1
|
Obeng EM, Hodge C, You J. Microplastic pollution: a review of specific blood-tissue barrier breaches and health effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126416. [PMID: 40355068 DOI: 10.1016/j.envpol.2025.126416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/09/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Microplastic (1 μm - 5 mm) and nanoplastic (<1 μm) pollution is a heightening global challenge affecting the environment and the health of living creatures within. As primary precursors for plastic manufacturing, microplastics predominantly get into the environment through plastic product degradation and integrate into water, food chain and consumer products leading to potential health consequences. The mammalian system is equipped with several blood-tissue barriers with exclusive tight junctions that selectively regulate material transfer and protect vulnerable and functionally important organs. Nonetheless, emerging evidence indicates microplastics interact, traverse and compromise the integrity of these complex barriers. This review summarises the known and potential impact of microplastics on human health, focusing on specific organ barrier breaches. Evidence of microplastic traversal and deposition in distal mammalian organs are discussed. We further highlight current challenges facing both researchers and clinicians and provide an outlook for expanding our understanding of the impact of microplastic on health.
Collapse
Affiliation(s)
- Eugene M Obeng
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), University of Sydney, Camperdown, NSW, 2006, Australia; Net Zero Institute, University of Sydney, Darlington, NSW, 2006, Australia.
| | - Christopher Hodge
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia; Net Zero Institute, University of Sydney, Darlington, NSW, 2006, Australia; Save Sight Institute, University of Sydney, Sydney, NSW, 2000, Australia; Vision Eye Institute, Chatswood, NSW, 2067, Australia
| | - Jingjing You
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia; Net Zero Institute, University of Sydney, Darlington, NSW, 2006, Australia; Vision Eye Institute, Chatswood, NSW, 2067, Australia; School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
2
|
Hou L, Fu Y, Zhao C, Fan L, Hu H, Yin S. Short-term exposure to ciprofloxacin and microplastic leads to intrahepatic cholestasis, while long-term exposure decreases energy metabolism and increases the risk of obesity. ENVIRONMENT INTERNATIONAL 2025; 199:109511. [PMID: 40328087 DOI: 10.1016/j.envint.2025.109511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/02/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Microplastics (MPs) and antibiotics are pervasive pollutants that may pose a risk to human health. Studies have shown that both MPs and antibiotics adversely affect lipid metabolism and increase the risk of obesity. However, it remains unclear whether combined exposure to these pollutants intensify the cumulative detrimental effect on obesity and metabolism. This study demonstrated the impact of exposure to polystyrene MPs (PS, 25 nm) and ciprofloxacin (CIP), both individually and combined, for 30 d and 90 d on the hepatic metabolism of male C57BL/6J mice. The results showed that mice exposed to PS and CIP for either 30 d or 90 d exhibited lipid metabolism disorders such as increased body weight, enlarged adipocytes, triglyceride accumulation in the liver, and higher HDL-C. Differentially expressed hepatic proteins were identified via proteomic analysis. The findings indicated that exposure for 30 d caused abnormal bile acid (BA) secretion in the liver and inhibited the BA secretion pathway, which resulted in intrahepatic cholestasis. Furthermore, exposure for 90 d resolved cholestasis and reduced the overall number of differentially expressed proteins. Intestinal pathology revealed more severe damage after exposure for 30 d, while 90 d exposure decreased the adverse effect. Combined CIP and PS exposure caused damage to the organism. However, the adaptive capacity of the organism during prolonged exposure mitigated the damage caused by both, but did not imply the complete eradication of adverse effects. This study found that 90 d exposure to PS and CIP resulted in weight gain, possibly due to changes in the gut flora and suppressed energy metabolism. These results indicated that simultaneous exposure to CIP and PS exacerbated the adverse impact on the liver, causing short-term intrahepatic cholestasis. Prolonged exposure reduced the energy metabolism in the body, exhibiting varied toxicity outcomes and mechanisms at different exposure durations. This study offers novel insights into the effect of MPs and antibiotic CIP exposure on metabolic abnormalities and provides a scientific basis for assessing these risks. It also emphasizes that the adverse effect resulting from 30 d (short-term) toxic exposure may not persist and that long-term chronic toxicity needs warrants.
Collapse
Affiliation(s)
- Lirui Hou
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuhan Fu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Zhao
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Yunamingyuan West Road, Haidian District, Beijing 100193, China
| | - Hongbo Hu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shutao Yin
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
3
|
Ravindra K, Kaur M, Mor S. Impacts of microplastics on gut health: Current status and future directions. Indian J Gastroenterol 2025:10.1007/s12664-025-01744-0. [PMID: 40268833 DOI: 10.1007/s12664-025-01744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/14/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND AND OBJECTIVES Microplastics are pervasive environmental pollutants, attracting significant concern due to their potential adverse effects on ecosystems and human health. This study hypothesizes that microplastics may significantly impact gastrointestinal (GI) health through various mechanisms. The objective of this systematic review is to explore the effects of microplastics on GI health, focusing on animal models such as mice, fish and earthworms. METHODS A systematic review approach was employed, analyzing studies that investigate the impact of microplastics on the gut microbiota, gut barrier integrity and GI inflammation. The review includes a synthesis of findings from multiple animal models. RESULTS The review reveals consistent evidence that microplastics can disrupt the gut microbiota, impair the gut barrier, and induce inflammatory responses in the GI tract. Statistical analysis shows a significant correlation between microplastic exposure and GI health deterioration across various animal models. CONCLUSIONS The findings underscore the harmful effects of microplastics on GI health, emphasizing the urgent need for policy interventions to reduce plastic pollution. Implementing measures to limit the production and usage of disposable plastics is crucial for mitigating the risks posed by microplastic contamination to promote environmental sustainability and safeguard human well-being.
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research, Chandigarh, 160 012, India.
| | - Manpreet Kaur
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
4
|
Liu H, Xiang D, Zhou J, Xie J. Protective Effect of Dictyophora rubrovolvata Extract on Intestinal and Liver Tissue Toxicity Induced by Metformin Disinfection Byproducts. TOXICS 2025; 13:310. [PMID: 40278626 PMCID: PMC12030868 DOI: 10.3390/toxics13040310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/12/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
Metformin disinfection byproducts Y and C have emerged as pollutants of concern in drinking water systems and are suspected to possess significant toxicity to mammals. However, effective strategies to mitigate the effects of Y and C exposure in mammals have not been thoroughly formulated. This study aimed to investigate the toxicity and characteristic phenotypes of short-term, high-dose exposure to Y and C in the intestine and liver of mice and to evaluate the protective effects of Dictyophora rubrovolvata extract (DRE) on Y- and C-induced intestinal and liver damage. The results showed that exposure-induced intestinal toxicity manifested mainly as intestinal barrier dysfunction, induction of immune response and oxidative stress, and disruption of intestinal flora homeostasis. Hepatotoxicity was mainly characterized by histopathological changes such as vacuolar degeneration, abnormal liver function, and oxidative stress. Additionally, marked changes in gut microbiota and biochemical indicators were closely related to hepatic and intestinal injuries after exposure. DRE effectively alleviated Y- and C-induced intestinal and liver damage, reshaped the gut microbiota, and maintained gut-liver axis homeostasis. These findings provide new insights into the toxic effects of disinfection byproduct exposure through the gut-liver axis and suggest that functional food extracts may serve to protect against these adverse health outcomes.
Collapse
Affiliation(s)
- Huijuan Liu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 561113, China;
| | - Dong Xiang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 561113, China;
| | - Jie Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China;
| | - Jiao Xie
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 561113, China;
| |
Collapse
|
5
|
Chen X, Zhang Z, Hsueh Y, Zhang C, Yu J, Zhu J, Niu J, Yin N, Zhang J, Cui X, Liu X, Xu K, Yuan C. Interactions between environmental pollutants and gut microbiota: A review connecting the conventional heavy metals and the emerging microplastics. ENVIRONMENTAL RESEARCH 2025; 269:120928. [PMID: 39855410 DOI: 10.1016/j.envres.2025.120928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Growing epidemiological evidence suggests that the diverse and functional gut microbiota plays a vital role in regulating the health and disease of organisms including human. However, organisms are inevitably exposed to widespread environmental pollutants, and the interactions between their gut microbiota and pollutants are relatively underreported. The present paper considers heavy metals (HMs) and microplastics (MPs) as representatives of traditional and emerging pollutants and systematically summarizes their effects on gut microbiota and the effects of gut microbiota on pollutants. The former refers to the alterations in the gut microbiota's abundance, diversity and composition caused by pollutants, whereas the latter focuses on the changes in the metabolism of pollutants by adjusting the dominant bacteria, specific enzymes, and key genes. In particular, some fields were found to be poorly studied, including extension of research to humans, mechanistic exploration of gut microbiota's changes, and the metabolism of pollutants by gut microbiota. Accordingly, we draw attention to the development and application of in vitro test models to more accurately explore the interactions between pollutants and gut microbiota when assessing human health risks. In addition, by combining state-of-the-art biological techniques with culturomics, more gut microbiota can be identified, isolated, and cultured, which helps to confirm the relationship between pollutants and gut microbiota and the potential function of gut microbiota in pollutant metabolism. Furthermore, the phenomenon of coexposure to HMs and MPs is becoming more frequent, and their interactions with gut microbiota and the influence on human health is expected to be one of the frontier research fields in the future. The key information presented in this review can stimulate further development of techniques and methodologies for filling the knowledge gaps in the relationships between combined pollutants (HMs and MPs), gut microbiota, and human health.
Collapse
Affiliation(s)
- Xiaochen Chen
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zengdi Zhang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yushiang Hsueh
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China; Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan, ROC
| | - Chunpeng Zhang
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), Jilin University, Changchun, 130021, China
| | - Jianying Yu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China; The Second Geological Exploration Institute, China Metallurgical Geology Bureau, Fuzhou, 350108, China
| | - Junyu Zhu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jia Niu
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118, China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Jianyu Zhang
- Jiangsu Longchang Chemical Co., Ltd., Rugao, 226532, China
| | - Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Kaiqin Xu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Ching Yuan
- Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan, ROC.
| |
Collapse
|
6
|
Li S, Yuan Y, Zeng Y, Fang P, Wang J, Liu Y, Xiao F. Why do microplastics aggravate cholestatic liver disease? The NLRP3-mediated intestinal barrier integrity damage matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125753. [PMID: 39870129 DOI: 10.1016/j.envpol.2025.125753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Microplastics (MPs) are becoming a significant environmental and public health concern because they are present in freshwater and marine environments and are ingested by living organisms. Cholestatic liver disease (CLD) is closely related to intestinal homeostasis, but there are no data investigating the effects of MPs on CLD. In this study, we used Mdr2-/- mice (a model of CLD) to investigate the effects of polystyrene microplastics (PS-MPs, 0.5 μm) on CLD and the underlying mechanisms. Our data revealed that, compared with Mdr2-/- mice, PS-MPs (200 μg/day)-challenged Mdr2-/- mice presented more severe collagen deposition, infiltration of inflammatory cells in liver sections and higher alkaline phosphatase (ALP)/γ-glutamyltransferase (γ-GGT) concentrations in the serum. Furthermore, the number of mucous cells in the colonic tissues of mice with CLD was strongly inhibited by PS-MPs, accompanied by the downregulation of intestinal barrier integrity proteins (ZO-1, Occludin and Claudin-1). Through correlation analysis to further verify the connection between ALP/γ-GGT levels and intestinal barrier integrity genes, as well as a significant positive correlation with IL-1β after PS-MPs exposure. Our results also revealed that PS-MPs exposure accelerated the NOD-like receptor protein 3 (NLRP3)-associated inflammatory response in the colon but did not affect NLRP3 expression in the livers of Mdr2-/- mice. Further study confirmed that the inhibition of NLRP3 by the MCC950 inhibitor abrogated the exacerbating effects of PS-MPs on hepatobiliary injury and intestinal barrier integrity damage. These findings provide the first evidence that NLRP3-mediated inflammation is an important participant in intestinal barrier integrity damage crosstalk that drives CLD under MPs exposure and identify NLRP3 as a potential therapeutic target.
Collapse
Affiliation(s)
- Siwen Li
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410013, PR China
| | - Yu Yuan
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410013, PR China
| | - Yuan Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410013, PR China
| | - Peng Fang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410013, PR China
| | - Junchang Wang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410013, PR China
| | - Yi Liu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410013, PR China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410013, PR China.
| |
Collapse
|
7
|
Du Y, Yang Q, He F. Integration of ratiometric, ultrafast, sensitive detection as well as rapid and efficient removal of tetracycline based on a novel Zn (II) functionalized magnetic covalent organic framework. Anal Chim Acta 2025; 1341:343681. [PMID: 39880498 DOI: 10.1016/j.aca.2025.343681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Based on the low volatility and refractory nature of Tetracycline (TC), excessive use leads to its continuous accumulation in water environments, posing serious risks to the ecological environment and human health. Although a very limited number of nanomaterials capable of simultaneously detecting and removing TC have been fabricated, they generally exist issues associated with a single detection signal ("on" or "off") or low adsorption rates with low adsorption capacities. As a result, it is crucial to develop a reliable technique to achieve ratiometric detection as well as rapid and efficient removal of TC. RESULTS Herein, a novel Zn (II) Functionalized magnetic covalent organic framework (Fe3O4@COF@Zn) was created. As the role of a fluorescent probe, it had excellent characteristics of ratiometric (F529/F436), ultrafast response (1 min), and ultra-low detection limit (16 nM). As the role of an adsorbent, it demonstrated a high capacity of adsorption (414.94 mg/g) in the pH-neutral range, fast kinetics (10 min), desirable regeneration capability, and convenient magnetic separation. By theoretical and experimental analysis, the detection and adsorption mechanism for TC was systematically revealed. Moreover, as an attempt, Fe3O4@COF@Zn showed it potential for crop remediation by adsorbing TC-contaminated water. SIGNIFICANCE This work demonstrates the exceptional performance of Zn-functionalized fluorescent COF for ratiometric, ultrafast, sensitive detection as well as rapid and efficient removal of TC, thereby illustrating its significant potential for the rapid monitoring and treatment of TC contamination.
Collapse
Affiliation(s)
- Yuanchun Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Qingxin Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, PR China
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
8
|
Du J, Zhan L, Zhang G, Zhou Q, Wu W. Antibiotic sorption onto MPs in terrestrial environment: a critical review of the transport, bioaccumulation, ecotoxicological effects and prospects. Drug Chem Toxicol 2025; 48:266-280. [PMID: 39686663 DOI: 10.1080/01480545.2024.2433075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Microplastics (MPs) and antibiotics are prevalent contaminants in terrestrial environment. MPs possess the ability to absorb antibiotics, resulting in the formation of complex pollutants. While the accumulation and fate of MPs and antibiotics in marine ecosystems have been extensively studied, their combined pollution behavior in terrestrial environments remains relatively underexplored. This paper describes the sources, migration, and compound pollution of MPs and antibiotics in soil. It reviews the mechanisms of compound toxicity associated with antibiotics and MPs, combining different biological classifications. Moreover, we highlight the factors that influence the effects of MPs as vectors and the critical elements driving the spread of antibiotic resistance genes (ARGs). These information suggests the potential mitigation measures for MPs contamination from different perspectives to reduce the impact of ARGs-carrying MPs on human health, specifically through transmission via plants, microbes, or terrestrial vertebrates. Finally, we identify gaps in scientific knowledge regarding the interaction between MPs and antibiotics in soil environments, including the need for standardized research methods, multi-dimensional studies on complex ecological effects, and more comprehensive risk assessments of other pollutants on human health. In summary, this paper provides foundational information for assessing their combined toxicity, offers insights into the distribution of these emerging pollutants in soil, and contributes to a better understanding of the environmental impact of these contaminants.
Collapse
Affiliation(s)
- Jia Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Lichuan Zhan
- Shengzhou Agricultural Technology Extension Center, Shengzhou, China
| | - Gengmiao Zhang
- Agricultural Technology Extension Center of Zhuji City, Zhuji, China
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
9
|
Zolotova N, Dzhalilova D, Tsvetkov I, Silina M, Fokichev N, Makarova O. Microplastic effects on mouse colon in normal and colitis conditions: A literature review. PeerJ 2025; 13:e18880. [PMID: 39950042 PMCID: PMC11823654 DOI: 10.7717/peerj.18880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/28/2024] [Indexed: 02/16/2025] Open
Abstract
Background Taking into account the global spread of microplastic (MP) pollution, the problem of the MP impact on human health is relevant. MP enters the organism predominantly with water and food, and is mostly detected in the large intestine. Therefore, the connection between MP pollution and the increase in colitis is an important question. In order to assess the toxic and pathogenetic effects of MP, experimental studies were actively conducted during recent years, mainly on laboratory mice. Objectives The aim of our review was to summarize and systematize the data on the MP effect on mice colon under normal conditions and during colitis in order to assess the role of MP in the development of intestinal diseases. This manuscript could be relevant for ecologists, experimental biologists, and physicians dealing with problems related to anthropogenic environmental changes and inflammatory bowel diseases. Survey Methodology The search was conducted based on PubMed data about original experimental studies of the MP effects on the colon of healthy mice and mice with colitis. Results In healthy mice colon, MP can cause oxidative stress, increased permeability, immune cell infiltration, production of proinflammatory factors, and decreased mucus production. MP affects proliferation, apoptosis, and differentiation of epithelial cells, expression of tight junction components and glycocalyx, membrane transport, signaling pathways, metabolome, and intestinal microflora composition. In mice with acute and chronic experimental colitis, MP consumption leads to a more pronounced pathological process course. Conclusions MP may be one of the factors contributing to the development of colitis in humans. However, further research is needed.
Collapse
Affiliation(s)
- Natalia Zolotova
- Department of Immunomorphology of Inflammation, Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Dzhuliia Dzhalilova
- Department of Immunomorphology of Inflammation, Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Ivan Tsvetkov
- Department of Immunomorphology of Inflammation, Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Maria Silina
- Department of Immunomorphology of Inflammation, Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Nikolai Fokichev
- Department of Immunomorphology of Inflammation, Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Olga Makarova
- Department of Immunomorphology of Inflammation, Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| |
Collapse
|
10
|
Chen D, Pan L, Ran X, Huang J, Teng X, Yang F, Liu H. Microbial diversity and metabolomics analysis of colon contents exposed to cadmium and polystyrene microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117585. [PMID: 39709704 DOI: 10.1016/j.ecoenv.2024.117585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Cadmium and microplastics, common pollutants, can accumulate in the body, impacting the intestinal barrier and harming livestock breeding. In order to explore the damage mechanism of cadmium and cadmium combined microplastic on the colon of mice, 60 mice were divided into three groups: The control group (0.2 mL of saline), cadmium group (Cd group, 0.2 mL of 4.8 mg/kg/d CdCl2) and mixed group (Mix group, 0.2 mL of mixed solution containing 4.8 mg/kg/d CdCl2 and 10.0 mg/d MPs) were fed for 42 d. The changes of colon histopathology were observed, and the changes of microbial diversity and metabolomics of colon contents were analyzed. Pathological sections of the colon showed abnormal mucosal hyperemia with mixed exposure compared to cadmium exposure. Microbial diversity analysis showed increased abundances of Enterococcus, Adlercreutzia, and Bifidobacterium in the Cd and Mix groups, with Dubosiella being the most significantly increased. Metabolomic analysis indicated significant differences in nucleotide and purine metabolism between the Cd and control groups, and in linoleic acid and bile acid metabolism between the Mix and control groups. The ABC transporter metabolites increased with Cd exposure, while the PPAR pathway metabolites were enriched with MPs exposure. Correlation analysis highlighted several key findings: Pasteurella exhibited a notably negative association with pantothenate. Conversely, Enterococcus demonstrated a significant positive link with palmitoylcarnitine. Additionally, both Adlercreutzia and norank_f_Eggerthellaceae showed a positive correlation with azelaic acid. These findings suggest that Cd and MPs disrupt intestinal microbiota and metabolic pathways, providing insights into potential treatments for such exposures.
Collapse
Affiliation(s)
- Dechun Chen
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Liyu Pan
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xuan Ran
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Junyu Huang
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Falong Yang
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| | - Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
11
|
Wang J, Wang Y, Li Z, Wang J, Zhao H, Zhang X. Gut microbiota, a key to understanding the knowledge gaps on micro-nanoplastics-related biological effects and biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173799. [PMID: 38852863 DOI: 10.1016/j.scitotenv.2024.173799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/23/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Micro-nanoplastics (MNPs) pollution as a global environmental issue has received increasing interest in recent years. MNPs can enter and accumulate in the organisms including human beings mainly via ingestion and inhalation, and large amounts of foodborne MNPs have been frequently detected in human intestinal tracts and fecal samples. MNPs regulate the structure composition and metabolic functions of gut microbiota, which may cause the imbalance of intestinal ecosystems of the hosts and further mediate the occurrence and development of various diseases. In addition, a growing number of MNPs-degrading strains have been isolated from organismal feces. MNPs-degraders colonize the plastic surfaces and form the biofilms, and the long-chain polymers of MNPs can be biologically depolymerized into short chains. In general, MNPs are gradually degraded into small molecule substances (e.g., N2, CH4, H2O, and CO2) via a series of enzymatic catalyses, mainly including biodeterioration, fragmentation, assimilation, and mineralization. In this review, we outline the current progress of MNPs effects on gut microbiota and MNPs degradation by gut microbiota, which provide a certain theoretical basis for fully understanding the knowledge gaps on MNPs-related biological effect and biodegradation.
Collapse
Affiliation(s)
- Jiping Wang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yutong Wang
- China University of Mining & Technology-Beijing, Beijing, China
| | - Zhenyu Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jie Wang
- Xiangya Stomatological Hospital, Central South University, Changsha, China.
| | - Hongbo Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China.
| |
Collapse
|
12
|
Meng X, Ge L, Zhang J, Xue J, Gonzalez-Gil G, Vrouwenvelder JS, Guo S, Li Z. Nanoplastics induced health risk: Insights into intestinal barrier homeostasis and potential remediation strategy by dietary intervention. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134509. [PMID: 38704907 DOI: 10.1016/j.jhazmat.2024.134509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Aged nanoplastics (aged-NPs) have unique characteristics endowed by environmental actions, such as rough surface, high oxygen content. Although studies have highlighted the potential hazards of aged-NPs, limited research has provided strategies for aged-NPs pollution remediation. The dietary intervention of quercetin is a novel insight to address the health risks of aged-NPs. This study explored the impact of aged-NPs on intestinal barrier homeostasis at the environmentally relevant dose and investigated the alleviating effects of quercetin on aged-NPs toxicity through transcriptomics and molecular biology analysis. It indicated that aged-NPs induced intestinal barrier dysfunction, which was characterized by higher permeability, increased inflammation, and loss of epithelial integrity, while quercetin restored it. Aged-NPs disrupted redox homeostasis, upregulated inflammatory genes controlled by AP-1, and led to Bax-dependent mitochondrial apoptosis. Quercetin intervention effectively mitigated inflammation and apoptosis by activating the Nrf2. Thus, quercetin decreased intestinal free radical levels, inhibiting the phosphorylation of p38 and JNK. This study unveiled the harmful effects of aged-NPs on intestinal homeostasis and the practicability of dietary intervention against aged-NPs toxicity. These findings broaden the understanding of the NPs toxicity and provide an effective dietary strategy to relieve the health risks of NPs. ENVIRONMENTAL IMPLICATIONS: Growing levels of NPs pollution have represented severe health hazards to the population. This study focuses on the toxic mechanism of aged-NPs on the intestinal barrier and the alleviating effect of quercetin dietary intervention, which considers the environmental action and relevant dose. It revealed the harmful effects of aged-NPs on intestinal inflammation with the key point of free radical generation. Furthermore, a quercetin-rich diet holds significant promise for addressing and reversing intestinal damage caused by aged-NPs by maintaining intracellular redox homeostasis. These findings provide an effective dietary strategy to remediate human health risks caused by NPs.
Collapse
Affiliation(s)
- Xuemei Meng
- College of Food Science and Engineering, Northwest A&F University Shaanxi, Yangling 712100, PR China; School of Food Science and Engineering, Ningxia University, Ningxia, Yinchuan 750021, PR China
| | - Lei Ge
- College of Food Science and Engineering, Northwest A&F University Shaanxi, Yangling 712100, PR China
| | - Jiawei Zhang
- College of Food Science and Engineering, Northwest A&F University Shaanxi, Yangling 712100, PR China
| | - Jinkai Xue
- Cold-Region Water Resource Recovery Laboratory (CRWRRL), Environmental Systems Engineering, Faculty of Engineering & Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Graciela Gonzalez-Gil
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Johannes S Vrouwenvelder
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shaomin Guo
- Northwest A&F University Hospital, Northwest A&F University Shaanxi, Yangling 712100, PR China.
| | - Zhenyu Li
- College of Food Science and Engineering, Northwest A&F University Shaanxi, Yangling 712100, PR China; Water Technologies Innovation Institute & Research advancement (WTIIRA), Saline Water Conversion Corporation (SWCC), P.O. Box 8328, Al-Jubail 31951, Saudi Arabia.
| |
Collapse
|
13
|
Du Y, Li Y, Huang G, Pu H, Li Q, Lu C, Tan L, Dong L, Zhou C. CdBi 2S 4-Decorated Aminated Polyacrylonitrile Nanofiber for Photocatalytic Treatment of Cr(VI) and Tetracycline Wastewater. Inorg Chem 2024; 63:5611-5622. [PMID: 38477101 DOI: 10.1021/acs.inorgchem.3c04598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The significant threat posed by the high toxicity of heavy metals and antibiotics in water pollutants has prompted a growing emphasis on the development of highly efficient removal methods for these pollutants. In this paper, flexible electrospinning polyacrylonitrile (PAN) nanofiber-supported CdBi2S4 was synthesized via a hydrothermal method, followed by amination treatment with diethylenetriamine (DETA). The as-prepared CdBi2S4/NH2-PAN nanofiber, enriched with sulfur vacancies, demonstrated outstanding visible-light trapping ability and a suitable band gap, leading to efficient separation and transport of photogenerated carriers, ultimately resulting in exceptional photocatalytic capability. The optimal 3-CdBi2S4/NH2-PAN nanofiber achieved impressive reduction rates of 92.26% for Cr(VI) and 96.45% for tetracycline hydrochloride (TCH) within 120 min, which were much higher than those for CdS/NH2-PAN, Bi2S3/NH2-PAN, and CdBi2S4/PAN nanofibers. After five cycles, the removal rate of the CdBi2S4/NH2-PAN nanofiber consistently remained above 90%. Their ease of separation and recovery from the application environment contributes to their practicality. Additionally, compared with conventional suspended particle catalyzers, the composite nanofiber exhibited remarkable flexibility and self-supporting properties.
Collapse
Affiliation(s)
- Yaohan Du
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yufeng Li
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Guo Huang
- Chongqing Jiangbei District Ecological Environment Monitoring Station, Chongqing 400000, PR China
| | - Hong Pu
- College of Vanadium and Titanium, Panzhihua University, Panzhihua 617000, PR China
| | - Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua 617000, PR China
| |
Collapse
|
14
|
Yu C, Xu Y, Wei Y, Guo Y, Wang Y, Song P, Yu J. Gut microbiota and liver metabolomics reveal the potential mechanism of Lactobacillus rhamnosus GG modulating the liver toxicity caused by polystyrene microplastics in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6527-6542. [PMID: 38151562 DOI: 10.1007/s11356-023-31564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Microplastics (MPs) are known to cause liver toxicity as they can spread through the food chain. Most researches on their toxicity have focused on individual organs, neglecting the crucial "gut-liver axis"-a bidirectional communication pathway between the gut and liver. Probiotics have shown promise in modulating the effects of environmental pollutants. In this study, we exposed mice to Lactobacillus rhamnosus GG (LGG, 100 mg/kg b.w./d) and/or polystyrene microplastics (PS-MPs, 5 mg/kg b.w./d) for 28 d via gavage to investigate how probiotics influence live toxicity through the gut-liver axis. Our results demonstrated that PS-MPs induced liver inflammation (increased IL-6 and TNF-α) and disrupted lipid metabolism. However, when combined with LGG, these effects were alleviated. LGG also improved colon health, rectifying ciliary defects and abnormal mucus secretion caused by PS-MPs. Furthermore, LGG improved gut microbiota dysbiosis induced by PS-MPs. Metabolomics and gene expression analysis (Cyp7a1 and Cyp7b1) indicated that LGG modulated bile acid metabolism. In summary, LGG appears to protect the liver by maintaining gut homeostasis, enhancing gut barrier integrity, and reducing the liver inflammation. These findings confirm the potential of LGG to modulate liver toxicity caused by PS-MPs through the gut-liver axis, offering insights into probiotics' application for environmental pollutant detoxification.
Collapse
Affiliation(s)
- Changhao Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China
| | - Yawen Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China
| | - Yiping Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China
| | - Yuxue Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China
| | - Yi Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China
| | - Jing Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road, Nanjing, 210023, People's Republic of China.
| |
Collapse
|