 h, cellular proliferation and metabolic activity were assessed. Mitochondrial activity and endogenous reactive oxygen species (ROS) production were evaluated using JC-1 and CM-H2DCFDA probes, respectively. We also analyzed protein levels of lactate dehydrogenase (LDH) using Western Blot and live cells glycolytic function through Seahorse XF Glycolysis Stress Test Kit. ATZ exposure decreased the activity of oxidoreductases in SCs, suggesting a decreased metabolic activity. Although ATZ is reported to induce oxidative stress, we did not observe alterations in mitochondrial membrane potential and ROS production across all tested concentrations. When we evaluated the glycolytic function of SCs, we observed that ATZ significantly impaired glycolysis and the glycolytic capacity at all tested concentrations. These results were supported by the decreased expression of LDH in SCs. Overall, our findings suggest that ATZ impairs the glycolytic function of SCs through LDH downregulation. Since lactate is the preferential energetic substrate for germ cells, exposure to ATZ may detrimentally impact the nutritional support crucial for spermatogenesis, hinting for a relationship between ATZ exposure and male infertility.
Collapse
Affiliation(s)
| | - Bárbara Guerra-Carvalho
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal; LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal; Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - David F Carrageta
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Raquel L Bernardino
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Patrícia C Braga
- Clinical and Experimental Endocrinology, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Maria de Lourdes Pereira
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| | - Marco G Alves
- Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; iBiMED - Institute of Biomedicine, University of Aveiro(,) Aveiro, Portugal.
| |
Collapse
|
13
|
Wang H, Poopal RK, Ren Z. Biological-based techniques for real-time water-quality studies: Assessment of non-invasive (swimming consistency and respiration) and toxicity (antioxidants) biomarkers of zebrafish. CHEMOSPHERE 2024; 352:141268. [PMID: 38246499 DOI: 10.1016/j.chemosphere.2024.141268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Swimming consistency and respiration of fish are recognized as the non-invasive stress biomarkers. Their alterations could directly indicate the presence of pollutants in the water ecosystem. Since these biomarkers are a routine process for fish, it is difficult to monitor their activity manually. For this reason, experts employ engineering technologies to create sensors that can monitor the regular activities of fish. Knowing the importance of these non-invasive stress biomarkers, we developed online biological behavior monitoring system-OBBMS and online biological respiratory response monitoring system-OBRRMS to monitor real-time swimming consistency and respiratory response of fish, respectively. We continuously monitored the swimming consistency and respiration (OCR, CER and RQ) of zebrafish (control and atrazine-treatments) for 7 days using our homemade real-time biological response monitoring systems. Furthermore, we analyzed oxidative stress indicators (SOD, CAT and POD) within the vital tissues (gills, brain and muscle) of zebrafish during stipulated sampling periods. The differences in the swimming consistency and respiratory rate of zebrafish between the control and atrazine treatments could be precisely differentiated on the real-time datasets of OBBMS and OBRRMS. The zebrafish exposed to atrazine toxin showed a concentration-dependent effect (hypoactivity). The OCR and CER were increased in the atrazine treated zebrafish. Both Treatment I and II received a negative response for RQ. Atrazine toxicity let to a rise in the levels of SOD, CAT and POD in the vital tissues of zebrafish. The continuous acquisition of fish signals is achieved which is one of the main merits of our OBBMS and OBRRMS. Additionally, no special data processing was done, the real-time data sets were directly used on statistical tools and the differences between the factors (groups, photoperiods, exposure periods and their interactions) were identified precisely. Hence, our OBBMS and OBRRMS could be a promising tool for biological response-based real-time water quality monitoring studies.
Collapse
Affiliation(s)
- Hainan Wang
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|