1
|
Yan Y, Zhang Y, Yang S, Wei D, Zhang J, Li Q, Yao R, Wu X, Wang Y. Optimized groundwater quality evaluation using unsupervised machine learning, game theory and Monte-Carlo simulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:122902. [PMID: 39531765 DOI: 10.1016/j.jenvman.2024.122902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Assessing groundwater quality is essential for achieving sustainable development goals worldwide. However, it is challenging to conduct hydrochemical analysis and water quality evaluation by traditional methods. To fill this gap, this study analyzed the hydrochemical processes, drinking and irrigation water quality, and associated health risks of 93 groundwater samples from the Sichuan Basin in SW China using advanced unsupervised machine learning, the Combined-Weights Water Quality index, and Monte-Carlo simulations. Groundwater samples were categorized into three types using the self-organizing map with the K-means method: Cluster-1 was Ca-HCO3 type, Cluster-2 was dominated by Ca-HCO3, Na-HCO3, and mixed Na-Ca-HCO3 types, Cluster-3 was Ca-Cl and Ca-Mg-Cl types. Ion ratio diagrams revealed that carbonate dissolution and silicate weathering primarily influenced the hydrochemical characteristics. Cluster-1 samples exhibited high NO3- contents from intensive agricultural activities. Cluster-2 samples with high Na+ contents were characterized by positive cation exchange, while Cluster-3 samples with elevated Ca2+ and Mg2+ contents were influenced by reverse cation exchange. Combined-Weights Water Quality Index indicated that 62.37% of total samples were suitable for drinking, predominantly located in the central part of the study area. Irrigation Water Quality Index revealed that 33.34% of total samples were suitable for irrigation, mainly in the northeastern region. NO3- concentration and electrical conductivity (EC) value were the main indicators with the highest sensitivity for drinking and irrigation suitability, respectively. Probabilistic health risk assessments suggested that a significant portion of the groundwater samples posed a health risk greater than 1 to children (63%) and adults (52%) by Monte-Carlo simulation. The high-risk areas (hazard index >4), primarily in the eastern region, are closely associated with nitrate distribution. Sensitivity analysis demonstrated that NO3- concentration is the primary indicator accounting for health risks. Reducing the application of nitrogen-based fertilizers on cultivated land is the most effective approach to improve drinking quality and mitigate the associated health risks to the population. This study's findings aim to produce a novel groundwater quality evaluation for promoting the sustainable management and utilization of groundwater resources.
Collapse
Affiliation(s)
- Yuting Yan
- Yibin Research Institute, Southwest Jiaotong University, 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yunhui Zhang
- Yibin Research Institute, Southwest Jiaotong University, 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, 611756, China; Sichuan Province Engineering Technology Research Center of Ecological Mitigation of Geohazards in Tibet Plateau Transportation Corridors, Chengdu, 611756, China.
| | - Shiming Yang
- Yibin Research Institute, Southwest Jiaotong University, 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Denghui Wei
- Yibin Research Institute, Southwest Jiaotong University, 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Ji Zhang
- Sichuan Research Institute of Geological Engineering Survey, Chengdu, 611032, China
| | - Qiang Li
- Sichuan Research Institute of Geological Engineering Survey, Chengdu, 611032, China
| | - Rongwen Yao
- Yibin Research Institute, Southwest Jiaotong University, 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Xiangchuan Wu
- Yibin Research Institute, Southwest Jiaotong University, 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yangshuang Wang
- Yibin Research Institute, Southwest Jiaotong University, 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|
2
|
Nayeri D, Elyasi H, Jafari A, Ghalhari MR. A Systematic Review on Fluoride Contamination in Water Resources of Iran from 2016 to 2023: Spatial Distribution and Probabilistic Risk Assessment (Monte Carlo Simulation). Biol Trace Elem Res 2024:10.1007/s12011-024-04422-y. [PMID: 39432238 DOI: 10.1007/s12011-024-04422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Because of significant variations and existence of high fluoride (F-) in some waters, Iran has been considered for various fluoride studies in recent decades. Nevertheless, there is a no updated review on fluoride levels especially including F- risk assessment. Thus, this systematic review is mainly aimed to evaluate the spatial distribution of F- content in water sources of Iran using geographic information system (GIS) and conduct the health risk assessment. Besides, the Monte-Carlo Simulation technique with 10,000 iterations was applied for determination of the non-carcinogenic effects of F- in different exposed groups (infant, children, teenagers, and adults). The results indicated that the maximum and minimum concentrations of F- content were related to Jazmourian (Roudbar plain) (4.8 mg/L) and Sahneh (0.1 mg/L) provinces, respectively, and F- content of more than ≅ 19% of the samples exceeds the Iranian standard value (1.5 mg/L). The results showed that the HQ of F- in all groups were higher than 1 with the order of children > infants > teenager > adults in which children were the vulnerable group to F- consumption in study area. Therefore, it is necessary to monitor and continuously measure water supplies for fluoride content and control measures, including removal steps, be taken for human risk reduction.
Collapse
Affiliation(s)
- Danial Nayeri
- Department of Environmental Health Engineering, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadis Elyasi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Occupational Health Engineering, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Ali Jafari
- Department of Environmental Health Engineering, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohammad Rezvani Ghalhari
- Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zheng Y, Wei D, Gan J, Zou L, Zhu R, Zhang Y. Hydrochemical insights, water quality, and human health risk assessment of groundwater in a coastal area of southeastern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:959. [PMID: 39302486 DOI: 10.1007/s10661-024-13131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Groundwater is a vital water supply worldwide, but its quality has gradually deteriorated with the development of society. In this study, a total of 40 groundwater samples were collected during the pre- and post-monsoon to analyze the hydrochemical process and assess the groundwater quality and human health risks in a coastal area of southeastern China. The results showed that the concentrations of major ions were in the order of Ca2+ > Mg2+ > Na+ > K+ and HCO3- > SO42- > Cl- > NO3- > F- during the pre- and post-monsoon periods. A slight increase was observed during the post-monsoon period. The Piper diagram suggested that the hydrochemical type of groundwater was predominantly HCO3-Ca. Principal component analysis (PCA), ionic ratios, and saturation index (SI) determined that the water-rock interactions involving silicate and carbonate minerals played a significant role in the hydrochemical process. The results of the entropy-weighted water quality index (EWQI) and irrigation water quality index (IWQI) evaluations revealed that the general qualities of groundwater were suitable for both drinking and irrigation purposes. However, the excesses of NO3- and SO42- were observed locally. Human health risk assessment concluded that groundwater posed a low risk to human health, and infants faced higher risk compared with adults. The study would provide valuable information for groundwater environmental protection.
Collapse
Affiliation(s)
- Yanhong Zheng
- China Testing & Certification International Group Co., Ltd. (Central China), Changsha, 410000, China
| | - Denghui Wei
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Jie Gan
- Ecology and Environment Monitoring Center of Hunan Province, Changsha, 410014, China
| | - Lin Zou
- Ecology and Environment Monitoring Center of Hunan Province, Changsha, 410014, China
| | - Rilong Zhu
- China Testing & Certification International Group Co., Ltd. (Central China), Changsha, 410000, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 4100821, China
| | - Yunhui Zhang
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|
4
|
Zhang Y, Yan Y, Yao R, Wei D, Huang X, Luo M, Wei C, Chen S, Yang C. Natural background levels, source apportionment and health risks of potentially toxic elements in groundwater of highly urbanized area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173276. [PMID: 38796023 DOI: 10.1016/j.scitotenv.2024.173276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Identifying the natural background levels (NBLs), threshold values (TVs), sources and health risks of potentially toxic elements in groundwater is crucial for ensuring the water security of residents in highly urbanized areas. In this study, 96 groundwater samples were collected in urban area of Sichuan Basin, SW China. The concentrations of potentially toxic elements (Li, Fe, Cu, Zn, Al, Pb, B, Ba and Ni) were analyzed for investigating the NBLs, TVs, sources and health risks. The potentially toxic elements followed the concentration order of Fe > Ba > B > Al > Zn > Li > Cu > Ni > Pb. The NBLs and TVs indicated the contamination of potentially toxic elements mainly occurred in the northern and central parts of the study area. The Positive Matrix Factorization (PMF) model identified elevated concentrations of Fe, Al, Li, and B were found to determine groundwater quality. The primary sources of Fe, Al, Pb, and Ni were attributed to the dissolution of oxidation products, with Fe additionally affected by anthropogenic reduction environments. Li and B were determined to be originated from the weathering of tourmaline. High levels of Ni and Cu concentrations were derived from electronic waste leakage, while excessive Ba and Zn were linked to factory emissions and tire wear. The reasonable maximum exposure (RME) of hazard index (HI) was higher than safety standard and reveal the potential health risks in the southwestern study area. Sensitivity analysis demonstrated the Li concentrations possessed the highest weight contributing to health risk. This study provides a valuable information for source-specific risk assessments of potentially toxic elements in groundwater associated with urban areas.
Collapse
Affiliation(s)
- Yunhui Zhang
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China.
| | - Yuting Yan
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Rongwen Yao
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Denghui Wei
- Yibin Research Institute, Southwest Jiaotong University, Yibin 644000, China; Faculty of Geosciences and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Xun Huang
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China
| | - Ming Luo
- Sichuan Institute of Geological Survey, Sichuan, Chengdu 610081, China
| | - Changli Wei
- Sichuan Institute of Geological Survey, Sichuan, Chengdu 610081, China
| | - Si Chen
- Observation and Research Station of Ecological Restoration for Chongqing Typical Mining Areas, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
| | - Chang Yang
- Observation and Research Station of Ecological Restoration for Chongqing Typical Mining Areas, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China
| |
Collapse
|
5
|
Liu Z, Wang X, Wan X, Jia S, Mao B. Evolution origin analysis and health risk assessment of groundwater environment in a typical mining area: Insights from water-rock interaction and anthropogenic activities. ENVIRONMENTAL RESEARCH 2024; 252:118792. [PMID: 38583662 DOI: 10.1016/j.envres.2024.118792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/02/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
Coal mining changes groundwater environment, results in deterioration of water quality and endangering human health in the mining area. However, the comprehensive study of groundwater evolution and its potential impact in mining area is still insufficient. In this study, 95 groundwater samples were collected from 2019 to 2020 in a typical mining area of China. Ion ratio coefficients, isotopic tracing technology, Entropy-weighted water quality index (EWQI) and human health risk assessment model (HHRA) were applicated to investigate the hydrochemical variation reasons, groundwater quality and its potential health risk in the study area. Results showed that the groundwater hydrochemical types changed from HCO3∙SO4-Ca∙Mg type to SO4-Ca∙Mg and SO4∙Cl-Ca∙Mg type. Water-rock interaction, agricultural activities, manure and sewage input, precipitation and evaporation controlled the groundwater hydrochemical composition. Groundwater quality showed a trend of fluctuation with an average EWQI of 59.23, 68.92, 63.75, 58.02 and 64.92, respectively. 91.6% of the water samples was fair and acceptable for drinking. The groundwater health risk of nitrate in the study area ranged from 0.03 to 17.80. Infants had the highest health risk and nitrate concentration was the most sensitive parameter. The results will present a comprehensive research of groundwater evolution and potential impacts through a typical mining area example. Thereby offering valuable insights into the influencing factors identification, hydrochemical processes evolution, protection and utilization of groundwater in global mining areas.
Collapse
Affiliation(s)
- Zejun Liu
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xihua Wang
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Department of Earth and Environmental Sciences, University of Waterloo, ON, N2L 3G1, Canada.
| | - Xi Wan
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shunqing Jia
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Boyang Mao
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|