1
|
Fei S, Li X, Han Z, Sun F, Xiao X, Dong F, Shen C, Su X. Enhanced dechlorination and degradation of Aroclor 1260 by resuscitation-promoting factor under alternating anaerobic-aerobic conditions: Superior performance and associated microbial populations. ENVIRONMENTAL RESEARCH 2025; 276:121531. [PMID: 40185272 DOI: 10.1016/j.envres.2025.121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The combined processes of dechlorination and degradation are essential for the effective bioremediation of environments contaminated with complex polychlorinated biphenyl (PCB) mixtures. Although resuscitation-promoting factor (Rpf) has been reported to enhance anaerobic dechlorination and aerobic degradation of PCBs by microorganisms, its impact on microbial populations during alternating anaerobic-aerobic treatments remains unexplored. This study investigated the dechlorination and degradation of Aroclor 1260 under anaerobic (AN), aerobic (AE), and alternating anaerobic-aerobic (AA) conditions, both with and without Rpf supplementation. The results demonstrated that Rpf significantly promoted Aroclor 1260 dechlorination under AN conditions, enhanced degradation under AE conditions, and markedly improved both processes under AA conditions, achieving nearly twice the degradation efficiency compared to AE alone. Furthermore, Rpf supplementation significantly increased the abundance of dechlorination-associated microbial taxa, including members of Firmicutes, Chloroflexi, Bacteroidota, and Desulfobacterota under AN conditions, as well as degradation-associated genera such as Pseudomonas and Sphingomonas under AE and AA conditions. Rpf also strengthened microbial interactions by enhancing positive correlations among functional populations and increasing network complexity. These findings establish Rpf as a powerful enhancer of PCB dechlorination and degradation, which provide valuable insights into its superior efficiency in PCB removal under AA conditions.
Collapse
Affiliation(s)
- Sijia Fei
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiaonan Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Zhen Han
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiao Xiao
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Feng Dong
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
2
|
Zhang Y, Zeng Y, Huang C, Pan Z, Jiang Y, Lu Q, Wang S, Tian Y, Gao S, Luo X, Peng P, Mai B. Insights into anaerobic biotransformation of polychlorinated biphenyls in Dehalococcoides mccartyi CG1 through kinetic and stable isotopic analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125826. [PMID: 39923972 DOI: 10.1016/j.envpol.2025.125826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/20/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Microbial degradation processes largely govern the fate of organic contaminants in the environment. Therefore, reliable evaluation of in situ biodegradation is essential for effective on-site contaminant management. Although compound-specific isotope analysis (CSIA) shows significant potential for assessing in situ attenuation and evaluating chemical and biodegradation mechanisms, empirical evidence supporting its application in the microbial degradation of polychlorinated biphenyls (PCBs) is still lacking. Microbial degradation of trace persistent organic pollutants is a multifaceted process influenced by various factors, with substrate concentration being a key factor affecting isotopic fractionation. Herein, to the best of our knowledge, for the first time, batch biodegradation experiments were conducted for analyzing the kinetics and carbon/chlorine isotope fractionation of chiral substrates (-)/(+)-PCB132 by Dehalococcoides mccartyi CG1 at varying substrate concentrations (0.3, 1.7, 2.4, 3.5, and 4.7 μM). The dechlorination of (-)/(+)-PCB132 was predominantly consistent with pseudo-first-order kinetics (kobs) in most cases. However, when the ratio of substrate concentration to the density of functional microorganisms falls below a specific threshold (<5.3 × 10-3 μmol/( × 1010 CG1 cells)), a decline in observed kobs is noted as degradation time increases, ultimately approaching the lower limit of bioavailability (kobs = 0). Notably, substantial normal isotope fractionation was observed for the first time during the anaerobic degradation of (-)/(+)-PCB132, with the isotopic enrichment factor (ƐC) varying from -1.27 ± 0.18‰ to -2.22 ± 0.01 for (-)/(+)-PCB132. Our findings indicate that, in addition to the effect of substrate concentration, the observed isotope fractionation of (-)/(+)-PCB132 was considerably affected by putative biodegradation activity. Enhanced activity within the anaerobic degradation system resulted in pronounced isotope masking. This study aims to contribute to a foundational understanding of bacterial reductive dehalogenation of PCBs at differing substrate concentrations while considering bioavailability.
Collapse
Affiliation(s)
- Yanting Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Chenchen Huang
- China University of Mining & Technology, School of Environmental Science & Spatial Informatics, Xuzhou, 221116, China
| | - Zijian Pan
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiye Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qihong Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510640, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510640, China
| | - Yankuan Tian
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
3
|
Li ZT, Zhao HP. Sulfate-driven microbial collaboration for synergistic remediation of chloroethene-heavy metal pollution. WATER RESEARCH 2024; 268:122738. [PMID: 39504699 DOI: 10.1016/j.watres.2024.122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
The treatment of heavy metal(loid) (HM) composite pollution has long posed a challenge for the bioremediation of organohalide-contaminated sites. Given the prevalent cohabitation of sulfate-reducing bacteria (SRB) with organohalide-respiring bacteria (OHRB), we proposed a sulfate-amendment strategy to achieve synergistic remediation of trichloroethene and diverse HMs [50μM of As(III), Ni(II), Cu(II), Pb(II)]. Correspondingly, 50-75 μM sulfate was introduced to HM inhibitory batches to investigate the enhancement effect of sulfate amendment on bio-dechlorination. Dechlorination kinetics and MATLAB modeling indicated that sulfate amendment comprehensively improved the reductive dechlorination performance in the presence of As(III), Ni(II), Pb(II) and mixed HMs, while no enhancement was observed under Cu(II) exposure. Additionally, sulfate introduction effectively accelerated the detoxification of Ni(II), Pb(II), Cu(II), and As(III), achieving removal efficiencies of 76.87 %, 64.01 %, 86.37 %, and 95.50 % within the first three days, respectively. Meanwhile, propionate dynamics and acetogenesis indicated enhanced carbon source and e-donor supply. 16S rRNA gene sequencing and metagenomic analysis results demonstrated that HM sequestration was accomplished jointly by SRB and HM-resistant bacteria via extracellular precipitation (metal sulfide) and intracellular sequestration, while their contribution depended on the specific coexisting HM species present. This study highlights the critical role of sulfate in the concurrent bioremediation of HM-organohalide composite contamination and provides insights for developing a cost-effective in-situ bioremediation strategy.
Collapse
Affiliation(s)
- Zheng-Tao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China.
| |
Collapse
|
4
|
Wang J, Li X, Jin H, Yang S, Yu L, Wang H, Huang S, Liao H, Wang X, Yan J, Yang Y. CO-driven electron and carbon flux fuels synergistic microbial reductive dechlorination. MICROBIOME 2024; 12:154. [PMID: 39160636 PMCID: PMC11334346 DOI: 10.1186/s40168-024-01869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/07/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Carbon monoxide (CO), hypothetically linked to prebiotic biosynthesis and possibly the origin of the life, emerges as a substantive growth substrate for numerous microorganisms. In anoxic environments, the coupling of CO oxidation with hydrogen (H2) production is an essential source of electrons, which can subsequently be utilized by hydrogenotrophic bacteria (e.g., organohalide-respring bacteria). While Dehalococcoides strains assume pivotal roles in the natural turnover of halogenated organics and the bioremediation of chlorinated ethenes, relying on external H2 as their electron donor and acetate as their carbon source, the synergistic dynamics within the anaerobic microbiome have received comparatively less scrutiny. This study delves into the intriguing prospect of CO serving as both the exclusive carbon source and electron donor, thereby supporting the reductive dechlorination of trichloroethene (TCE). RESULTS The metabolic pathway involved anaerobic CO oxidation, specifically the Wood-Ljungdahl pathway, which produced H2 and acetate as primary metabolic products. In an intricate microbial interplay, these H2 and acetate were subsequently utilized by Dehalococcoides, facilitating the dechlorination of TCE. Notably, Acetobacterium emerged as one of the pivotal collaborators for Dehalococcoides, furnishing not only a crucial carbon source essential for its growth and proliferation but also providing a defense against CO inhibition. CONCLUSIONS This research expands our understanding of CO's versatility as a microbial energy and carbon source and unveils the intricate syntrophic dynamics underlying reductive dechlorination.
Collapse
Grants
- Grant No. 41907220, 42177220, 41907287, 41977295, 41907220 National Natural Science Foundation of China
- Grant No. 41907220, 42177220, 41907287, 41977295, 41907220 National Natural Science Foundation of China
- Grant No. 41907220, 42177220, 41907287, 41977295, 41907220 National Natural Science Foundation of China
- Grant No.2023004 Zhiyuan Science Foundation of BIPT
- Grant No. 2019YFC1804400 National Key Research and Development Program of China
- Grant No. ZDBS-LY-DQC038 Key Research Program of Frontier Science, Chinese Academy of Sciences
- Grant No. 2021-MS-026 Natural Science Foundation of Liaoning Province of China
- Grant No. IAEMP202201 Major Program of Institute of Applied Ecology, Chinese Academy of Sciences
Collapse
Affiliation(s)
- Jingjing Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Xiuying Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Huijuan Jin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Shujing Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- Shenyang Pharmaceutical University, Shenyang, Liaoning, 117004, China
| | - Lian Yu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Hongyan Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Huang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hengyi Liao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuhao Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
- Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
5
|
Botti A, Musmeci E, Matturro B, Vanzetto G, Bosticco C, Negroni A, Rossetti S, Fava F, Biagi E, Zanaroli G. Chemical-physical parameters and microbial community changes induced by electrodes polarization inhibit PCB dechlorination in a marine sediment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133878. [PMID: 38447365 DOI: 10.1016/j.jhazmat.2024.133878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Microbial reductive dechlorination of organohalogenated pollutants is often limited by the scarcity of electron donors, that can be overcome with microbial electrochemical technologies (METs). In this study, polarized electrodes buried in marine sediment microcosms were investigated to stimulate PCB reductive dechlorination under potentiostatic (-0.7 V vs Ag/AgCl) and galvanostatic conditions (0.025 mA·cm-2-0.05 mA·cm-2), using graphite rod as cathode and iron plate as sacrificial anode. A single circuit and a novel two antiparallel circuits configuration (2AP) were investigated. Single circuit polarization impacted the sediment pH and redox potential (ORP) proportionally to the intensity of the electrical input and inhibited PCB reductive dechlorination. The effects on the sediment's pH and ORP, along with the inhibition of PCB reductive dechlorination, were mitigated in the 2AP system. Electrodes polarization stimulated sulfate-reduction and promoted the enrichment of bacterial clades potentially involved in sulfate-reduction as well as in sulfur oxidation. This suggested the electrons provided were consumed by competitors of organohalide respiring bacteria and specifically sequestered by sulfur cycling, which may represent the main factor limiting the applicability of METs for stimulating PCB reductive dechlorination in marine sediments.
Collapse
Affiliation(s)
- Alberto Botti
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Eliana Musmeci
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy; National Biodiversity Future Center, 90133 Palermo, Italy
| | - Giampietro Vanzetto
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Caterina Bosticco
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Andrea Negroni
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy
| | - Fabio Fava
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Elena Biagi
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulio Zanaroli
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
6
|
Xu Y, Wang Y, Zheng A, Yuan Y, Xu L, Tang Y, Qin Q. Efficient biostimulation of microbial dechlorination of polychlorinated biphenyls by acetate and lactate under nitrate reducing conditions: Insights into dechlorination pathways and functional genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133775. [PMID: 38367444 DOI: 10.1016/j.jhazmat.2024.133775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Microbial-catalyzed reductive dechlorination of polychlorinated biphenyls (PCBs) is largely affected by the indigenous sediment geochemical properties. In this study, the effects of nitrate on PCB dechlorination and microbial community structures were first investigated in Taihu Lake sediment microcosms. And biostimulation study was attempted supplementing acetate/lactate. PCB dechlorination was apparently inhibited under nitrate-reducing conditions. Lower PCB dechlorination rate and less PCB dechlorination extent were observed in nitrate amended sediment microcosms (T-N) than those in non-nitrate amended microcosms (T-1) during 66 weeks of incubation. The total PCB mass reduction in T-N was 17.6% lower than that in T-1. The flanked-para dechlorination was completely inhibited, while the ortho-flanked meta dechlorination was only partially inhibited in T-N. The 7.5 mM of acetate/lactate supplementation recovered PCB dechlorination by resuming ortho-flanked meta dechlorination. Repeated additions of lactate showed more effective biostimulation than acetate. Phylum Chloroflexi, containing most known PCB dechlorinators, was found to play a vital role on stability of the network structures. In T-N, putative dechlorinating Chloroflexi, Dehalococcoides and RDase genes rdh12, pcbA4, pcbA5 all declined. With acetate/lactate supplementation, Dehalococcoides grew by 1-2 orders of magnitude and rdh12, pcbA4, pcbA5 increased by 1-3 orders of magnitude. At Week 66, parent PCBs declined by 86.4% and 80.9% respectively in T-N-LA and T-N-AC compared to 69.9% in T-N. These findings provide insights into acetate/lactate biostimulation as a cost-effective approach for treating PCB contaminated sediments undergoing nitrate inhibition.
Collapse
Affiliation(s)
- Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Ying Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - An Zheng
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yaping Yuan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lei Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yanqiang Tang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qingdong Qin
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
7
|
Lu CW, Lo KH, Wang SC, Kao CM, Chen SC. An innovative permeable reactive bio-barrier to remediate trichloroethene-contaminated groundwater: A field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170885. [PMID: 38342459 DOI: 10.1016/j.scitotenv.2024.170885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Permeable reactive bio-barrier (PRBB), an innovative technology, could treat many contaminants via the natural gradient flow of groundwater based on immobilization or transformation of pollutants into less toxic and harmful forms. In this field study, we developed an innovative PRBB system comprising immobilized Dehalococcoides mccartyi (Dhc) and Clostridium butyricum embedded into the silica gel for long-term treatment of trichloroethene (TCE) polluted groundwater. Four injection wells and two monitoring wells were installed at the downstream of the TCE plume. Without PRBB, results showed that the TCE (6.23 ± 0.43 μmole/L) was converted to cis-dichloroethene (0.52 ± 0.63 μmole/L), and ethene was not detected, whereas TCE was completely converted to ethene (3.31 μmole/L) with PRBB treatment, indicating that PRBB could promote complete dechlorination of TCE. Noticeably, PRBB showed the long-term capability to maintain a high dechlorinating efficiency for TCE removal during the 300-day operational period. Furthermore, with qPCR analysis, the PRBB application could stably maintain the populations of Dhc and functional genes (bvcA, tceA, and vcrA) at >108 copies/L within the remediation course and change the bacterial communities in the contaminated groundwater. We concluded that our PRBB was first set up for cleaning up TCE-contaminated groundwater in a field trial.
Collapse
Affiliation(s)
- Che-Wei Lu
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Kai-Hung Lo
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Sun-Chong Wang
- Systems Biology and Bioinformatics Institute, National Central University, Taoyuan 32001, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
8
|
Xu G, Zhao S, Rogers MJ, Chen C, He J. Global prevalence of organohalide-respiring bacteria dechlorinating polychlorinated biphenyls in sewage sludge. MICROBIOME 2024; 12:54. [PMID: 38491554 PMCID: PMC10943849 DOI: 10.1186/s40168-024-01754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Massive amounts of sewage sludge are generated during biological sewage treatment and are commonly subjected to anaerobic digestion, land application, and landfill disposal. Concurrently, persistent organic pollutants (POPs) are frequently found in sludge treatment and disposal systems, posing significant risks to both human health and wildlife. Metabolically versatile microorganisms originating from sewage sludge are inevitably introduced to sludge treatment and disposal systems, potentially affecting the fate of POPs. However, there is currently a dearth of comprehensive assessments regarding the capability of sewage sludge microbiota from geographically disparate regions to attenuate POPs and the underpinning microbiomes. RESULTS Here we report the global prevalence of organohalide-respiring bacteria (OHRB) known for their capacity to attenuate POPs in sewage sludge, with an occurrence frequency of ~50% in the investigated samples (605 of 1186). Subsequent laboratory tests revealed microbial reductive dechlorination of polychlorinated biphenyls (PCBs), one of the most notorious categories of POPs, in 80 out of 84 sludge microcosms via various pathways. Most chlorines were removed from the para- and meta-positions of PCBs; nevertheless, ortho-dechlorination of PCBs also occurred widely, although to lower extents. Abundances of several well-characterized OHRB genera (Dehalococcoides, Dehalogenimonas, and Dehalobacter) and uncultivated Dehalococcoidia lineages increased during incubation and were positively correlated with PCB dechlorination, suggesting their involvement in dechlorinating PCBs. The previously identified PCB reductive dehalogenase (RDase) genes pcbA4 and pcbA5 tended to coexist in most sludge microcosms, but the low ratios of these RDase genes to OHRB abundance also indicated the existence of currently undescribed RDases in sewage sludge. Microbial community analyses revealed a positive correlation between biodiversity and PCB dechlorination activity although there was an apparent threshold of community co-occurrence network complexity beyond which dechlorination activity decreased. CONCLUSIONS Our findings that sludge microbiota exhibited nearly ubiquitous dechlorination of PCBs indicate widespread and nonnegligible impacts of sludge microbiota on the fate of POPs in sludge treatment and disposal systems. The existence of diverse OHRB also suggests sewage sludge as an alternative source to obtain POP-attenuating consortia and calls for further exploration of OHRB populations in sewage sludge. Video Abstract.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore.
| |
Collapse
|
9
|
Chen C, Xu G, Rogers MJ, He J. Metabolic Synergy of Dehalococcoides Populations Leading to Greater Reductive Dechlorination of Polychlorinated Biphenyls. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2384-2392. [PMID: 38266236 DOI: 10.1021/acs.est.3c08473] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Polychlorinated biphenyls (PCBs) are dioxin-like pollutants that cause persistent harm to life. Organohalide-respiring bacteria (OHRB) can detoxify PCBs via reductive dechlorination, but individual OHRB are potent in dechlorinating only specific PCB congeners, restricting the extent of PCB dechlorination. Moreover, the low biomass of OHRB frequently leads to the slow natural attenuation of PCBs at contaminated sites. Here we constructed defined microbial consortia comprising various combinations of PCB-dechlorinating Dehalococcoides strains (CG1, CG4, and CG5) to successfully enhance PCB dechlorination. Specifically, the defined consortia consisting of strains CG1 and CG4 removed 0.28-0.44 and 0.23-0.25 more chlorine per PCB from Aroclor1260 and Aroclor1254, respectively, compared to individual strains, which was attributed to the emergence of new PCB dechlorination pathways in defined consortia. Notably, different Dehalococcoides populations exhibited similar growth when cocultivated, but temporal differences in the expression of PCB reductive dehalogenase genes indicated their metabolic synergy. Bioaugmentation with individual strains (CG1, CG4, and CG5) or defined consortia led to greater PCB dechlorination in wetland sediments, and augmentation with the consortium comprising strains CG1 and CG4 resulted in the greatest PCB dechlorination. These findings collectively suggest that simultaneous application of multiple Dehalococcoides strains, which catalyze complementary dechlorination pathways, is an effective strategy to accelerate PCB dechlorination.
Collapse
Affiliation(s)
- Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Matthew James Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|