1
|
Chebbi M, Youcef S, Youcef L, Soudani A, Dridi C, Sahli A, Houchet A, Deroues C. Single and combined treatment processes for rhodamine B removal by coagulation-flocculation and adsorption. RSC Adv 2024; 14:37833-37845. [PMID: 39601002 PMCID: PMC11591516 DOI: 10.1039/d4ra06882c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
In this paper, two physico-chemical methods were adopted for the removal of rhodamine B from aqueous solutions. The first one is the adsorption process using biochar derived from olive stones (OSB). Results demonstrated that the removal efficiency reached 97.79% within an equilibrium time of one hour. It was observed that the pH had no significant effect on the degradation of rhodamine B by OSB. The adsorption process was characterized by the endothermic nature, spontaneity, favorability, and disorder at the solid-liquid interface. Langmuir isotherm analysis revealed a maximum adsorption capacity of 11.82 mg g-1, and the prepared biochar could be reused for up to four cycles. For the second method, coagulation-flocculation using FeCl3 as a coagulant was investigated. The findings displayed that an increase in the dosage of FeCl3 enhanced the degradation process, with the best performance registered at a dose of 2000 mg L-1 of FeCl3. The optimum pH for this process was found to be 2. A combination approach by these two methods, starting with coagulation-flocculation and followed by adsorption, was also investigated. The results showed that the combined approach improved the removal performance compared to each process alone, with minimal doses of both coagulant and adsorbent. Thus, the combination of these two physico-chemical processes allows benefits from the advantages and reduces the disadvantages of each individual method.
Collapse
Affiliation(s)
- Meriem Chebbi
- Civil Engineering and Hydraulic Department, LARHYSS Laboratory, Mohamed Khider University Biskra Algeria
| | - Soufiane Youcef
- Civil Engineering and Hydraulic Department, LARHYSS Laboratory, Mohamed Khider University Biskra Algeria
| | - Leila Youcef
- Civil Engineering and Hydraulic Department, LARHYSS Laboratory, Mohamed Khider University Biskra Algeria
| | - Amina Soudani
- Industrial Chemistry Department, LARHYSS Laboratory, Mohamed Khider University Biskra Algeria
| | - Chafika Dridi
- LARHYSS Laboratory, Mohamed Khider University Biskra Algeria
| | - Amane Sahli
- CRND, Draria, Algiers. EESD Laboratory, National Polytechnic School Algiers Algeria
| | - Aya Houchet
- Civil Engineering and Hydraulic Department, Mohamed Khider University Biskra Algeria
| | - Chaima Deroues
- Civil Engineering and Hydraulic Department, Mohamed Khider University Biskra Algeria
| |
Collapse
|
2
|
Estrada-Almeida AG, Castrejón-Godínez ML, Mussali-Galante P, Tovar-Sánchez E, Rodríguez A. Pharmaceutical Pollutants: Ecotoxicological Impacts and the Use of Agro-Industrial Waste for Their Removal from Aquatic Environments. J Xenobiot 2024; 14:1465-1518. [PMID: 39449423 PMCID: PMC11503348 DOI: 10.3390/jox14040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Medicines are pharmaceutical substances used to treat, prevent, or relieve symptoms of different diseases in animals and humans. However, their large-scale production and use worldwide cause their release to the environment. Pharmaceutical molecules are currently considered emerging pollutants that enter water bodies due to inadequate management, affecting water quality and generating adverse effects on aquatic organisms. Hence, different alternatives for pharmaceuticals removal from water have been sought; among them, the use of agro-industrial wastes has been proposed, mainly because of its high availability and low cost. This review highlights the adverse ecotoxicological effects related to the presence of different pharmaceuticals on aquatic environments and analyzes 94 investigations, from 2012 to 2024, on the removal of 17 antibiotics, highlighting sulfamethoxazole as the most reported, as well as 6 non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac and ibuprofen, and 27 pharmaceutical drugs with different pharmacological activities. The removal of these drugs was evaluated using agro-industrial wastes such as wheat straw, mung bean husk, bagasse, bamboo, olive stones, rice straw, pinewood, rice husk, among others. On average, 60% of the agro-industrial wastes were transformed into biochar to be used as a biosorbents for pharmaceuticals removal. The diversity in experimental conditions among the removal studies makes it difficult to stablish which agro-industrial waste has the greatest removal capacity; therefore, in this review, the drug mass removal rate (DMRR) was calculated, a parameter used with comparative purposes. Almond shell-activated biochar showed the highest removal rate for antibiotics (1940 mg/g·h), while cork powder (CP) (10,420 mg/g·h) showed the highest for NSAIDs. Therefore, scientific evidence demonstrates that agro-industrial waste is a promising alternative for the removal of emerging pollutants such as pharmaceuticals substances.
Collapse
Affiliation(s)
- Ana Gabriela Estrada-Almeida
- Especialidad en Gestión Integral de Residuos, Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| |
Collapse
|
3
|
Al-Sareji OJ, Grmasha RA, Meiczinger M, Al-Juboori RA, Jakab M, Boros A, Majdi HS, Miskolczi N, Hashim KS. A novel two stages chemical activation of pinewood waste for removing organic micropollutants from water and wastewater. CHEMOSPHERE 2024; 363:142974. [PMID: 39084301 DOI: 10.1016/j.chemosphere.2024.142974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The prevalent presence of pharmaceuticals in aquatic ecosystems underscores the necessity for developing cost-effective techniques to remove them from water. The utilization of affordable precursors in producing activated carbon, capable of rivaling commercial alternatives, remains a persistent challenge. The adsorption of diclofenac and ciprofloxacin onto a novel pinewood-derived activated carbon (FPWAC) was explored, employing a sequential activation process involving ammonium nitrate (NH4NO3) treatment followed by sodium hydroxide (NaOH) activation. The produced FPWAC was then thoroughly characterized by employing several techniques. The removal of diclofenac and ciprofloxacin in water and real wastewater effluent was examined in batch tests. The optimum removal conditions were an FPWAC dosage of 1 g L-1, pH 6, mixture concentration of 25 mg L-1, and a temperature of 25 °C. The FPWAC was able to remove both pharmaceuticals for up to six cycles, with more than 95% removal for water and 90% for wastewater in the first cycle. The adsorption performance fitted well with the non-linear Freundlich isotherm for both pollutants. The kinetics of adsorption of diclofenac followed a pseudo-first-order model, while ciprofloxacin showed adherence to the pseudo-second-order model. FPWAC proved its potency as a low-cost adsorbent for pharmaceutical removal from wastewater.
Collapse
Affiliation(s)
- Osamah J Al-Sareji
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprem H, 8200, Hungary; Environmental Research and Studies Center, University of Babylon, Babylon, Al-Hillah, 51001, Iraq; Research Centre of Engineering Sciences, Department of Materials Sciences and Engineering, University of Pannonia, P.O. Box 158, H-8201, Veszprém, Hungary.
| | - Ruqayah Ali Grmasha
- Environmental Research and Studies Center, University of Babylon, Babylon, Al-Hillah, 51001, Iraq; University of Pannonia, Faculty of Engineering, Center for Natural Science, Research Group of Limnology, H-8200, Veszprem, Egyetem u. 10, Hungary
| | - Mónika Meiczinger
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprem H, 8200, Hungary
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University-Abu Dhabi Campus, Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates; Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland
| | - Miklós Jakab
- Research Centre of Engineering Sciences, Department of Materials Sciences and Engineering, University of Pannonia, P.O. Box 158, H-8201, Veszprém, Hungary
| | - Adrienn Boros
- Research Centre of Engineering Sciences, Department of Materials Sciences and Engineering, University of Pannonia, P.O. Box 158, H-8201, Veszprém, Hungary
| | - Hasan Sh Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University, Al-Hillah, Babylon, 51001, Iraq
| | - Norbert Miskolczi
- Faculty of Engineering, Institute of Chemical Engineering and Process Engineering, MOL Department of Hydrocarbon & Coal Processing, University of Pannonia, Egyetem u. 10, Veszprém, H-8200, Hungary
| | - Khalid S Hashim
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, L3 2ET, UK; Department of Environmental Engineering, College of Engineering, University of Babylon, Babylon, Al-Hillah, 51001, Iraq; Dijlah University College, Baghdad, Iraq
| |
Collapse
|
4
|
Manawi Y, Subeh M, Al-Marri J, Al-Sulaiti H. Spatial variations and health risk assessment of heavy metal levels in groundwater of Qatar. Sci Rep 2024; 14:15904. [PMID: 38987533 PMCID: PMC11237053 DOI: 10.1038/s41598-024-64201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
The present work's objective is to give a comprehensive overview of the quality of groundwater in Qatar in terms of heavy metals content as well as investigating the cause and effect of the elevation in their levels above the WHO/US-EPA standards. The scope of the study included (1) physical and chemical analysis of 82 groundwater samples collected from various locations around Qatar, (2) development of ArcGIS maps depicting the variations in the levels, (3) assessment of the human health risks associated with the existing levels using three of the most used models which are: Hazard index (HI), Nemerow comprehensive pollution index (NCPI) and Incremental Lifetime Cancer Risk (ILCR). There is no extensive study ever reported to assess the health risks linked with the consumption of groundwater characterized with such heavy metals levels in Qatar. The chronic daily intake (CDI) of the investigated heavy metals (Ag, Mn, Cr, V, Mo and Sr) through ingestion and dermal pathways had a range of 1.4 × 10-5-6.7 × 10-1 mg/kg/day while the NCPI's range was reported at 0-4.39. Moreover, the HI and ILCR were found to have a range of 0-3.2 and 5.6 × 10-4-5.5 × 10-2, respectively. The assessment of health risks, conducted in the present work, could be beneficial in building the baseline of heavy metals levels in groundwater in Qatar. This will also help in the determination of any future contamination of groundwater.
Collapse
Affiliation(s)
- Yehia Manawi
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| | - Mosab Subeh
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Jaber Al-Marri
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Huda Al-Sulaiti
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
5
|
Al-Sareji OJ, Al-Samarrai SY, Grmasha RA, Meiczinger M, Al-Juboori RA, Jakab M, Somogyi V, Miskolczi N, Hashim KS. A novel and sustainable composite of L@PSAC for superior removal of pharmaceuticals from different water matrices: Production, characterization, and application. ENVIRONMENTAL RESEARCH 2024; 251:118565. [PMID: 38431073 DOI: 10.1016/j.envres.2024.118565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/30/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
This study endeavors to develop cost-effective environmentally friendly technology for removing harmful residual pharmaceuticals from water and wastewater by utilizing the effective adsorption of pistachio shell (PS) biochar and the degradation potency of laccase immobilized on the biochar (L@PSAC). The carbonatization and activation of the shells were optimized regarding temperature, time, and NH4NO3/PS ratio. This step yielded an optimum PS biochar (PSAC) with the highest porosity and surface area treated at 700 °C for 3 h using an NH4NO3/PS ratio of 3% wt. The immobilization of laccase onto PSAC (L@PSAC) was at its best level at pH 5, 60 U/g, and 30 °C. The optimum L@PSAC maintained a high level of enzyme activity over two months. Almost a complete removal (>99%) of diclofenac, carbamazepine, and ciprofloxacin in Milli-Q (MQ) water and wastewater was achieved. Adsorption was responsible for >80% of the removal and the rest was facilitated by laccase degradation. L@PSAC maintained effective removal of pharmaceuticals of ≥60% for up to six treatment cycles underscoring the promising application of this material for wastewater treatment. These results indicate that activated carbon derived from the pistachio shell could potentially be utilized as a carrier and adsorbent to efficiently remove pharmaceutical compounds. This enzymatic physical elimination approach has the potential to be used on a large-scale.
Collapse
Affiliation(s)
- Osamah J Al-Sareji
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprem H, 8200, Hungary; Environmental Research and Studies Center, University of Babylon, Babylon, Al-Hillah, 51001, Iraq; The School of Civil and Environmental Engineering Graduate, University of New South Wales, Sydney, Kensington, NSW, 2052, Australia.
| | | | - Ruqayah Ali Grmasha
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprem H, 8200, Hungary; Environmental Research and Studies Center, University of Babylon, Babylon, Al-Hillah, 51001, Iraq; The School of Civil and Environmental Engineering Graduate, University of New South Wales, Sydney, Kensington, NSW, 2052, Australia; University of Pannonia, Faculty of Engineering, Center for Natural Science, Research Group of Limnology, H-8200, Veszprem, Egyetem u. 10, Hungary
| | - Mónika Meiczinger
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprem H, 8200, Hungary
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University-Abu Dhabi Campus, Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates; Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland
| | - Miklós Jakab
- Department of Materials Sciences and Engineering, University of Pannonia, H-8200, Veszprém, Hungary
| | - Viola Somogyi
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprem H, 8200, Hungary
| | - Norbert Miskolczi
- Faculty of Engineering, Institute of Chemical Engineering and Process Engineering, MOL Department of Hydrocarbon & Coal Processing, University of Pannonia, Egyetem u. 10, Veszprém, H-8200, Hungary
| | - Khalid S Hashim
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, L3 2ET, UK; Department of Environmental Engineering, College of Engineering, University of Babylon, Babylon, Al-Hillah, Iraq; Dijlah University College, Baghdad, Iraq
| |
Collapse
|
6
|
Al-Sareji OJ, Grmasha RA, Meiczinger M, Al-Juboori RA, Somogyi V, Hashim KS. A Sustainable Banana Peel Activated Carbon for Removing Pharmaceutical Pollutants from Different Waters: Production, Characterization, and Application. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1032. [PMID: 38473504 DOI: 10.3390/ma17051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
Due to the growing concerns about pharmaceutical contamination and its devastating impact on the economy and the health of humans and the environment, developing efficient approaches for removing such contaminants has become essential. Adsorption is a cost-effective technique for removing pollutants. Thus, in this work, banana peels as agro-industrial waste were utilized for synthesizing activated carbon for removing pharmaceuticals, namely amoxicillin and carbamazepine from different water matrices. The chemically activated carbon by phosphoric acid (H3PO4) was carbonized at temperatures 350 °C, 450 °C and 550 °C. The material was characterized by several techniques such as scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), Boehm titration, point of zero charge (pHPZC), BET surface area (SBET), the proximate and ultimate analyses, X-ray powder diffraction (XRD), and thermos-gravimetric analysis (TGA). The SEM of banana peel activated carbon (BPAC) depicted a semi-regular and heterogeneous morphology, characterized by an abundance of pores with diverse forms and sizes. Boehm titration revealed an increase in the amounts of acidic groups by 0.711 mmol/g due to activation by H3PO4. FTIR recorded different peaks suggesting significant modifications in the spectroscopic characteristics of the BPAC surface due to the successful activation and adsorption of the pollutant molecules. The pHpzc of BPAC was calculated to be 5.005. The SBET surface area dramatically increased to 911.59 m2/g after the activation. The optimum conditions were 25 °C, a materials dosage of 1.2 g/L, a saturation time of 120 min, a pollutants mixture of 25 mg/L, and a pH of 5. Langmuir exhibits a slightly better fit than Freundlich with a low value of the residual sum of squares (SSE) and the data were better fitted to the pseudo-second-order kinetic. Furthermore, the efficacy of BPAC in eliminating pharmaceuticals from Milli Q water, lake water, and wastewater was successfully investigated over the seven cycles. The results of the present work highlighted a potential usage of agro-industrial waste in eliminating organic micropollutants while exhibiting sustainable management of this waste.
Collapse
Affiliation(s)
- Osamah J Al-Sareji
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, H-8200 Veszprém, Hungary
- Environmental Research and Studies Center, University of Babylon, Babylon, Al-Hillah 51001, Iraq
| | - Ruqayah Ali Grmasha
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, H-8200 Veszprém, Hungary
- Environmental Research and Studies Center, University of Babylon, Babylon, Al-Hillah 51001, Iraq
- Research Group of Limnology, Center for Natural Science, Faculty of Engineering, University of Pannonia, Egyetem u. 10, H-8200 Veszprém, Hungary
| | - Mónika Meiczinger
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, H-8200 Veszprém, Hungary
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, FI-00076 Espoo, Finland
| | - Viola Somogyi
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, H-8200 Veszprém, Hungary
| | - Khalid S Hashim
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool L3 2ET, UK
- Department of Environmental Engineering, College of Engineering, University of Babylon, Babylon, Al-Hillah 51001, Iraq
- Civil Engineering Department, Dijlah University College, Baghdad 00964, Iraq
| |
Collapse
|