1
|
Li Q, Zhang Y, Liu Y, Li T, Xu H, Wei Q, Zeng H, Ni H, Li S. Multiple functions of exogenous melatonin in cucumber seed germination, seedling establishment, and alkali stress resistance. BMC PLANT BIOLOGY 2025; 25:359. [PMID: 40102743 PMCID: PMC11921661 DOI: 10.1186/s12870-025-06359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Exogenous melatonin plays a crucial role in various plant developmental processes and stress responses and has considerable potential for future agricultural applications. However, its effects on early cucumber seedling growth and resistance to alkaline stress have not been adequately explored. This study investigated the role of exogenous melatonin during the early growth stages of cucumber, specifically focusing on seed germination, post-germination seedling growth, and 1-leaf stage seedling growth, with particular emphasis on its influence on alkali stress resistance. These findings are intended to enhance the application of melatonin in cucumber seedling cultivation and provide a theoretical basis for promoting growth and improving stress tolerance in agricultural production. RESULTS Exogenous melatonin enhanced cucumber seed germination and early seedling growth with promoting and inhibitory effects at low and high concentrations, respectively. However, the effects of exogenous melatonin on cucumber growth varied at different developmental stages. Additionally, alkali stress significantly hampered the growth of cucumber seedlings; however, the external application of melatonin mitigated the damage caused by this stress. This protective effect was evidenced by a marked increase in the survival rate, stem diameter, and biomass of cucumber seedlings, along with a significant reduction in malondialdehyde content and electrolyte leakage rate. Further investigation revealed that exogenous melatonin promotes the accumulation of osmoregulatory substances, specifically soluble sugars, and proline, under alkaline stress. It also enhances the activities of antioxidant enzymes, including peroxidase, superoxide dismutase, catalase, and dehydroascorbate reductase, while significantly decreasing the accumulation of reactive oxygen species such as H2O2 and O2⋅-. Furthermore, exogenous melatonin increased the activities of PM-H+-ATPase and V-H+-ATPase and stimulated the expression of stress-related genes, thereby regulating Na+ and K+ homeostasis under alkali stress. Additionally, exogenous melatonin promoted the synthesis of endogenous melatonin in cucumbers subjected to alkaline stress by inducing the expression of melatonin synthase genes, namely, CsASMT, CsCOMT, CsTDC, and CsSNAT. CONCLUSIONS Exogenous melatonin promoted cucumber seed germination and seedling establishment and enhanced cucumber alkali stress tolerance by mediating osmotic adjustment, reactive oxygen species scavenging, ion homeostasis maintenance, endogenous melatonin synthesis, and expression of stress-related genes.
Collapse
Affiliation(s)
- Qiuxia Li
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou, 341000, China
| | - Yiqiu Zhang
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou, 341000, China
| | - Yu Liu
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou, 341000, China
| | - Tianyue Li
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou, 341000, China
| | - Hua Xu
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou, 341000, China
| | - Qinwen Wei
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou, 341000, China
| | - Huiliang Zeng
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou, 341000, China
| | - Huiyi Ni
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou, 341000, China
| | - Shuzhen Li
- Ganzhou Key Laboratory of Greenhouse Vegetable, College of Life Science, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Fu Z, Yao Y, Haq MZU, Liu Y, Yang D, Yang H, Wu Y. Glutathione's role in mitigating cadmium stress in Pogostemon cablin: Insights from combined transcriptomic and metabolomic approaches. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137921. [PMID: 40086241 DOI: 10.1016/j.jhazmat.2025.137921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/19/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Cadmium (Cd) pollution poses a growing threat to plant growth. Although glutathione (GSH) is recognized for its potential to mitigate Cd-induced stress, its specific effects on alleviating such stress in Pogostemon cablin (patchouli) remain unclear. This study investigated physiological parameters and enzymatic activities across four treatment groups: control (CK), cadmium stress (Cd), glutathione (GSH), and glutathione with cadmium stress (GSH+Cd). Results revealed that chlorophyll a, b, and carotenoid levels in the GSH were approximately 20 % higher than those in the other groups. In contrast, antioxidant enzyme activity in the Cd decreased by about 15 %. Integrated transcriptomic and metabolomic analyses demonstrated that GSH mitigates Cd stress by influencing glycerophospholipid metabolism and flavonoid biosynthesis, with key roles attributed to dgkA1, dgkA2, and CCoAOMT1-4. In conclusion, GSH alleviates Cd stress in P. cablin by enhancing photosynthetic pigment synthesis, reducing reactive oxygen species (ROS) through improved enzymatic activity, and regulating metabolic pathways. These findings provide valuable insights for optimizing the cultivation and management of P. cablin under Cd stress conditions.
Collapse
Affiliation(s)
- Zhineng Fu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Yanqiang Yao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Muhammad Zeeshan Ul Haq
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Ya Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Dongmei Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Huageng Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Yougen Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China.
| |
Collapse
|
3
|
Song X, Chen J, Xu C, Cai X, Song W, Chang A, Zhang Y, Luo C. Physiological and molecular mechanisms of exogenous salicylic acid in enhancing salt tolerance in tobacco seedlings by regulating antioxidant defence system and gene expression. FRONTIERS IN PLANT SCIENCE 2025; 16:1545865. [PMID: 39959351 PMCID: PMC11825763 DOI: 10.3389/fpls.2025.1545865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025]
Abstract
Introduction Salt stress has emerged as a predominant abiotic factor that jeopardizes global crop growth and yield. The plant hormone salicylic acid (SA) has notable potential in mitigating salt toxicity, yet its mechanism in enhancing the salinity tolerance of tobacco plants is not well explored. Methods This study aimed to assess the potential benefits of exogenous SA application (1.0 mM) on tobacco seedlings subjected to saline soil conditions. Results The foliar spray of SA partially mitigated these salt-induced effects, as evidenced by a reduction of malondialdehyde content, and improvements of leaf K+/Na+ ratios, pigment biosynthesis, and electron transport efficiency under NaCl stress. Additionally, SA increased the contents of total phenolic compound and soluble protein by 16.2% and 28.7% to alleviate NaCl-induced oxidative damage. Under salt stressed conditions, the activities of antioxidant enzymes, including superoxide dismutase, ascorbate peroxidase, catalase, and peroxidase increased by 4.2%~14.4% in SA sprayed tobacco seedlings. Exogenous SA also increased ascorbate and glutathione levels and reduced their reduced forms by increasing the activities of glutathione reductase, ascorbate peroxidase, monodehydroascorbate reductase and dehydroascorbate reductase. qRT-PCR analysis revealed that the key genes regulating SA biosynthesis, carbon assimilation, the antioxidant system and the ascorbate-glutathione cycle were activated by SA under conditions of salt stress. Discussion Our study elucidates the physiological and molecular mechanisms of exogenous SA in enhancing plant salt tolerance and provides a practical basis for crop improvement in saline environments.
Collapse
Affiliation(s)
- Xiliang Song
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Jian Chen
- Shanghai Tobacco Group Co. Ltd, Shanghai, China
| | - Can Xu
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Xianjie Cai
- Shanghai Tobacco Group Co. Ltd, Shanghai, China
| | - Wenjing Song
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| | - Aixia Chang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| | - Yu Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| | - Chenggang Luo
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, China
| |
Collapse
|
4
|
Sultan H, Mazhar Abbas HM, Faizan M, Emamverdian A, Shah A, Bahadur S, Li Y, Khan MN, Nie L. Residual effects of biochar and nano-modified biochar on growth and physiology under saline environment in two different genotype of Oryza sativa L. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123847. [PMID: 39746259 DOI: 10.1016/j.jenvman.2024.123847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
Soil salinity is represent a significant environmental stressor that profoundly impairs crop productivity by disrupting plant physiological functions. To mitigate this issue, the combined application of biochar and nanoparticles has emerged as a promising strategy to enhance plant salt tolerance. However, the long-term residual effects of this approach on cereal crops remain unclear. In a controlled pot experiment, rice straw biochar (BC) was applied in an earlier experiment at a rate of 20 t/ha, in conjunction with ZnO and Fe2O3 nanoparticles at concentrations of 10 mg L-1 and 20 mg L-1. Two rice genotypes, Jing Liang You-534 (salt-sensitive) and Xiang Liang You-900 (salt-tolerant), were utilized under 0% NaCl (S1) and 0.6% NaCl (S2) conditions. Results showed that, application of residual ZnOBC-20 significantly enhanced rice biomass, photosynthetic assimilation, relative chlorophyll content, SPAD index, enzyme activities, K+/Na+ ratio, hydrogen peroxide (H2O2) levels, and overall plant growth. Specifically, ZnOBC-20 increased the tolerance index by 142.8% and 146.1%, reduced H2O2 levels by 27.11% and 35.8%, and decreased malondialdehyde (MDA) levels by 33% and 57.9% in V1 and V2, respectively, compared to their respective controls. Residual of ZnOBC-20 mitigated oxidative damage caused by salinity-induced over-accumulation of reactive oxygen species (ROS) by enhancing the activities of antioxidant enzymes (SOD, POD, CAT, and APX) and increasing total soluble protein (TSP) content. Xiang Liang You-900 exhibited a less severe response to salinity compared to Jing Liang You-534. Additionally, residual of ZnOBC-20 significantly enhanced the anatomical architecture of both root and leaf tissues and regulated the expression levels of salt-related genes. Residual of ZnOBC-20 also improved salt tolerance in rice plants by reducing sodium (Na+) accumulation and enhancing potassium (K+) retention, thereby increasing the K+/Na+ ratio under saline conditions. The overall results of this experiment demonstrate that, residual effects of ZnOBC-20 not only improved the growth and physiological traits of rice plants under salt stress but also provided insights into the mechanisms behind the innovative combination of biochar and nanoparticles residual impacts for enhancing plant salt tolerance.
Collapse
Affiliation(s)
- Haider Sultan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Hafiz Muhammad Mazhar Abbas
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Asad Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Saraj Bahadur
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Yusheng Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
| | - Lixiao Nie
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
| |
Collapse
|
5
|
Chang J, Zhu X, Lian Y, Li J, Chen X, Song Z, Chen L, Xie D, Zhang B. Melatonin Enhances the Low-Calcium Stress Tolerance by Regulating Brassinosteroids and Auxin Signals in Wax Gourd. Antioxidants (Basel) 2024; 13:1580. [PMID: 39765907 PMCID: PMC11673479 DOI: 10.3390/antiox13121580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
In plants, calcium (Ca) serves as an essential nutrient and signaling molecule. Melatonin is a biologically active and multi-functional hormone that plays an important role in improving nutrient use efficiency. However, its involvement in plant responses to Ca deficiency remains largely unexplored. This study aimed to assess the effects of melatonin on Ca absorption, the antioxidant system, and root morphology under low-Ca (LCa) stress conditions, as well as to identify key regulatory factors and signaling pathways involved in these processes using transcriptome analysis. Under LCa conditions, wax gourd seedling exhibited significant decreases in Ca accumulation, showed inhibition of root growth, and demonstrated the occurrence of oxidative damage. However, melatonin application significantly enhanced Ca content in wax gourd seedlings, and it enhanced the absorption of Ca2+ in roots by upregulating Ca2+ channels and transport genes, including BhiCNGC17, BhiCNGC20, BhiECA1, BhiACA1, and BhiCAX1. Furthermore, the application of exogenous melatonin mitigated the root growth inhibition and oxidative damage caused by LCa stress. This was evidenced by increases in the root branch numbers, root tips, root surface area, and root volume, as well as enhanced root vitality and antioxidant enzyme activities, as well as decreases in the reactive oxygen species content in melatonin treated plants. Transcriptome results revealed that melatonin mainly modulated the brassinosteroids (BRs) and auxin signaling pathway, which play essential roles in root differentiation, elongation, and stress adaptation. Specifically, melatonin increased the active BR levels by upregulating BR6ox (a BR biosynthesis gene) and downregulating BAS1 (BR degradation genes), thereby affecting the BR signaling pathway. Additionally, melatonin reduced IAA levels but activated the auxin signaling pathway, indicating that melatonin could directly stimulate the auxin signaling pathway via an IAA-independent mechanism. This study provides new insights into the role of melatonin in nutrient stress adaptation, offering a promising and sustainable approach to improve nutrient use efficiency in wax gourd and other crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Baige Zhang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (J.C.); (X.Z.); (Y.L.); (J.L.); (X.C.); (Z.S.); (L.C.); (D.X.)
| |
Collapse
|
6
|
Ikram M, Minhas A, Al-Huqail AA, Ghoneim AM, Mahmood S, Mahmoud E, Tahira M, Mehran M, Maqsood MFK, Rauf A, Ali W. Promoting tomato resilience: effects of ascorbic acid and sulfur-treated biochar in saline and non-saline cultivation environments. BMC PLANT BIOLOGY 2024; 24:1053. [PMID: 39511477 PMCID: PMC11545619 DOI: 10.1186/s12870-024-05734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
The resilience of tomato plants under different cultivation environments, particularly saline and non-saline conditions, was investigated by applying various treatments, including 0.5% Ascorbic Acid (AsA) and 1% Sulphur-treated Biochar (BS). The study evaluated parameters such as fruit length, diameter, yield per plant and pot, Total Soluble Solids (TSS) content, chlorophyll content, electrolyte leakage, enzyme activities (Superoxide Dismutase - SOD, Peroxidase - POD, Catalase - CAT), and nutrient content (Nitrogen - N%, Phosphorus - P%, Potassium - K%). Under saline conditions, significant enhancements were observed in fruit characteristics and yield metrics with the application of AsA and BS individually, with the combined treatment yielding the most substantial improvements. Notably, AsA and BS treatments exhibited varying effects on TSS levels, chlorophyll content, electrolyte leakage, and enzyme activities, with the combination treatment consistently demonstrating superior outcomes. Additionally, nutrient content analysis revealed notable increases, particularly under non-saline conditions, with the combined treatment showcasing the most significant enhancements. Overall, the study underscores the potential of AsA and BS treatments in promoting tomato resilience, offering insights into their synergistic effects on multiple physiological and biochemical parameters crucial for plant growth and productivity.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Agronomy, Faculty of Agricultural Science's and Technology, Bahauddin Zakariya University , Multan, Pakistan.
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Asif Minhas
- Department of Agronomy, Faculty of Agricultural Science's and Technology, Bahauddin Zakariya University , Multan, Pakistan
| | - Arwa A Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Adel M Ghoneim
- Agricultural Research Center, Field Crops Research Institute, Giza, 12112, Egypt.
| | - Sammina Mahmood
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Esawy Mahmoud
- Soil and Water Department, Faculty of Agriculture, Tanta University, Tanta, 31511, Egypt
| | - Maryam Tahira
- National Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, 430070, China
| | - Muhammad Mehran
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Abdul Rauf
- National Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, 430070, China
| | - Waqar Ali
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China
| |
Collapse
|
7
|
Jiang S, Lan Z, Zhang Y, Kang X, Zhao L, Wu X, Gao H. Mechanisms by Which Exogenous Substances Enhance Plant Salt Tolerance through the Modulation of Ion Membrane Transport and Reactive Oxygen Species Metabolism. Antioxidants (Basel) 2024; 13:1050. [PMID: 39334709 PMCID: PMC11428486 DOI: 10.3390/antiox13091050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Soil salinization is one of the major abiotic stresses affecting plant growth and development. Plant salt tolerance is controlled by complex metabolic pathways. Exploring effective methods and mechanisms to improve crop salt tolerance has been a key aspect of research on the utilization of saline soil. Exogenous substances, such as plant hormones and signal transduction substances, can regulate ion transmembrane transport and eliminate reactive oxygen species (ROS) to reduce salt stress damage by activating various metabolic processes. In this review, we summarize the mechanisms by which exogenous substances regulate ion transmembrane transport and ROS metabolism to improve plant salt tolerance. The molecular and physiological relationships among exogenous substances in maintaining the ion balance and enhancing ROS clearance are examined, and trends and research directions for the application of exogenous substances for improving plant salt tolerance are proposed.
Collapse
Affiliation(s)
- Shiqing Jiang
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Zuwen Lan
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yinkang Zhang
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xinna Kang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050080, China
| | - Liran Zhao
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xiaolei Wu
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Hongbo Gao
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
8
|
Murtaza G, Usman M, Iqbal J, Tahir MN, Elshikh MS, Alkahtani J, Toleikienė M, Iqbal R, Akram MI, Gruda NS. The impact of biochar addition on morpho-physiological characteristics, yield and water use efficiency of tomato plants under drought and salinity stress. BMC PLANT BIOLOGY 2024; 24:356. [PMID: 38724950 PMCID: PMC11080165 DOI: 10.1186/s12870-024-05058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
The use of saline water under drought conditions is critical for sustainable agricultural development in arid regions. Biochar is used as a soil amendment to enhance soil properties such as water-holding capacity and the source of nutrition elements of plants. Thus, the research was carried out to assess the impact of biochar treatment on the morphological and physiological characteristics and production of Solanum lycopersicum in greenhouses exposed to drought and saline stresses. The study was structured as a three-factorial in split-split-plot design. There were 16 treatments across three variables: (i) water quality, with freshwater and saline water, with electrical conductivities of 0.9 and 2.4 dS m- 1, respectively; (ii) irrigation level, with 40%, 60%, 80%, and 100% of total evapotranspiration (ETC); (iii) and biochar application, with the addition of biochar at a 3% dosage by (w/w) (BC3%), and a control (BC0%). The findings demonstrated that salt and water deficiency hurt physiological, morphological, and yield characteristics. Conversely, the biochar addition enhanced all characteristics. Growth-related parameters, such as plant height, stem diameter, leaf area, and dry and wet weight, and leaf gas exchange attributes, such rate of transpiration and photosynthesis, conductivity, as well as leaf relative water content were decreased by drought and salt stresses, especially when the irrigation was 60% ETc or 40% ETc. The biochar addition resulted in a substantial enhancement in vegetative growth-related parameters, physiological characteristics, efficiency of water use, yield, as well as reduced proline levels. Tomato yield enhanced by 4%, 16%, 8%, and 3% when irrigation with freshwater at different levels of water deficit (100% ETc, 80% ETc, 60% ETc, and 40% ETc) than control (BC0%). Overall, the use of biochar (3%) combined with freshwater shows the potential to enhance morpho-physiological characteristics, support the development of tomato plants, and improve yield with higher WUE in semi-arid and arid areas.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Muhammad Usman
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang District, Shanghai, 200240, China
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, 24420, Pakistan
| | - Muhammad Nauman Tahir
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Monika Toleikienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituo Al. 1, Akademija, Kedainiai, LT- 58344, Lithuania
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - M Irfan Akram
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan
| | - Nazim S Gruda
- Institute of Plant Sciences and Resource Conservation, Division of Horticultural Sciences, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
9
|
Kumar S, Wang S, Wang M, Zeb S, Khan MN, Chen Y, Zhu G, Zhu Z. Enhancement of sweetpotato tolerance to chromium stress through melatonin and glutathione: Insights into photosynthetic efficiency, oxidative defense, and growth parameters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108509. [PMID: 38461751 DOI: 10.1016/j.plaphy.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Melatonin (MT) and reduced glutathione (GSH) roles in mitigating chromium (Cr) toxicity in sweetpotato were explored. Plants, pre-treated with varying MT and GSH doses, were exposed to Cr (40 μM). Cr severely hampered growth by disrupting leaf photosynthesis, root system, and oxidative processes and increased Cr absorption. However, the exogenous application of 1 μM of MT and 2 mM of GSH substantially improved growth parameters by enhancing chlorophyll content, gas exchange (Pn, Tr, Gs, and Ci), and chlorophyll fluorescence (Fv/Fm, ETR, qP, and Y(II)). Furthermore, malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide ion (O2•-), electrolyte leakage (EL), and Cr uptake by roots (21.6 and 27.3%) and its translocation to shoots were markedly reduced by MT and GSH application, protecting the cell membrane from oxidative damage of Cr-toxicity. Microscopic analysis demonstrated that MT and GSH maintained chloroplast structure and integrity of mesophyll cells; they also enhanced stomatal length, width, and density, strengthening the photosynthetic system and plant growth and biomass. MT and GSH improved osmo-protectants (proline and soluble sugars), gene expression, and enzymatic and non-enzymatic antioxidant activities, mitigating osmotic stress and strengthening plant defenses under Cr stress. Importantly, the efficiency of GSH pre-treatment in reducing Cr-toxicity surpassed that of MT. The findings indicate that MT and GSH alleviate Cr detrimental effects by enhancing photosynthetic organ stability, component accumulation, and resistance to oxidative stress. This study is a valuable resource for plants confronting Cr stress in contaminated soils, but further field validation and detailed molecular exploration are necessary.
Collapse
Affiliation(s)
- Sunjeet Kumar
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Shihai Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mengzhao Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Shah Zeb
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Yanli Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Guopeng Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Zhixin Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|