1
|
Zhang C, Li XY, Guan DX, Gao JL, Yang Q, Chen XL, Ma LQ. Manganese oxide application reduces cadmium bioavailability in rice rhizosphere: Insights from desorption kinetics and high-resolution imaging. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126110. [PMID: 40127810 DOI: 10.1016/j.envpol.2025.126110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Accepted: 03/22/2025] [Indexed: 03/26/2025]
Abstract
Cadmium (Cd) contamination in paddy soils threatens global food safety. While manganese (Mn)-based materials show promise in reducing soil Cd bioavailability, their efficacy requires further evaluation. Traditional ex situ sampling methods often overlook metal desorption kinetics and rhizosphere biochemical heterogeneity, potentially misinterpreting Mn's regulatory influence on Cd dynamics. This study employed in situ monitoring tools, including diffusive gradients in thin-films (DGT) measurements, DIFS (DGT-induced fluxes in soils) modeling, and high-resolution DGT and planar optode (PO) imaging, to assess the impact of two Mn oxides (MnO2 and Mn2O3) on Cd bioavailability in rice rhizosphere. Application of MnO2 and Mn2O3 reduced bioavailable Cd by 28.9 % and 15.3 %, respectively, attributed to elevated soil Mn and Fe levels fostering Cd immobilization. DGT-DIFS results revealed that Mn oxide application prolonged Cd replenishment time and reduced its desorption rate from soil solids. PO imaging identified pH heterogeneity in rice rhizosphere, confirming that Mn oxides mediated Cd bioavailability reduction by increasing pH. High-resolution DGT imaging revealed distinct spatial distribution patterns of Cd, Mn, and Fe fluxes, demonstrating Mn's inhibitory effects on Cd bioavailability. These findings highlight the potential of Mn oxides to mitigate Cd uptake by rice, offering a promising strategy for managing Cd-contaminated soils.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xing-Yue Li
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Xing Guan
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jia-Lu Gao
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiong Yang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao-Lei Chen
- Engineering Technology Innovation Center for Ecological Evaluation and Restoration of Farmland of Plain District in Ministry of Natural Resources, Zhejiang Institute of Geosciences, Hangzhou, 311203, China
| | - Lena Q Ma
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Wang Y, Zhang Z, Cheng C, Liang C, Wang H, He M, Huang H, Wang K. Ensemble learning-assisted quantitative identifying influencing factors of cadmium and arsenic concentration in rice grain based multiplexed data. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136869. [PMID: 39675080 DOI: 10.1016/j.jhazmat.2024.136869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Rapid and accurate prediction of rice Cd (rCd) and rice As (rAs) bioaccumulation are important for assessing the safe utilization of rice. Currently, there is lack of comprehensive and systematic exploration of the factors of rCd and rAs. Herein, ensemble learning (EL) was first used to analysis the 23 factors in 8 categories (heavy metal pollution characteristics, soil properties, geographical characteristics, meteorological factors, socio-economic factors, environmental factors, rice type, and nutrient element) in typical regions of China based on the results of 193 research papers from 2000 to 2024 in Web of Science database. Three machine learning methods were used to predict rCd and rAs concentrations and identify the key factors in each region, and explored the mechanism of Cd and As uptake in rice. The results showed that there were large differences in the factors affecting rice enrichment for the same heavy metal in different regions. For Cd, rice type (48.30 %), soil characteristics (28.14 %), and environmental factors (61.30 %) were the most important factors in Central South, East China, and Southwest China, respectively. For As, soil properties (34.01 %) and geographical characteristics (50.22 %) had the greatest influence in Central South and East China, respectively. Our study provided valuable insights into the prediction of rCd and rAs, thus contributing to ensuring food safety and preventing Cd and As exposure-associated health risks.
Collapse
Affiliation(s)
- Yakun Wang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhuo Zhang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Natural Resources, Beijing 100035, China.
| | - Cheng Cheng
- PipeChina north Pipeline company, Langfang 065000, China
| | - Chouyuan Liang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hejing Wang
- Technical Center for Soil,Agriculture and Rural Ecology and Environment Ministry of Ecology and Environment, Beijing 100012, China
| | - Mengsi He
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Haochong Huang
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Kai Wang
- School of Earth sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
3
|
Manzoor M, Guan DX, Ma LQ. Plant-microbiome interactions for enhanced crop production under cadmium stress: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178538. [PMID: 39879949 DOI: 10.1016/j.scitotenv.2025.178538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Cadmium (Cd) is a toxic heavy metal that has detrimental effects on agriculture crops and human health. Both natural and anthropogenic processes release Cd into the environment, elevating its contents in soils. Under Cd stress, strong plant-microbiome interactions are important in improving crop production, but a systematic review is still missing. This review demonstrates the importance of microbiomes and their interactions with plants in mitigating Cd toxicity and promoting crop growth. Endogenous and exogenous microbiomes play a role to enhance plant's ability to respond to Cd stress. Specifically, the rhizosphere microbiome, which includes plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi, endosphere microbiome, and phyllosphere microbiome, are involved in Cd accumulation, immobilization, and translocation, and Cd-induced stress management. The mechanisms underlying these plant-microbiome interactions vary depending on the species and varieties of crops, composition and diversity of the microbiome, and level of Cd stress. Among the microbiome-mediated approaches, biosorption, bioprecipitation, and bioaccumulation are promising for Cd remediation in soil. Additionally, the endosphere microbiome, particularly Cd resistant endophytes, reduces Cd toxicity, increases the expression of Cd efflux genes, and enhances crop growth through regulating crops' antioxidant machinery and endogenous hormones. Furthermore, improved agricultural practices modulate the soil and plant microbiomes, thereby reducing Cd stress and increasing crop productivity.
Collapse
Affiliation(s)
- Maria Manzoor
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Li H, Li Z, Long J, Fu J, Chen C. Mechanisms of N-doped microporous biochar decreased Cd transition in rhizosphere soils and its impact on soil bacterial community composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175873. [PMID: 39214365 DOI: 10.1016/j.scitotenv.2024.175873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Soil cadmium (Cd) contamination has garnered considerable attention. This study employed batch sorption experiments and rhizobox experiments to examine the impact of nitrogen-doped microporous biochar (NBB) on the temporal and spatial distribution of Cd in the rhizosphere of rice plants, with the aim of elucidating the underlying mechanisms. The results indicated that the adsorption of Cd(II) onto NBB was predominantly governed by chemical reactions. When applied to soil, the NBB significantly hindered the migration of Cd from the bulk soil to the rhizosphere. Additionally, the application of NBB decreased the redox potential (Eh) in the rhizosphere soil and increased the relative abundance of Anaeromyxobacteraceae, Geobacteraceae, Desulfurisporaceae, and Syntrophomonadaceae, which could facilitate the reduction of soil Cd availability. Furthermore, the NBB2 treatment encouraged the formation of iron plaque on the root surface, thereby limiting the uptake of Cd from the soil into the root system. Moreover, the N-doped microporous biochar treatment resulted in lower Cd levels in the stele of root, an effect that was associated with increased sulfur (S) content in the stele and epidermis, suggesting a potential role for S in Cd sequestration. Ultimately, the application of N-doped microporous biochar resulted in diminished Cd accumulation in the rice tissues.
Collapse
Affiliation(s)
- Honghong Li
- School of History and Geography, Minnan Normal University, Zhangzhou 363000, PR China; College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Zhou Li
- Subtropical Agriculture Research Institute, Fujian Academy of Agricultural Sciences, Zhangzhou 363000, Fujian, PR China
| | - Jun Long
- School of Biological Science and Technology, Minnan Normal University, Zhangzhou 363000, Fujian, PR China
| | - Jiayi Fu
- School of History and Geography, Minnan Normal University, Zhangzhou 363000, PR China
| | - Chen Chen
- School of History and Geography, Minnan Normal University, Zhangzhou 363000, PR China
| |
Collapse
|
5
|
Kong F, Guan DX, Huang P, Lu S, Xu J, Wang H. Unveiling the barriers of Cd translocation from soil to rice: Insights from continuous flooding. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174265. [PMID: 38936739 DOI: 10.1016/j.scitotenv.2024.174265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Understanding the spatiotemporal processes governing Cd behavior at the soil-solution-root interface is crucial for developing effective remediation strategies. This study examined the processes of chemical remediation in Cd-contaminated paddy soil using rhizotrons over the entire rice growth period. One-dimensional profile sampling with a 10 cm resolution revealed that during the initial flooding, paddy soil was strongly stimulated, followed by stabilization of porewater properties. X-ray diffraction of freeze-dried porewater confirmed the generation of submicron-precipitates such as CdS under continuous flooding, resulting in low ion levels of water-soluble Cd (<1 μg/L) and sulfate (<10 mg/L) in porewater. Two-dimensional imaging technologies indicated the maximum iron‑manganese plaque (IP) within 20-110 μm of the root surface. Subsequently, monitoring O2 in the rhizosphere with a planar optode by two 100 cm2 membranes for a consecutive month revealed significant circadian O2 variations between the root base and tip. Destructive sampling results showed that acid-soluble Cd in soils, as available Cd, is crucial for Cd uptake by rice roots under continuous flooding. The IP deposited on the root surface, as the barriers of Cd translocation, increased with rice growth and blocked Cd translocation from soil to rice by about 18.11 %-25.43 % at maturity. A Si-Ca-Mg compound amendment reduced available Cd by about 10 % and improved Cd blocking efficiency by about 7.32 % through increasing IP concentration, resulting in the absorption ratio of Cd in the amendment group being half that of the control group. By unveiling the complex Cd interactions at the soil-rice interface, this study lays the groundwork for developing effective agricultural practices to mitigate Cd-contaminated paddy and ensure food safety.
Collapse
Affiliation(s)
- Fanyi Kong
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pengwu Huang
- Agricultural and Rural Development Center of Yueqing, Yueqing 325699, Zhejiang Province, China
| | - Shenggao Lu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haizhen Wang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Wu C, Wu Y, Li F, Ding X, Yi S, Hang S, Ge F, Zhang M. Reducing the accumulation of cadmium and phenanthrene in rice by optimizing planting spacing: Role of low-abundance but core rhizobacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171856. [PMID: 38522531 DOI: 10.1016/j.scitotenv.2024.171856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Optimizing planting spacing is a common agricultural practice for enhancing rice growth. However, its effect on the accumulation of cadmium (Cd) and phenanthrene (Phen) in soil-rice systems and the response mechanisms of rhizobacteria to co-contaminants remain unclear. This study found that reducing rice planting spacing to 5 cm and 10 cm significantly decreased the bioavailability of Cd (by 7.9 %-29.5 %) and Phen (by 12.9 %-47.6 %) in the rhizosphere soil by converting them into insoluble forms. The increased accumulation of Cd and Phen in roots and iron plaques (IPs) ultimately led to decreased Cd (by 32.2 %-39.9 %) and Phen (by 4.2 %-17.3 %) levels in brown rice, and also significantly affected the composition of rhizobacteria. Specifically, reducing rice planting spacing increased the abundance of low-abundance but core rhizobacteria in the rhizosphere soil and IPs, including Bacillus, Clostridium, Sphingomonas, Paenibacillus, and Leifsonia. These low-abundance but core rhizobacteria exhibited enhanced metabolic capacities for Cd and Phen, accompanied by increased abundances of Cd-resistance genes (e.g., czcC and czcB) and Phen-degradation genes (e.g., pahE4 and pahE1) within the rhizosphere soil and IPs. Reduced planting spacing had no noticeable impact on rice biomass. These findings provide new insights into the role of low-abundance but core rhizobacterial communities in Cd and Phen uptake by rice, highlighting the potential of reduced planting spacing as an eco-friendly strategy for ensuring the safety of rice production on contaminated paddy soils.
Collapse
Affiliation(s)
- Chen Wu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yujun Wu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Feng Li
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Xiangxi Ding
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Shengwei Yi
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Sicheng Hang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China; The Experimental Teaching Center in College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|