1
|
Huang H, Lei P, Yu H, Du J, Wu B, Wang H, Yang Q, Cheng Y, Sun D, Wan L. Micro/nano plastics in the urinary system: Pathways, mechanisms, and health risks. ENVIRONMENT INTERNATIONAL 2024; 193:109109. [PMID: 39500122 DOI: 10.1016/j.envint.2024.109109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024]
Abstract
Micro/Nano plastics (MNPs) pollutants are widespread in the environment, raising significant concerns about their biosafety. Emerging studies indicate that the urinary system is a primary accumulation site for MNPs, leading to severe tissue and functional damage. This review aims to summarize recent research on the potential hazards that MNPs may pose to the urinary system, highlighting the mechanisms of toxicity and the current state of knowledge. Studies have shown that MNPs enter the human body through drinking water, the food chain, inhalation, and skin contact. They may penetrate the bloodstream via the digestive, respiratory, and skin systems, subsequently dispersing to various organs, including the urinary system. The potential accumulation of MNPs in the urinary system might induce cellular oxidative stress, inflammation, apoptosis, autophagy, the "intestine-kidney axis", and other possible toxic mechanisms. These processes could disrupt kidney metabolic functions and promote tissue fibrosis, thereby potentially increasing the risk of urinary system diseases. Despite ongoing research, the understanding of MNPs' impact on the urinary system remains limited. Therefore, this review provides a comprehensive overview of MNPs' potential toxicity mechanisms in the urinary system, highlights key challenges, and outlines future research directions. It offers a theoretical basis for the development of effective protective measures and policies.
Collapse
Affiliation(s)
- Hang Huang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Key Laboratory of Novel Nuclide Technologies on Precision Diagnosis and Treatment & Clinical Transformation of Wenzhou City, Wenzhou 325035, Zhejiang, China; Institute of Urology, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Pengyu Lei
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Baihui Wu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yongwei Cheng
- MedTech (Wenzhou) Health Innovation Achievement Transformation Institute, Wenzhou Institue of Industry & Science, Wenzhou 325000, China
| | - Da Sun
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Lijun Wan
- Department of Urology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
2
|
Gil-Castell O, Jiménez-Robles R, Gálvez-Subiela A, Marco-Velasco G, Cumplido MP, Martín-Pérez L, Cháfer A, Badia JD. Factorial Analysis and Thermal Kinetics of Chemical Recycling of Poly(ethylene terephthalate) Aided by Neoteric Imidazolium-Based Ionic Liquids. Polymers (Basel) 2024; 16:2451. [PMID: 39274083 PMCID: PMC11397852 DOI: 10.3390/polym16172451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Poly(ethylene terephthalate) (PET) waste accumulation poses significant environmental challenges due to its persistent nature and current management limitations. This study explores the effectiveness of imidazolium-based neoteric solvents [Emim][OAc] and [Bmim][OAc] as catalytic co-solvents in the glycolysis of PET with ethylene glycol (EG). Reaction thermal kinetics showed that both ionic liquids (ILs) significantly enhanced the depolymerization rate of PET compared to traditional methods. The use of [Emim][OAc] offered a lower activation energy of 88.69 kJ·mol-1, thus making the process more energy-efficient. The contribution of key process parameters, including temperature (T), plastic-to-ionic liquid (P/IL) mass ratio, and plastic-to-solvent (P/S) mass ratio, were evaluated by means of a factorial analysis and optimized to achieve the maximum PET conversion for both neoteric solvents. The relevance sequence for both ionic liquids involved the linear factors T and P/S, followed by the interaction factors T×P/S and T×P/IL, with P/IL being the less significant parameter. The optimal conditions, with a predicted conversion of 100%, involved a temperature of 190 °C, with a P/IL of 1:1 and a P/S of 1:2.5, regardless of the IL used as the catalytic co-solvent.
Collapse
Affiliation(s)
- Oscar Gil-Castell
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Ramón Jiménez-Robles
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Alejandro Gálvez-Subiela
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Gorka Marco-Velasco
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - M Pilar Cumplido
- Plastic Technology Centre (AIMPLAS), Gustave Eiffel 4, 46980 Paterna, Valencia, Spain
| | - Laia Martín-Pérez
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Amparo Cháfer
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Jose D Badia
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, Universitat de València, Av. Universitat s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
3
|
Ahmed Dar A, Chen Z, Sardar MF, An C. Navigating the nexus: climate dynamics and microplastics pollution in coastal ecosystems. ENVIRONMENTAL RESEARCH 2024; 252:118971. [PMID: 38642636 DOI: 10.1016/j.envres.2024.118971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/31/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Microplastics (MPs) pollution is an emerging environmental health concern, impacting soil, plants, animals, and humans through their entry into the food chain via bioaccumulation. Human activities such as improper solid waste dumping are significant sources that ultimately transport MPs into the water bodies of the coastal areas. Moreover, there is a complex interplay between the coastal climate dynamics, environmental factors, the burgeoning issue of MPs pollution and the complex web of coastal pollution. We embark on a comprehensive journey, synthesizing the latest research across multiple disciplines to provide a holistic understanding of how these inter-connected factors shape and reshape the coastal ecosystems. The comprehensive review also explores the impact of the current climatic patterns on coastal regions, the intricate pathways through which MPs can infiltrate marine environments, and the cascading effects of coastal pollution on ecosystems and human societies in terms of health and socio-economic impacts in coastal regions. The novelty of this review concludes the changes in climate patterns have crucial effects on coastal regions, proceeding MPs as more prevalent, deteriorating coastal ecosystems, and hastening the transfer of MPs. The continuous rising sea levels, ocean acidification, and strong storms result in habitat loss, decline in biodiversity, and economic repercussion. Feedback mechanisms intensify pollution effects, underlying the urgent demand for environmental conservation contribution. In addition, the complex interaction between human, industry, and biodiversity demanding cutting edge strategies, innovative approaches such as remote sensing with artificial intelligence for monitoring, biobased remediation techniques, global cooperation in governance, policies to lessen the negative socioeconomic and environmental effects of coastal pollution.
Collapse
Affiliation(s)
- Afzal Ahmed Dar
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada.
| | | | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| |
Collapse
|
4
|
Enache AC, Grecu I, Samoila P. Polyethylene Terephthalate (PET) Recycled by Catalytic Glycolysis: A Bridge toward Circular Economy Principles. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2991. [PMID: 38930360 PMCID: PMC11205646 DOI: 10.3390/ma17122991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Plastic pollution has escalated into a critical global issue, with production soaring from 2 million metric tons in 1950 to 400.3 million metric tons in 2022. The packaging industry alone accounts for nearly 44% of this production, predominantly utilizing polyethylene terephthalate (PET). Alarmingly, over 90% of the approximately 1 million PET bottles sold every minute end up in landfills or oceans, where they can persist for centuries. This highlights the urgent need for sustainable management and recycling solutions to mitigate the environmental impact of PET waste. To better understand PET's behavior and promote its management within a circular economy, we examined its chemical and physical properties, current strategies in the circular economy, and the most effective recycling methods available today. Advancing PET management within a circular economy framework by closing industrial loops has demonstrated benefits such as reduced landfill waste, minimized energy consumption, and conserved raw resources. To this end, we identified and examined various strategies based on R-imperatives (ranging from 3R to 10R), focusing on the latest approaches aimed at significantly reducing PET waste by 2040. Additionally, a comparison of PET recycling methods (including primary, secondary, tertiary, and quaternary recycling, along with the concepts of "zero-order" and biological recycling techniques) was envisaged. Particular attention was paid to the heterogeneous catalytic glycolysis, which stands out for its rapid reaction time (20-60 min), high monomer yields (>90%), ease of catalyst recovery and reuse, lower costs, and enhanced durability. Accordingly, the use of highly efficient oxide-based catalysts for PET glycolytic degradation is underscored as a promising solution for large-scale industrial applications.
Collapse
Affiliation(s)
| | | | - Petrisor Samoila
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-C.E.); (I.G.)
| |
Collapse
|
5
|
Bishop CR, Yan K, Nguyen W, Rawle DJ, Tang B, Larcher T, Suhrbier A. Microplastics dysregulate innate immunity in the SARS-CoV-2 infected lung. Front Immunol 2024; 15:1382655. [PMID: 38803494 PMCID: PMC11128561 DOI: 10.3389/fimmu.2024.1382655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Global microplastic (MP) pollution is now well recognized, with humans and animals consuming and inhaling MPs on a daily basis, with a growing body of concern surrounding the potential impacts on human health. Methods Using a mouse model of mild COVID-19, we describe herein the effects of azide-free 1 μm polystyrene MP beads, co-delivered into lungs with a SARS-CoV-2 omicron BA.5 inoculum. The effect of MPs on the host response to SARS-CoV-2 infection was analysed using histopathology and RNA-Seq at 2 and 6 days post-infection (dpi). Results Although infection reduced clearance of MPs from the lung, virus titres and viral RNA levels were not significantly affected by MPs, and overt MP-associated clinical or histopathological changes were not observed. However, RNA-Seq of infected lungs revealed that MP exposure suppressed innate immune responses at 2 dpi and increased pro-inflammatory signatures at 6 dpi. The cytokine profile at 6 dpi showed a significant correlation with the 'cytokine release syndrome' signature observed in some COVID-19 patients. Discussion The findings are consistent with the recent finding that MPs can inhibit phagocytosis of apoptotic cells via binding of Tim4. They also add to a growing body of literature suggesting that MPs can dysregulate inflammatory processes in specific disease settings.
Collapse
Affiliation(s)
- Cameron R. Bishop
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wilson Nguyen
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Daniel J. Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Thibaut Larcher
- Institut National de Recherche Agronomique, Unité Mixte de Recherche, Oniris, Nantes, France
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, Global Virus Network (GVN) Center of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Ibrahim IA, Rawindran H, Alam MM, Leong WH, Sahrin NT, Ng HS, Chan YJ, Abdelfattah EA, Lim JW, Aliyu US, Khoo KS. Mitigating persistent organic pollutants from marine plastics through enhanced recycling: A review. ENVIRONMENTAL RESEARCH 2023; 240:117533. [PMID: 39491103 DOI: 10.1016/j.envres.2023.117533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/03/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023]
Abstract
The escalating crisis of marine plastic waste pose threats to the marine ecosystems. Statistics revealed that a staggering 8 MMT of plastic inundates the marine atmosphere annually. This review delves into a pivotal aspect of this issue, examining the release of additives like brominated flame retardants, phthalates, and bisphenol A from plastic into the environment. It also underscores the concealed chemical hazards plastic introduces to the marine ecosystem's air, water, and sediment. As plastic degrades and breaks down, it generates microplastics and nanoplastics, exacerbating the widespread detrimental effects on marine life and even affecting terrestrial ecosystems, imperiling the overall health and stability of various organisms. While mechanical recycling, chemical recycling, and dissolution-reprecipitation demonstrated potential in addressing marine plastic debris, further research and development are needed to surmount associated challenges to increase the efficiency of current recycling method. This comprehensive review elaborates on the current fate and consequences associated with plastic pollution in marine environments. It emphasizes the urgent need for initiatives to confront this imminent ecological crisis, accentuating the necessity of protecting the marine environment and their delicate ecosystems from the pervasive threat of plastic waste.
Collapse
Affiliation(s)
- Ily Asilah Ibrahim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Hemamalini Rawindran
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Wai Hong Leong
- Algal Bio Co. Ltd, Todai-Kashiwa Venture Plaza, 5-4-19 Kashiwanoha, Kashiwa, Chiba, 277-0082, Japan
| | - Nurul Tasnim Sahrin
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Hui-Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Yi Jing Chan
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Broga Road, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Eman Alaaeldin Abdelfattah
- Assistant Professor at Entomology Department, Faculty of Science, Cairo University, Manager of Industrial Entomology Project, Egypt
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| | - Umar Sa'ad Aliyu
- Department of Physics, Faculty of Sciences, Federal University of Lafia, Nasarawa State, Nigeria
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|