1
|
Chandra S, Chakraborty P. Dissolved and particulate phase phthalic acid esters in urban, suburban, and rural riverine catchments along the southeast coast of India after the COVID-19 pandemic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124986. [PMID: 39306068 DOI: 10.1016/j.envpol.2024.124986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024]
Abstract
Dumped waste plastics have been evidenced as a potential source for harmful chemicals along the riverine regions of India. Furthermore, Corona Virus Disease - 19 (COVID-19) pandemic resulted in a subsequent surge in the use of personal protective equipment (PPE) related single-use plastics and Tamil Nadu was India's second major waste generator. Given the newer challenges from dumped waste plastics along the four major rivers of Tamil Nadu emptying into the Bay of Bengal, we investigated thirteen phthalic acid esters (PAEs), in both dissolved and particulate phases of river water and drinking water samples. Ʃ13PAEs in both phases followed the urban > suburban > rural catchment trend. Di (2-ethyl hexyl) phthalate (DEHP) was ubiquitous in both phases and the sites having a prevalence of open burning activities in the urban catchment showed elevated levels. The suburban and rural catchments of the Kaveri River (KR) and Thamirabharani River (TR) were predominated by DEP and DEHP. It is noteworthy that in the urban catchment, Ln (DiBP) and dissolved organic carbon (Ln DOC), were strongly correlated (R2 = 0.894, p < 0.05). Furthermore, a significant increase of DiBP (p < 0.05) in the urban catchment after the second phase of the pandemic most likely resulted from the wide use of DiBP in PPE plastics. Community-stored water from urban catchment was found to have a maximum of ∑13PAEs up to 3769.38 ng/L in the dissolved phase with elevated DMP concentrations leading to higher estrogenic equivalent. The average daily intake for dissolved phase PAEs was below the USEPA-recommended limit for drinking water. However, prolonged exposure to heavier PAEs in particulate matter cannot be ignored. Estimated ecotoxicological risk assessment showed the highest risk for fish species due to DEHP.
Collapse
Affiliation(s)
- Sarath Chandra
- Department of Civil Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
2
|
Singh I, Kanade GS, Kumar AR. Levels, distribution, and health risk assessment of phthalic acid esters in urban surface soils of Nagpur city, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1084. [PMID: 39432121 DOI: 10.1007/s10661-024-13281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Surface soil samples from residential, commercial, and industrial areas of Nagpur city, India, were collected to study the levels, distribution, and impact of land use patterns on phthalic acid ester (PAEs) contamination. The Σ6PAEs concentrations in soils from residential, commercial, and industrial areas ranged between 6,493 to 13,195 µg/kg, 707 to 18,446 µg/kg, and 1,882 to 5,004 µg/kg with medians of 10,399, 6,199, and 3,401 µg/kg, respectively. Bis-2-ethylhexyl phthalate (DEHP) and dimethyl phthalate (DMP) were the dominant PAEs in the urban soils. The concentrations of DEHP and DMP were significantly greater than those in Ontario's soil quality guidelines. Among the PAEs, benzyl-butyl phthalate (BzBP) was found at relatively high concentrations (1,238 and 9,171 µg/kg) at two locations (i.e., S1 and S15). The chronic toxic risk (CTR) of PAEs was below the threshold, although the risk to children through ingestion and dermal exposure routes was greater than that to adults. The CR due to BzBP and DEHP were below the threshold level; however, the CR due to DMP was > 1 × 10-6 in residential areas. The cumulative CR of the six PAEs for adults (1.33-1.41 × 10-5) and children (8.08-8.89 × 10-6) surpassed the threshold level. This study revealed that PAEs in urban soils pose a risk to public health and require immediate risk reduction strategies.
Collapse
Affiliation(s)
- Ishan Singh
- CSIR-National Environmental Engineering Research Institute, Stockholm Convention Regional Centre (SCRC India), Nehru Marg, Nagpur, 440020, Maharashtra, India
- Rashatrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur, 440033, Maharashtra, India
| | - Gajanan Sitaramji Kanade
- CSIR-National Environmental Engineering Research Institute, Stockholm Convention Regional Centre (SCRC India), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Asirvatham Ramesh Kumar
- CSIR-National Environmental Engineering Research Institute, Stockholm Convention Regional Centre (SCRC India), Nehru Marg, Nagpur, 440020, Maharashtra, India.
- Rashatrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur, 440033, Maharashtra, India.
| |
Collapse
|
3
|
Karayi M, Yazhini C, Mukhopadhyay M, Neppolian B, Kanmani S, Chakraborty P. Pharmaceuticals and personal care products contamination in the rivers of Chennai city during the COVID-19 pandemic. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:462. [PMID: 39352591 DOI: 10.1007/s10653-024-02241-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/16/2024] [Indexed: 11/20/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) monitoring in surface water is crucial to address the escalating threat of antimicrobial resistance and safeguard public health. This study aimed to investigate the occurrence of 21 different PPCPs, including wastewater chemical markers, antibiotics, and parabens in the surface water of Chennai city using Ultra Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry (UPLC-MS/MS) analysis. It is noteworthy that chemical markers viz., carbamazepine (CBZ) and caffeine (CAF) were detected in all the sites and contributed to more than 95% of the total PPCPs load indicating a significant intrusion of wastewater. Among the antibiotics, fluoroquinolones were dominant in this study. Interestingly, a significant and strong correlation was seen between fluoroquinolones, CBZ and CAF (R2 = 0.880-0.928, p < 0.05), suggesting similarities in their sources. More than 50% of the sites exhibited a risk for antimicrobial resistance (RQAMR) with RQAMR > 1 for ciprofloxacin, indicating a significant public health concern. The ecotoxicological risk assessment of PPCPs showed no risk to any organisms, except for triclosan, which posed a risk to fish and daphnids at one site near an open drain in Buckingham canal.
Collapse
Affiliation(s)
- Mithun Karayi
- Department of Chemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Crescentia Yazhini
- Department of Chemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Moitraiyee Mukhopadhyay
- Environmental Science and Technology Lab, Centre for Research in Environment, Sustainability Advocacy and Climate Change, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
- Neuvo Chakra (OPC) Pvt. Ltd, Vasai, India
| | - Bernaurdshaw Neppolian
- Department of Chemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - S Kanmani
- Centre for Environmental Studies, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, 600 025, India
| | - Paromita Chakraborty
- Environmental Science and Technology Lab, Centre for Research in Environment, Sustainability Advocacy and Climate Change, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
4
|
Pavithra K, Vairaperumal T, Ks V, Mukhopadhyay M, Malar P, Chakraborty P. Microplastics in packaged water, community stored water, groundwater, and surface water in rivers of Tamil Nadu after the COVID-19 pandemic outbreak. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120361. [PMID: 38493646 DOI: 10.1016/j.jenvman.2024.120361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
The increased load of plastic in waste streams after the COVID-19 pandemic outbreak has increased the possibility of microplastics (MPs) contamination channelling through the rivers and infiltrating the aquatic ecosystems. MPs in packaged water, community-stored water, groundwater, and surface water of Kaveri River (KR), Thamirabarani River (TR), Adyar River (AR), and Cooum River (CR) in Tamil Nadu were therefore investigated about 2 years after the COVID-19 pandemic outbreak. Using μFTIR and μRaman spectroscopy, polyamide, polypropylene, polyethylene, ethylene vinyl alcohol copolymer resin, and polyvinyl chloride were identified as the primary polymer types. The average number of MPs was 2.15 ± 1.9 MP/L, 1.1 ± 0.99 MP/L, 5.25 ± 1.15 MP/L, and 4 ± 2.65 MP/L in KR, TR, AR, and CR, respectively, and 1.75 ± 1.26 MP/L in groundwater, and 2.33 ± 1.52 MP/L in community stored water. Only LDPE was detected in recycled plastic-made drinking water bottles. More than 50% of MPs were found to be of size less than 1 mm, with fibrous MPs being the prevalent type, and a notable prevalence of blue-coloured microplastics in all the sample types. The Pollution Load Index (PLI) was >1 in all the rivers. Toxicity rating based on the polymer risk index (PORI) categorized AR and TR at medium risk (category II), compared to KR and CR at considerable risk (category III). Overall pollution risk index (PRI) followed a decreasing trend with CR > AR > KR > TR of considerable to low-risk category. Ecological risk assessment indicates a negligible risk to freshwater biota, except for four sites in the middle and lower stretches of Adyar River (AR - 2, AR - 4) and upper and lower stretches of Cooum River (CR - 1, CR - 3), located adjacent to direct sewer outlets, and one location in the lower stretch of Kaveri River (KR - 9), known for fishing and tourist activities.
Collapse
Affiliation(s)
- K Pavithra
- Department of Civil Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | - Tharmaraj Vairaperumal
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan, ROC; Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | - Vignesh Ks
- Department of Mechanical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | - Moitraiyee Mukhopadhyay
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | - P Malar
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India; UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Poland.
| |
Collapse
|