1
|
Dong B, Moon HB. Toxicological effects of chemical pesticides in fish: Focusing on intestinal injury and gut microbial dysbiosis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 211:106405. [PMID: 40350225 DOI: 10.1016/j.pestbp.2025.106405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 04/05/2025] [Indexed: 05/14/2025]
Abstract
The gut is susceptible to environmental pollutants and is a crucial barrier to exchanging internal and exterior substances in animals and humans. Intestinal microbiota plays vital roles in nutrition metabolism, synthesis of functional compounds, immune regulation, inflammation, and infection. Gut microbiota dysbiosis can induce intestinal physical barrier damage, trigger inflammation, and increase gut permeability. Intestinal barrier dysfunction facilitates the entry of pathogenic bacteria and harmful chemicals into the body through the blood circulation system, potentially causing neurotoxicity, hepatotoxicity, respiratory toxicity, growth inhibition, and even death. Herein, we overviewed the knowledge on the toxic effects of chemical pesticides on fish intestines and gut microbiota in the latest decade (2015-2025) and attempted to summarize the potential toxicological mechanisms. Chemical pesticide exposure can cause intestinal damage, impair immune function, and disrupt gut microbiota in fish. Gut microbial dysbiosis was strongly associated with intestinal injury. Alterations in gut microbiome metabolites, such as lipopolysaccharide, peptidoglycan, and short-chain fatty acids, have been linked to intestinal damage, inflammation, and changes in permeability. The mechanisms underlying intestinal injury in fish exposed to chemical pesticides included apoptosis, oxidative stress, and inflammation, which are mediated by reactive oxygen species pathways as well as death receptor and mitochondrial signaling pathways. Furthermore, pesticide-induced intestinal dysbiosis can cause neurotoxicity and hepatotoxicity through the microbiome-gut-brain/liver axis.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
2
|
Xiang ST, Qiu J, Mao Z, Pan X, Ma Y, Huang R, Qiu J. Alterations of early-life gut microbiome in hospitalized infants with chemical pollutants exposure. ENVIRONMENTAL RESEARCH 2025; 272:121187. [PMID: 39983969 DOI: 10.1016/j.envres.2025.121187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
Exposure to chemical pollutants and their effects on the gut microbiome during early life are scarce, especially the effects of mixed exposures. Plasma pollutants levels were measured using gas chromatography -triple quadrupole mass spectrometer (GC-MS/MS) among 304 infants in the neonatal ward at Hunan Children's hospital, China, and gut microbiota was derived from 16S rRNA sequencing. We assessed exposure and alpha diversity using generalized linear models, and variation in beta diversity (Bray-Curtis), taxa abundance (MaAsLin2), and employed Bayesian kernel machine regression (BKMR) to investigate the association of pollutants mixture with alpha diversity and taxa. PBDE-99 was positively associated with the Chao1 index (β = 4.29, 95%CI:1.54,7.03). Exposure to the pesticides trifluralin, γ-BHC, and methidathion significantly affected beta diversity (all PFDR < 0.05). PBDE-100, β-BHC, phosalone, methiamitron, fenpropathrin, δ-BHC, and o,p'-DDT were associated with changes in taxa abundance, including negative associations [e.g., Staphylococcus, Bacteroides, Bifidobacterium, and Corynebacterium] and positive associations [e.g., Acinetobacter and Pseudomonas]. An interaction between o,p'-DDT and δ-BHC on Pseudomonas was also found in BKMR models. Our findings suggest that chemical pollutants are associated with gut microbiome changes in hospitalized infants, providing new insights into the mechanisms of chemical pollutants toxicity. Further validation is necessary to confirm these associations and explore their long-term health effects.
Collapse
Affiliation(s)
- Shi-Ting Xiang
- Pediatrics Research Institute of Hunan Province, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, 410007, China
| | - Jun Qiu
- Pediatrics Research Institute of Hunan Province, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, 410007, China; The Affiliated Children's Hospital Of Xiangya School of Medicine, Central South University (Hunan children's hospital), Hunan Provincial Key Laboratory of Pediatric Orthopedics, The School of Pediatrics, University of South China, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Xiongfeng Pan
- Pediatrics Research Institute of Hunan Province, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, 410007, China
| | - Ye Ma
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, 410007, China
| | - Ruiwen Huang
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, 410007, China
| | - Jun Qiu
- Pediatrics Research Institute of Hunan Province, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), Changsha, 410007, China; The Affiliated Children's Hospital Of Xiangya School of Medicine, Central South University (Hunan children's hospital), Hunan Provincial Key Laboratory of Pediatric Orthopedics, The School of Pediatrics, University of South China, China.
| |
Collapse
|
3
|
Zhang ZM, Liu H, Zuo HL, Wang YN, Sun AL, Chen J, Shi XZ. Unraveling the toxic trio: Combined effects of thifluzamide, enrofloxacin, and microplastics on Mytilus coruscus. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138441. [PMID: 40311431 DOI: 10.1016/j.jhazmat.2025.138441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
The presence of pesticides, antibiotics, and microplastics in aquatic environments poses a significant threat because of their persistence and potential harm to aquatic life and human health. However, few studies have explored their combined effects on bioaccumulation and toxicity in edible bivalves. This study examined the bioaccumulation and toxicological impacts of thifluzamide (TF) and enrofloxacin (ENR) on oxidative stress, neurotoxicity, detoxification, and metabolism in Mytilus coruscus after 4 weeks of exposure at the environmental level. The findings indicated that coexposure to TF and ENR or the presence of microplastic polystyrene (PS) increased TF and ENR accumulation in mussels and caused oxidative damage, as evidenced by elevated catalase and glutathione transferase activities and increased malondialdehyde (MDA) levels. Notably, compared with single exposures, coexposure to PS+TF, PS+ENR, or TF+ENR generally increased the MDA content, reduced acetylcholinesterase activity, and increased detoxification gene expression. Metabolomic analysis revealed that TF, ENR, and PS, either alone or combined, significantly disrupted multiple metabolic pathways by altering levels of glycerophospholipids, eicosanoids, amino acids, and nucleotides. Coexposure particularly worsened glycerophospholipid and arachidonic acid metabolism disturbances. These results suggest that combined exposure to TF, ENR or PS exacerbated the ecotoxicological effects of TF and ENR on M. coruscus. Taken together, the results of the present study could enhance our understanding of the environmental effects resulting from multipollutant interactions and their potential risks to seafood security.
Collapse
Affiliation(s)
- Ze-Ming Zhang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Hao Liu
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Hong-Lin Zuo
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yi-Nan Wang
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Ai-Li Sun
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xi-Zhi Shi
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
4
|
Calliera M, Capri E, Lomadze A, Bertuzzi T, Beone GM, Delpero E, Varotto A, Bergaglio S, Anselmetti E, Suciu NA. Evaluating point source pesticide contamination via sprayer washing water dispersal: A northern Italian vineyard area case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178551. [PMID: 39855126 DOI: 10.1016/j.scitotenv.2025.178551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/29/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Wastewater contaminated by plant protection products (PPP) from sprayer cleaning operations must be properly managed and disposed of, as it could represent a point source of environmental PPP pollution and pose risks to non-target organisms. Three conventionally and two organically managed farms in hilly vineyards of North-West Italy engaged in a participatory activity for sampling sprayer washing and resultant water. In total 52 samples of wash water (internal and external) were collected during two agricultural seasons and analyzed for six organic pesticides and metallic Cu. PPP concentrations in water collected after internal washing were up to 37.9 times higher than in water collected after external washing. Concentrations in water after external washing were surprisingly high. This may be explained by the characteristics of the sprayers, but also by farmers failing to comply with good practices during PPP use. To evaluate the possible impact on the aquatic environment of dispersal of wash water into a water body, the FOCUS "Stream" approach was followed. The concentrations thus estimated were almost always higher than the environmental quality standard for surface waters but below the toxicological endpoints for fish and Daphnia magna. With reference to the Italian guidelines for waste classification, only one sample would be classified as ecotoxicological hazardous waste and need to be properly managed. In conclusion, due to the nature of contamination, which is point source but diffuse in the territory, analytical data confirms the need for additional joint efforts to improve awareness in managing wastewater containing PPP and to decrease the impact of the agricultural sector.
Collapse
Affiliation(s)
- Maura Calliera
- European Observatory on sustainable agriculture (OPERA), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, (PC), Italy; Università Cattolica del Sacro Cuore, Department for Sustainable Food Process, Via Emilia Parmense 84, 29122, Piacenza, (PC), Italy
| | - Ettore Capri
- European Observatory on sustainable agriculture (OPERA), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, (PC), Italy; Università Cattolica del Sacro Cuore, Department for Sustainable Food Process, Via Emilia Parmense 84, 29122, Piacenza, (PC), Italy
| | - Anastasia Lomadze
- European Observatory on sustainable agriculture (OPERA), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, (PC), Italy
| | - Terenzio Bertuzzi
- Università Cattolica del Sacro Cuore, Department of Animal, Nutrition and Food Sciences, Via Emilia Parmense 84, 29122, Piacenza, (PC), Italy
| | - Gian Maria Beone
- European Observatory on sustainable agriculture (OPERA), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, (PC), Italy
| | - Emanuela Delpero
- Anadiag srl, Strada Comunale Savonesa, 9, 15057, Tortona, (AL), Italy
| | | | - Stefano Bergaglio
- Anadiag srl, Strada Comunale Savonesa, 9, 15057, Tortona, (AL), Italy
| | - Elena Anselmetti
- Regione Piemonte, Direzione Agricoltura e Cibo, Settore Fitosanitario e Servizi Tecnico-Scientifici, Via Livorno 60, - 10144, (To), Italy
| | - Nicoleta Alina Suciu
- European Observatory on sustainable agriculture (OPERA), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, (PC), Italy; Università Cattolica del Sacro Cuore, Department for Sustainable Food Process, Via Emilia Parmense 84, 29122, Piacenza, (PC), Italy.
| |
Collapse
|
5
|
Zhou HL, Wang BB, Fan XL, Zhang XM, Song Y. Carvacrol acetate activated Nrf2 modulates mitophagy for the treatment of neurocyte oxidative stress induced by chlorpyrifos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117484. [PMID: 39644575 DOI: 10.1016/j.ecoenv.2024.117484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
This study explored the protective effect and potential mechanism of carvacrol acetate (CAA) on the oxidation of chlorpyrifos (CPF). A model of oxidative stimulus damage was established in Sprague-Dawley rats by subcutaneous injection of the CPF poison. PC12 cells were used to construct an oxidative injury model using CPF, and the protective effects and mechanism of action of CAA against CPF-induced oxidative damage were explored in vitro. The key role of Nuclear factor erythroid-2-related factor 2 (Nrf2) in alleviating CPF-induced damage via CAA was further confirmed by administering Nrf2 inhibitors to PC12 cells. Administration of CAA significantly enhanced the locomotor ability of the rats, alleviated neuronal pathological alterations, and increased the number of Nissl bodies, while increasing autophagic bodies. In vitro, CAA promoted cell survival and augmented the mitochondrial membrane potential. It decreased both intra- and extracellular levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), while markedly elevating mitochondrial DNA (mtDNA) copy number. Moreover, PC12 cells treated with Nrf2 inhibitors failed to exhibit any improvement in survival rate when treated with CAA after a toxic insult. Furthermore, ROS and MDA levels were not significantly reduced, SOD enzyme activity did not increase, and mitochondrial membrane potential and mtDNA copy number did not improve. Western blot analysis showed that the expression of Tfam, Beclin1, and LC3II/LC3I proteins in the CAA group decreased significantly after Nrf2 inhibition. These findings suggest that CAA modulates mitochondrial function and autophagy by regulating the Nrf2 signalling pathway to mitigate the toxic damage. Finally, the effect of the autophagy inhibitor, 3-MA, on PC12 cells suggests that CAA promotes mitophagy by participating in the Nrf2 pathway, thereby preventing CPF-induced oxidative stress damage.
Collapse
Affiliation(s)
- Hong-Ling Zhou
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Bei-Bei Wang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Xu-Li Fan
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Jinhua People's Hospital, Jinhua, Zhejiang 2321000, China.
| | - Xiao-Min Zhang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; First People's Hospital of Linping District, Hangzhou, Zhejiang 311103, China.
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Hangzhou King's Bio-pharmaceutical Technology Co., Ltd., Hangzhou, Zhejiang 310007, China.
| |
Collapse
|
6
|
Wāng Y, Jiang Y. Drosophila melanogaster as a tractable eco-environmental model to unravel the toxicity of micro- and nanoplastics. ENVIRONMENT INTERNATIONAL 2024; 192:109012. [PMID: 39332284 DOI: 10.1016/j.envint.2024.109012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024]
Abstract
Micro- and nanoplastics have emerged as pervasive environmental pollutants with potential ecotoxicological impacts on various organisms, including the model organismDrosophila melanogaster. Here we comprehensively synthesize current research on the adverse effects of micro- and nanoplastics onDrosophila, highlighting key findings and identifying gaps in the literature. Micro- and nanoplastics can lead to physical damage, oxidative stress, inflammation, genotoxicity, epigenetic changes, apoptosis, and necrosis inDrosophila. Exposure to plastic debris affects nutrient absorption, energy metabolism, and reproductive health, often in a sex-specific manner. For instance, male flies are generally more susceptible to the toxic effects of polystyrene microplastics than female flies, showing greater mortality and metabolic disruptions. Furthermore, the combined exposure of plastics with heavy metals can exacerbate toxic effects, leading to enhanced oxidative stress, genotoxicity, and gut damage. While antagonistic effects have been identified particularly with silver compounds, where polystyrene microplastics reduce the bioavailability and toxicity of silver. The adverse effects of plastic particles onDrosophiladepend on size, with smaller particles penetrating deeper into tissues and eliciting stronger toxic responses. The chemical composition of the plastics and the presence of additives also play crucial roles in determining toxicity levels. Chronic exposure to low levels can be as harmful as acute high-dose exposure, highlighting the need for comprehensive, long-term studies to fully understand the ecological and biological impacts of plastic pollution.
Collapse
Affiliation(s)
- Yán Wāng
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Yang Jiang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
7
|
Mendes EJ, Mazon SC, Marsaro IB, Hermes ME, Sachett A, Bertoncello KT, de Moura FR, da Silva Júnior FMR, Müller LG, Lima-Rezende CA, Siebel AM. Investigation on the mancozeb toxicity in adult zebrafish ( Danio rerio). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:616-629. [PMID: 38721962 DOI: 10.1080/15287394.2024.2352787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Agriculture has gained increasing importance in response to the continuous growth of the world population and constant need for food. To avoid production losses, farmers commonly use pesticides. Mancozeb is a fungicide used in agriculture as this compound is effective in combating fungi that harm crops. However, this fungicide may also produce damage to non-target organisms present in soil and water. Therefore, this study aimed to investigate the influence of exposure to mancozeb on survival rate, locomotor activity, behavior, and oxidative status utilizing adult zebrafish (Danio rerio) as a model following exposure to environmentally relevant concentrations of this pesticide. The experimental groups were negative control, positive control, and mancozeb (0.3; 1.02; 3.47; 11.8 or 40 μg/L). Zebrafish were exposed to the respective treatments for 96 hr. Exposure to mancozeb did not markedly alter survival rate and oxidative status of Danio rerio. At a concentration of 11.8 μg/L, the fungicide initiated changes in locomotor pattern of the animals. The results obtained suggest that the presence of mancozeb in the environment might produce locomotor alterations in adult zebrafish, which subsequently disrupt the animals' innate defense mechanisms. In nature, this effect attributed to mancozeb on non-target organisms might result in adverse population impacts and ecological imbalance.
Collapse
Affiliation(s)
- Ellen Jaqueline Mendes
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | - Samara Cristina Mazon
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | | | - Maria Eduarda Hermes
- Curso de Farmácia, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | - Adrieli Sachett
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kanandra Taisa Bertoncello
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | - Fernando Rafael de Moura
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Flavio Manoel Rodrigues da Silva Júnior
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Liz Girardi Müller
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
- Curso de Farmácia, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | - Cássia Alves Lima-Rezende
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
| | - Anna Maria Siebel
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
- Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Chapecó, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Brazil
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
8
|
Li R, Hao Y, Shen Y, Gui L, Lv W, Yuan L, Du B, Xie L, Li J, Xu X. Impact of cadmium and diclofenac exposure on biochemical responses, transcriptome, gut microflora, and growth performance in grass carp (Ctenopharyngodonidella). CHEMOSPHERE 2024; 360:142428. [PMID: 38797211 DOI: 10.1016/j.chemosphere.2024.142428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
In recent years, the concentrations of cadmium (Cd) and diclofenac (DCF) in water have frequently exceeded the standard; however, the toxic effects of these two pollutants on grass carp under single and combined exposure are unknown. In this study, the concentrations of pollutants in different tissues were detected, and the toxicities of the two pollutants to grass carp under different exposure conditions were compared based on growth traits, biochemical responses, gut microbiome, and transcriptomes. Based on these findings, the brain showed the lowest levels of Cd and DCF accumulation. Oxidative stress and pathological damage were observed in the brain and intestines. Changes in the structure and abundance of the gut microflora affect the synthesis of neurotransmitters, such as GABA and steroids. Differentially expressed genes in the brain were enriched in circadian rhythm functions. The expression of PER, CLOCK,1L-1β, 1L-17, and other genes are related to the abundance of Akkermansia, which indicates that the disorder of gut microflora will affect the normal circadian rhythm of the brain. All indices in the recovery group showed an increasing trend. Overall, the toxicity of Cd and DCF showed antagonism, and a single exposure had a stronger effect on gut microorganisms and circadian rhythm, which provided a scientific basis for exploring the comprehensive effects of different pollutants.
Collapse
Affiliation(s)
- Runbo Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yinghu Hao
- Tongling Puji Sangtian Daoyu Ecological Development Co., Ltd., Anhui, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Wenyao Lv
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Li Yuan
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Biao Du
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lingli Xie
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
9
|
Martínez-Álvarez I, Le Menach K, Cajaraville MP, Budzinski H, Orbea A. Effects of polystyrene nano- and microplastics and of microplastics with sorbed polycyclic aromatic hydrocarbons in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172380. [PMID: 38604358 DOI: 10.1016/j.scitotenv.2024.172380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The presence of nanoplastics (NPs) and microplastics (MPs) in the environment is recognised as a global-scale problem. Due to their hydrophobic nature and large specific surface, NPs and MPs can adsorb other contaminants, as polycyclic aromatic hydrocarbons (PAHs), and modulate their bioavailability and hazard. Adult zebrafish were exposed for 3 and 21 days to: (1) 0.07 mg/L NPs (50 nm), (2) 0.05 mg/L MPs (4.5 μm), (3) MPs with sorbed oil compounds of the water accommodated fraction (WAF) of a naphthenic crude oil (MPs-WAF), (4) MPs with sorbed benzo(a)pyrene (MPs-B(a)P), (5) 5 % WAF and (6) 21 μg/L B(a)P. Electrodense particles resembling NPs were seen in the intestine lumen close to microvilli. MPs were abundantly found in the intestine lumen, but not internalised into the tissues. After 21 days, NPs caused a significant downregulation of cat, and upregulation of gpx1a and sod1, while MPs upregulated cyp1a and increased the prevalence of liver vacuolisation. No histopathological alteration was observed in gills. In this study, contaminated MPs did not increase PAH levels in zebrafish but results highlight the potential differential impact of plastic particles depending on their size, making it necessary to urgently address the ecotoxicological impact of real environmental NPs and MPs.
Collapse
Affiliation(s)
- Ignacio Martínez-Álvarez
- CBET Research Group, Dept. of Zoology and Animal Cell Biology; Research Centre for Experimental Marine Biology and Biotechnology PiE and Science and Technology Faculty, University of the Basque Country (UPV/EHU). Sarriena z/g, E-48940 Leioa, Basque Country, Spain; University of Bordeaux, EPOC-LPTC, UMR 5805 CNRS, F-33405 Talence Cedex, France
| | - Karyn Le Menach
- University of Bordeaux, EPOC-LPTC, UMR 5805 CNRS, F-33405 Talence Cedex, France
| | - Miren P Cajaraville
- CBET Research Group, Dept. of Zoology and Animal Cell Biology; Research Centre for Experimental Marine Biology and Biotechnology PiE and Science and Technology Faculty, University of the Basque Country (UPV/EHU). Sarriena z/g, E-48940 Leioa, Basque Country, Spain
| | - Hélène Budzinski
- University of Bordeaux, EPOC-LPTC, UMR 5805 CNRS, F-33405 Talence Cedex, France
| | - Amaia Orbea
- CBET Research Group, Dept. of Zoology and Animal Cell Biology; Research Centre for Experimental Marine Biology and Biotechnology PiE and Science and Technology Faculty, University of the Basque Country (UPV/EHU). Sarriena z/g, E-48940 Leioa, Basque Country, Spain.
| |
Collapse
|
10
|
Sivan G, Pamanji R, Koigoora S, Joseph N, Selvin J. In vivo toxicological assessment of silver nanoparticle in edible fish, Oreochromis mossambicus. Toxicol Res (Camb) 2024; 13:tfae019. [PMID: 38380074 PMCID: PMC10874924 DOI: 10.1093/toxres/tfae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/30/2023] [Accepted: 01/27/2024] [Indexed: 02/22/2024] Open
Abstract
Silver nanoparticles are the extensively utilized among all nanoparticles due to their antibacterial and wound healing properties making them highly suitable for medical and pharmaceutical applications. The field of nanoparticle toxicity is an emerging field and the present study aims to assess the biochemical, hematological and genotoxicity in Oreochromis mossambicus exposed to different concentrations of silver nanoparticles for 7 and 14 days. Silver nanoparticles were synthesized by reduction of silver nitrate using trisodium citrate and was characterized using X-ray diffraction, SEM, HRTEM and DLS. Hematological parameters like RBC, WBC, Hb, HCT and MCV and for biochemical analysis, antioxidant enzymes SOD, CAT and GPX and serum enzymes AST, ALT, ACP, ALP and LDH were analyzed. Genotoxicity was studied using comet assay. Results obtained showed decrease in erythrocytes, HCT, Hb and MCV while an increase was noted in WBC on day 7 and 14. The antioxidant enzymes SOD, CAT and GPx showed a decrease and the lipid peroxidation product MDA was elevated. The serum enzymes AST, ALT, ACP ALP and LDH showed an increased activity when compared to control. DNA damage was evident by an increase in % TDNA. The results indicate hematological, biochemical and genotoxicity of silver nanoparticles that might be mediated through ROS generation in O. mossambicus.
Collapse
Affiliation(s)
- Gisha Sivan
- Division of Medical Research, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Chennai, Tamil Nadu 603203, India
| | - Rajesh Pamanji
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| | - Srikanth Koigoora
- Vignan's Foundation for Science, Technology and Research (Deemed to be University), Vadlamudi, Andhra Pradesh 560075, India
| | | | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| |
Collapse
|