Elsayed A, Lee T, Kim Y. Maximizing the efficiency of single-stage partial nitrification/Anammox granule processes and balancing microbial competition using insights of a numerical model study.
WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025;
97:e70059. [PMID:
40119568 PMCID:
PMC11928780 DOI:
10.1002/wer.70059]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/03/2025] [Accepted: 03/09/2025] [Indexed: 03/24/2025]
Abstract
Granulation is an efficient approach for the rapid growth of anaerobic ammonia oxidation (Anammox) bacteria (X ANA $$ {X}_{ANA} $$ ) to limit the growth of nitrite-oxidizing bacteria (X NOB $$ {X}_{NOB} $$ ). However, the high sensitivity of Anammox bacteria to operational conditions and the competition with other microorganisms lead to a critical challenge in maintaining sufficientX ANA $$ {X}_{ANA} $$ population. In this study, a one-dimensional steady-state model was developed and calibrated to investigate the kinetic constants ofX ANA $$ {X}_{ANA} $$ growth and mass transport in individual granules, including the liquid film. According to the model calibration results, the range of the maximum specific growth rate constant ofX ANA $$ {X}_{ANA} $$ (μ ANA $$ {\mu}_{ANA} $$ ) was 0.033 to 0.10 d-1. In addition the other kinetic constants ofX ANA $$ {X}_{ANA} $$ were 0.003 d-1 for decay rate constant (b ANA $$ {b}_{ANA} $$ ), 0.10 mg-O2/L for oxygen half-saturation constant (K O 2 ANA $$ {K}_{O_2}^{ANA} $$ ), 0.07 mg-N/L for ammonia half-saturation constant (K NH 4 ANA $$ {K}_{NH_4}^{ANA} $$ ), and 0.05 mg-N/L for nitrite half-saturation constant (K NO 2 ANA $$ {K}_{NO_2}^{ANA} $$ ). The model simulation results showed that the dissolved oxygen of about 0.10 mg-O2/L was found to be optimal to maintain highX ANA $$ {X}_{ANA} $$ population. In addition, minimal COD concentration is required to control heterotrophs (X H $$ {X}_H $$ ) and improve ammonia oxidation by ammonia-oxidizing bacteria (X AOB $$ {X}_{AOB} $$ ). It was also emphasized that moderate mixing conditions (L f $$ {L}_f $$ ≅ $$ \cong $$ 100 μm) are preferable to decrease the diffusion of oxygen to the deep layers of the granules, controlling the competition betweenX ANA $$ {X}_{ANA} $$ andX NOB $$ {X}_{NOB} $$ . A single-factor relative sensitivity analysis (RSA) on microbial kinetics revealed thatμ ANA $$ {\mu}_{ANA} $$ is the governing factor in the efficient operation of the single-stage PN/A processes. In addition, it was found that nitrite concentration is a rate-limiting parameter on the success of the process due to the competition betweenX ANA $$ {X}_{ANA} $$ andX NOB $$ {X}_{NOB} $$ . These findings can be used to enhance our understanding on the importance of microbial competition and mass transport in the single-stage PN/A process. PRACTITIONER POINTS: A one-dimensional steady-state model was developed and calibrated for simulating the single-stage partial nitrification/Anammox (PN/A) granule process. Moderate liquid films (L f $$ {L}_f $$ ≅ $$ \cong $$ 100 μm) are preferable for better performance of Anammox growth in single-stage PN/A processes. Moderate dissolved oxygen (DO≅ $$ \cong $$ 0.10 mg-O2/L) is highly recommended for efficient growth of Anammox bacteria in single-stage PN/A granulation. Minimal COD (COD≅ $$ \cong $$ 0) is preferable for successful operation of the single-stage PN/A granule process. Nitrite concentration is a rate-limiting parameter on the competition between Anammox and nitrite-oxidizing bacteria in the single-stage PN/A processes.
Collapse