1
|
Carré L, Natali F, Zaccai G, Çumaku V, Franzetti B. Determination of in cellulo proteome molecular dynamics in different halophilic Archaea. J R Soc Interface 2025; 22:20240630. [PMID: 40068810 PMCID: PMC11896700 DOI: 10.1098/rsif.2024.0630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 02/11/2025] [Indexed: 03/15/2025] Open
Abstract
While biophysical studies have unravelled properties of specific proteins in vitro, characterizing globally their native state within the cell remains a challenge. In particular, protein adaptation to harsh intracellular physical and chemical conditions is poorly understood. Extremophiles, which thrive in severe environments, are good models for the study of such adaptation. Five haloarchaeal species, isolated from hypersaline environments, were used to assess correlations between intracellular salt concentrations and molecular dynamics properties. In cellulo protein stability was measured using nano differential scanning fluorimetry, and neutron spectrometry was used to determine molecular dynamics resilience and global flexibility. It was found that high intracellular accumulation of Mg2+ and low intracellular accumulation of K+ were correlated with higher stability and resilience. Sequence traits associated with mean proteome halophilicity, such as decreased hydrophobicity and increased acidity, weighted by the relative abundance of each protein, were also correlated with stability and resilience. Haloferax mediterranei, however, was found to be an exception as its proteome showed the highest in cellulo molecular stability and resilience associated with fewest sequence traits related to halophilicity, highlighting the significance of the intracellular salt environment in determining proteome biophysical properties.
Collapse
Affiliation(s)
- Lorenzo Carré
- Institut de Biologie Structurale IBS, F-38000 Grenoble, Univ. Grenoble Alpes, CNRS, CEA, Grenoble, Auvergne-Rhône-Alpes, France
| | | | | | | | - Bruno Franzetti
- Institut de Biologie Structurale IBS, F-38000 Grenoble, Univ. Grenoble Alpes, CNRS, CEA, Grenoble, Auvergne-Rhône-Alpes, France
| |
Collapse
|
2
|
Bassotti E, Paradossi G, Chiessi E, Telling M. Hydration-induced dynamical changes in lyophilised and weakly hydrated apoferritin: insights from molecular dynamics simulation. Phys Chem Chem Phys 2025; 27:1901-1915. [PMID: 39745020 DOI: 10.1039/d4cp03481c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The dynamics and functionality of proteins are significantly influenced by their interaction with water. For lyophilised (i.e. h ≤ 0.05 where h = g of H2O per g of protein) and weakly hydrated systems (i.e. h ≤ 0.38) hydration generally enhances protein mobility above the so-called 'dynamical transition' temperature (Td > 220 K). However, water-induced mobility hindrance at low temperatures (T < 175 K) has been reported in various proteins of varying secondary structure; namely green fluorescent protein (GFP), pig liver esterase, lysozyme, ribonuclease A (RNAse A) and apoferritin. By focussing on the dynamic behaviour of the apoferritin molecule, this study proposes mechanisms driving these hydration-induced mobility changes, particularly the less understood hindrance at low temperatures. Using atomistic molecular dynamics (MD) simulations of horse spleen apoferritin in the lyophilised (h = 0.05) and weakly hydrated (h = 0.31) states, we report here the impact of water on protein dynamics as a function of temperature. Through residue-specific mean squared displacement (MSD), radial distribution function (RDF), solvent accessible surface area (SASA), local hydration degree and hydrogen bonding analyses, we demonstrate that while water proximity directly correlates with mobility enhancement at high temperatures, the hydration-induced mobility reduction observed at temperatures below 175 K is primarily propagated through the protein backbone.
Collapse
Affiliation(s)
- Elisa Bassotti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133 Rome, Italy.
| | - Gaio Paradossi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133 Rome, Italy.
| | - Ester Chiessi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133 Rome, Italy.
| | - Mark Telling
- STFC, ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, OX11OQX, UK.
- Department of Materials, University of Oxford, Parks Road Oxford, OX1 3PH, UK
| |
Collapse
|
3
|
Bassotti E, Gabrielli S, Paradossi G, Chiessi E, Telling M. An experimentally representative in-silico protocol for dynamical studies of lyophilised and weakly hydrated amorphous proteins. Commun Chem 2024; 7:83. [PMID: 38609466 PMCID: PMC11014950 DOI: 10.1038/s42004-024-01167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Characterization of biopolymers in both dry and weakly hydrated amorphous states has implications for the pharmaceutical industry since it provides understanding of the effect of lyophilisation on stability and biological activity. Atomistic Molecular Dynamics (MD) simulations probe structural and dynamical features related to system functionality. However, while simulations in homogenous aqueous environments are routine, dehydrated model assemblies are a challenge with systems investigated in-silico needing careful consideration; simulated systems potentially differing markedly despite seemingly negligible changes in procedure. Here we propose an in-silico protocol to model proteins in lyophilised and weakly hydrated amorphous states that is both more experimentally representative and routinely applicable. Since the outputs from MD align directly with those accessed by neutron scattering, the efficacy of the simulation protocol proposed is shown by validating against experimental neutron data for apoferritin and insulin. This work also highlights that without cooperative experimental and simulative data, development of simulative procedures using MD alone would prove most challenging.
Collapse
Affiliation(s)
- Elisa Bassotti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133, Rome, Italy
| | - Sara Gabrielli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133, Rome, Italy
| | - Gaio Paradossi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133, Rome, Italy
| | - Ester Chiessi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133, Rome, Italy.
| | - Mark Telling
- STFC, ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11OQX, UK.
- Department of Materials, University of Oxford, Parks Road, Oxford, UK.
| |
Collapse
|
4
|
Salvati Manni L, Wood K, Klapproth A, Warr GG. Inelastic neutron scattering and spectroscopy methods to characterize dynamics in colloidal and soft matter systems. Adv Colloid Interface Sci 2024; 326:103135. [PMID: 38520888 DOI: 10.1016/j.cis.2024.103135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Colloidal systems and soft materials are well suited to neutron scattering, and the community has readily adopted elastic scattering techniques to investigate their structure. Due to their unique properties, neutrons may also be used to characterize the dynamics of soft materials over a wide range of length and time scales in situ. Both static structures and an understanding of how molecules move about their equilibrium positions is essential if we are to deliver on the promise of rationally designing soft materials. In this review we introduce the basics of neutron spectroscopy and explore the ways in which inelastic neutron scattering can be used to study colloidal and soft materials. Illustrative examples are chosen that highlight the phenomena suitable for investigation using this suite of techniques.
Collapse
Affiliation(s)
- Livia Salvati Manni
- School of Chemistry, University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia; School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia; School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia; Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Kathleen Wood
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Alice Klapproth
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Gregory G Warr
- School of Chemistry, University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
George DK, Chen JY, He Y, Knab JR, Markelz AG. Functional-State Dependence of Picosecond Protein Dynamics. J Phys Chem B 2021; 125:11134-11140. [PMID: 34606257 DOI: 10.1021/acs.jpcb.1c05018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examine temperature-dependent picosecond dynamics of two benchmarking proteins lysozyme and cytochrome c using temperature-dependent terahertz permittivity measurements. We find that a double Arrhenius temperature dependence with activation energies E1 ∼ 0.1 kJ/mol and E2 ∼ 10 kJ/mol fits the folded and ligand-free state response. The higher activation energy is consistent with the so-called protein dynamical transition associated with beta relaxations at the solvent-protein interface. The lower activation energy is consistent with correlated structural motions. When the structure is removed by denaturing, the lower-activation-energy process is no longer present. Additionally, the lower-activation-energy process is diminished with ligand binding but not for changes in the internal oxidation state. We suggest that the lower-energy activation process is associated with collective structural motions that are no longer accessible with denaturing or binding.
Collapse
Affiliation(s)
- D K George
- Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, United States
| | - J Y Chen
- Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, United States
| | - Yunfen He
- Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, United States
| | - J R Knab
- Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, United States
| | - A G Markelz
- Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, United States
| |
Collapse
|
6
|
Beck C, Grimaldo M, Braun MK, Bühl L, Matsarskaia O, Jalarvo NH, Zhang F, Roosen-Runge F, Schreiber F, Seydel T. Temperature and salt controlled tuning of protein clusters. SOFT MATTER 2021; 17:8506-8516. [PMID: 34490428 DOI: 10.1039/d1sm00418b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formation of molecular assemblies in protein solutions is of strong interest both from a fundamental viewpoint and for biomedical applications. While ordered and desired protein assemblies are indispensable for some biological functions, undesired protein condensation can induce serious diseases. As a common cofactor, the presence of salt ions is essential for some biological processes involving proteins, and in aqueous suspensions of proteins can also give rise to complex phase diagrams including homogeneous solutions, large aggregates, and dissolution regimes. Here, we systematically study the cluster formation approaching the phase separation in aqueous solutions of the globular protein BSA as a function of temperature (T), the protein concentration (cp) and the concentrations of the trivalent salts YCl3 and LaCl3 (cs). As an important complement to structural, i.e. time-averaged, techniques we employ a dynamical technique that can detect clusters even when they are transient on the order of a few nanoseconds. By employing incoherent neutron spectroscopy, we unambiguously determine the short-time self-diffusion of the protein clusters depending on cp, cs and T. We determine the cluster size in terms of effective hydrodynamic radii as manifested by the cluster center-of-mass diffusion coefficients D. For both salts, we find a simple functional form D(cp, cs, T) in the parameter range explored. The calculated inter-particle attraction strength, determined from the microscopic and short-time diffusive properties of the samples, increases with salt concentration and temperature in the regime investigated and can be linked to the macroscopic behavior of the samples.
Collapse
Affiliation(s)
- Christian Beck
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| | - Marco Grimaldo
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| | - Michal K Braun
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Lena Bühl
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Olga Matsarskaia
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| | - Niina H Jalarvo
- Jülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Chemical and Engineering Materials Division, Neutron Sciences Directorate, and JCNS Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, USA
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Felix Roosen-Runge
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 20506 Malmö, Sweden.
- Division of Physical Chemistry, Lund University, Naturvetarvägen 14, 22100 Lund, Sweden
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Tilo Seydel
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
7
|
Capaccioli S, Zheng L, Kyritsis A, Paciaroni A, Vogel M, Ngai KL. The Dynamics of Hydrated Proteins Are the Same as Those of Highly Asymmetric Mixtures of Two Glass-Formers. ACS OMEGA 2021; 6:340-347. [PMID: 33458485 PMCID: PMC7807739 DOI: 10.1021/acsomega.0c04655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/08/2020] [Indexed: 05/31/2023]
Abstract
Customarily, the studies of dynamics of hydrated proteins are focused on the fast hydration water ν-relaxation, the slow structural α-relaxation responsible for a single glass transition, and the protein dynamic transition (PDT). Guided by the analogy with the dynamics of highly asymmetric mixtures of molecular glass-formers, we explore the possibility that the dynamics of hydrated proteins are richer than presently known. By providing neutron scattering, dielectric relaxation, calorimetry, and deuteron NMR data in two hydrated globular proteins, myoglobin and BSA, and the fibrous elastin, we show the presence of two structural α-relaxations, α1 and α2, and the hydration water ν-relaxation, all coupled together with interconnecting properties. There are two glass transition temperatures T g α1and T g α2 corresponding to vitrification of the α1 and α2 processes. Relaxation time τα2(T) of the α2-relaxation changes its Arrhenius temperature dependence to super-Arrhenius on crossing T g α1 from below. The ν-relaxation responds to the two vitrifications by changing the T-dependence of its relaxation time τν(T) on crossing consecutively T g α2 and T g α1. It generates the PDT at T d where τν(T d) matches about five times the experimental instrument timescale τexp, provided that T d > T g α1. This condition is satisfied by the hydrated globular proteins considered in this paper, and the ν-relaxation is in the liquid state with τν(T) having the super-Arrhenius temperature dependence. However, if T d < T g α1, the ν-relaxation fails to generate the PDT because it is in the glassy state and τν(T) has Arrhenius T-dependence, as in the case of hydrated elastin. Overall, the dynamics of hydrated proteins are the same as the dynamics of highly asymmetric mixtures of glass-formers. The results from this study have expanded the knowledge of the dynamic processes and their properties in hydrated proteins, and impact on research in this area is expected.
Collapse
Affiliation(s)
- Simone Capaccioli
- Dipartimento
di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
- CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
| | - Lirong Zheng
- School
of Physics and Astronomy, Shanghai Jiao
Tong University, Shanghai 200240, China
- Institute
of Natural Sciences, Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Apostolos Kyritsis
- Department
of Physics, National Technical University
of Athens, 157 80 Athens, Greece
| | | | - Michael Vogel
- Institute
of Condensed Matter Physics, Technische
Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Kia L. Ngai
- CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
| |
Collapse
|
8
|
Tian B, Garcia Sakai V, Pappas C, van der Goot AJ, Bouwman WG. Fibre formation in calcium caseinate influenced by solvent isotope effect and drying method – A neutron spectroscopy study. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Capaccioli S, Ngai KL, Ancherbak S, Bertoldo M, Ciampalini G, Thayyil MS, Wang LM. The JG β-relaxation in water and impact on the dynamics of aqueous mixtures and hydrated biomolecules. J Chem Phys 2019; 151:034504. [DOI: 10.1063/1.5100835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- S. Capaccioli
- CNR-IPCF, Dipartimento di Fisica, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
- Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
| | - K. L. Ngai
- CNR-IPCF, Dipartimento di Fisica, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei, 066004, China
| | - S. Ancherbak
- Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
| | - M. Bertoldo
- ISOF - CNR Area della Ricerca di Bologna, Via P. Gobetti 101, 40129 Bologna, Italy
| | - G. Ciampalini
- Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
| | | | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei, 066004, China
| |
Collapse
|
10
|
Ngai K, Hong L, Capaccioli S, Paciaroni A. Uncovering a novel transition in the dynamics of proteins in the dry state. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|
12
|
Vural D, Hong L, Smith JC, Glyde HR. Motional displacements in proteins: The origin of wave-vector-dependent values. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052705. [PMID: 26066197 DOI: 10.1103/physreve.91.052705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 06/04/2023]
Abstract
The average mean-square displacement, 〈r(2)〉, of H atoms in a protein is frequently determined using incoherent neutron-scattering experiments. 〈r(2)〉 is obtained from the observed elastic incoherent dynamic structure factor, S(i)(Q,ω=0), assuming the form S(i)(Q,ω=0) =exp(-Q(2)〈r(2)〉/3). This is often referred to as the Gaussian approximation (GA) to S(i)(Q,ω=0). 〈r(2)〉 obtained in this way depends on the value of the wave vector, Q considered. Equivalently, the observed S(i)(Q,ω=0) deviates from the GA. We investigate the origin of the Q dependence of 〈r(2)〉 by evaluating the scattering functions in different approximations using molecular dynamics (MD) simulation of the protein lysozyme. We find that keeping only the Gaussian term in a cumulant expansion of S(Q,ω) is an accurate approximation and is not the origin of the Q dependence of 〈r(2)〉. This is demonstrated by showing that the term beyond the Gaussian is negligible and that the GA is valid for an individual atom in the protein. Rather, the Q dependence (deviation from the GA) arises from the dynamical heterogeneity of the H in the protein. Specifically it arises from representing, in the analysis of data, this diverse dynamics by a single average scattering center that has a single, average 〈r(2)〉. The observed Q dependence of 〈r(2)〉 can be used to provide information on the dynamical heterogeneity in proteins.
Collapse
Affiliation(s)
- Derya Vural
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716-2570, USA
| | - Liang Hong
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, P. O. Box 2008, Tennessee 37831, USA
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, P. O. Box 2008, Tennessee 37831, USA
| | - Henry R Glyde
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716-2570, USA
| |
Collapse
|
13
|
Picosecond dynamics in haemoglobin from different species: A quasielastic neutron scattering study. Biochim Biophys Acta Gen Subj 2014; 1840:2989-99. [DOI: 10.1016/j.bbagen.2014.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/22/2022]
|
14
|
Roh JH, Tyagi M, Hogan TE, Roland CM. Effect of binding to carbon black on the dynamics of 1,4-polybutadiene. J Chem Phys 2013; 139:134905. [DOI: 10.1063/1.4822476] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
|
16
|
|
17
|
Ngai KL, Capaccioli S, Paciaroni A. Change of caged dynamics at Tg in hydrated proteins: Trend of mean squared displacements after correcting for the methyl-group rotation contribution. J Chem Phys 2013; 138:235102. [DOI: 10.1063/1.4810752] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Hong L, Glass DC, Nickels JD, Perticaroli S, Yi Z, Tyagi M, O'Neill H, Zhang Q, Sokolov AP, Smith JC. Elastic and conformational softness of a globular protein. PHYSICAL REVIEW LETTERS 2013; 110:028104. [PMID: 23383942 DOI: 10.1103/physrevlett.110.028104] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Indexed: 06/01/2023]
Abstract
Flexibility, or softness, is crucial for protein function and consists of a conformational component, involving jumps between potential wells, and an elastic component, involving fluctuations within the wells. Combining molecular dynamics simulation with incoherent neutron scattering and light scattering measurements on green fluorescent protein, we reveal a relationship between the intrawell fluctuations and elastic moduli of the protein. This finding leads to a simple means of experimentally separating the conformational from the elastic atomic displacements.
Collapse
Affiliation(s)
- Liang Hong
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6309, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wood K, Gallat FX, Otten R, van Heel AJ, Lethier M, van Eijck L, Moulin M, Haertlein M, Weik M, Mulder FAA. Protein Surface and Core Dynamics Show Concerted Hydration-Dependent Activation. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201205898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Gallat FX, Laganowsky A, Wood K, Gabel F, van Eijck L, Wuttke J, Moulin M, Härtlein M, Eisenberg D, Colletier JP, Zaccai G, Weik M. Dynamical coupling of intrinsically disordered proteins and their hydration water: comparison with folded soluble and membrane proteins. Biophys J 2012; 103:129-36. [PMID: 22828339 DOI: 10.1016/j.bpj.2012.05.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/03/2012] [Accepted: 05/18/2012] [Indexed: 11/16/2022] Open
Abstract
Hydration water is vital for various macromolecular biological activities, such as specific ligand recognition, enzyme activity, response to receptor binding, and energy transduction. Without hydration water, proteins would not fold correctly and would lack the conformational flexibility that animates their three-dimensional structures. Motions in globular, soluble proteins are thought to be governed to a certain extent by hydration-water dynamics, yet it is not known whether this relationship holds true for other protein classes in general and whether, in turn, the structural nature of a protein also influences water motions. Here, we provide insight into the coupling between hydration-water dynamics and atomic motions in intrinsically disordered proteins (IDP), a largely unexplored class of proteins that, in contrast to folded proteins, lack a well-defined three-dimensional structure. We investigated the human IDP tau, which is involved in the pathogenic processes accompanying Alzheimer disease. Combining neutron scattering and protein perdeuteration, we found similar atomic mean-square displacements over a large temperature range for the tau protein and its hydration water, indicating intimate coupling between them. This is in contrast to the behavior of folded proteins of similar molecular weight, such as the globular, soluble maltose-binding protein and the membrane protein bacteriorhodopsin, which display moderate to weak coupling, respectively. The extracted mean square displacements also reveal a greater motional flexibility of IDP compared with globular, folded proteins and more restricted water motions on the IDP surface. The results provide evidence that protein and hydration-water motions mutually affect and shape each other, and that there is a gradient of coupling across different protein classes that may play a functional role in macromolecular activity in a cellular context.
Collapse
Affiliation(s)
- F-X Gallat
- Comissariat à l'Energie Atomique, Institut de Biologie Structurale, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wood K, Gallat FX, Otten R, van Heel AJ, Lethier M, van Eijck L, Moulin M, Haertlein M, Weik M, Mulder FAA. Protein surface and core dynamics show concerted hydration-dependent activation. Angew Chem Int Ed Engl 2012; 52:665-8. [PMID: 23154872 DOI: 10.1002/anie.201205898] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/29/2012] [Indexed: 11/09/2022]
Abstract
By specifically labeling leucine/valine methyl groups and lysine side chains "inside" and "outside" dynamics of proteins on the nanosecond timescale are compared using neutron scattering. Surprisingly, both groups display similar dynamics as a function of temperature, and the buried hydrophobic core is sensitive to hydration and undergoes a dynamical transition.
Collapse
Affiliation(s)
- Kathleen Wood
- Australian Nuclear Science and Technology Organisation Bragg Institute, Menai NSW, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nickels JD, O'Neill H, Hong L, Tyagi M, Ehlers G, Weiss KL, Zhang Q, Yi Z, Mamontov E, Smith JC, Sokolov AP. Dynamics of protein and its hydration water: neutron scattering studies on fully deuterated GFP. Biophys J 2012; 103:1566-75. [PMID: 23062349 DOI: 10.1016/j.bpj.2012.08.046] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/15/2022] Open
Abstract
We present a detailed analysis of the picosecond-to-nanosecond motions of green fluorescent protein (GFP) and its hydration water using neutron scattering spectroscopy and hydrogen/deuterium contrast. The analysis reveals that hydration water suppresses protein motions at lower temperatures (<~ 200 K), and facilitates protein dynamics at high temperatures. Experimental data demonstrate that the hydration water is harmonic at temperatures <~ 180-190 K and is not affected by the proteins' methyl group rotations. The dynamics of the hydration water exhibits changes at ~ 180-190 K that we ascribe to the glass transition in the hydrated protein. Our results confirm significant differences in the dynamics of protein and its hydration water at high temperatures: on the picosecond-to-nanosecond timescale, the hydration water exhibits diffusive dynamics, while the protein motions are localized to <~3 Å. The diffusion of the GFP hydration water is similar to the behavior of hydration water previously observed for other proteins. Comparison with other globular proteins (e.g., lysozyme) reveals that on the timescale of 1 ns and at equivalent hydration level, GFP dynamics (mean-square displacements and quasielastic intensity) are of much smaller amplitude. Moreover, the suppression of the protein dynamics by the hydration water at low temperatures appears to be stronger in GFP than in other globular proteins. We ascribe this observation to the barrellike structure of GFP.
Collapse
Affiliation(s)
- Jonathan D Nickels
- Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chu XQ, Gajapathy M, Weiss KL, Mamontov E, Ng JD, Coates L. Dynamic behavior of oligomeric inorganic pyrophosphatase explored by quasielastic neutron scattering. J Phys Chem B 2012; 116:9917-21. [PMID: 22804561 DOI: 10.1021/jp303127w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this investigation is to determine whether a large oligomeric protein, inorganic pyrophosphatase (IPPase) from Thermococcus thioreducens with quaternary structural complexity, would have distinguishable dynamic characteristics compared to those of the small simple monomeric model protein, lysozyme. In this study, the β-relaxational dynamics of the two proteins, IPPase and lysozyme, are compared in the 10 ps to 0.5 ns time interval using quasi-elastic neutron scattering (QENS). Both of the protein dynamics show a characteristic logarithmic-like decay in the intermediate scattering function (ISF) of the hydrogen atoms. Distinguishable dynamical behavior found between two proteins reveals local flexibility and conformational substates unique to oligomeric structures. Moreover, the temperature dependence of the mean square displacement (MSD) of the hydrogen atoms in protein molecules, which is a traditional way to determine the "softness" of the protein molecule, is measured and shows no difference for the two proteins.
Collapse
Affiliation(s)
- Xiang-qiang Chu
- Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | | | | | | | | |
Collapse
|
24
|
Hong L, Cheng X, Glass DC, Smith JC. Surface hydration amplifies single-well protein atom diffusion propagating into the macromolecular core. PHYSICAL REVIEW LETTERS 2012; 108:238102. [PMID: 23003993 DOI: 10.1103/physrevlett.108.238102] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Indexed: 06/01/2023]
Abstract
The effect of surface hydration water on internal protein motion is of fundamental interest in molecular biophysics. Here, by decomposing the picosecond to nanosecond atomic motion in molecular dynamics simulations of lysozyme at different hydration levels into three components--localized single-well diffusion, methyl group rotation, and nonmethyl jumps--we show that the effect of surface hydration is mainly to increase the volume of the localized single-well diffusion. These diffusive motions are coupled in such a way that the hydration effect propagates from the protein surface into the dry core.
Collapse
Affiliation(s)
- Liang Hong
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, USA
| | | | | | | |
Collapse
|
25
|
Paciaroni A, Orecchini A, Haertlein M, Moulin M, Conti Nibali V, De Francesco A, Petrillo C, Sacchetti F. Vibrational Collective Dynamics of Dry Proteins in the Terahertz Region. J Phys Chem B 2012; 116:3861-5. [DOI: 10.1021/jp211190q] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alessandro Paciaroni
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli, I-06123 Perugia, Italy
- Istituto Officina dei Materiali, Unità di Perugia, c/o Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
| | - Andrea Orecchini
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli, I-06123 Perugia, Italy
- Istituto Officina dei Materiali, Unità di Perugia, c/o Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
- Institut Laue Langevin, 6 rue J. Horowitz, F-38042 Grenoble, France
| | | | - Martine Moulin
- Institut Laue Langevin, 6 rue J. Horowitz, F-38042 Grenoble, France
| | - Valeria Conti Nibali
- Dipartimento di Fisica, Università degli Studi di Messina, via Salita Sperone, I-98166 Messina, Italy
| | - Alessio De Francesco
- CNR, Istituto Officina dei Materiali, Unità di Grenoble, Institut Laue Langevin, 6 rue J. Horowitz, F-38042 Grenoble, France
| | - Caterina Petrillo
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli, I-06123 Perugia, Italy
- Istituto Officina dei Materiali, Unità di Perugia, c/o Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
| | - Francesco Sacchetti
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli, I-06123 Perugia, Italy
- Istituto Officina dei Materiali, Unità di Perugia, c/o Dipartimento di Fisica, Università di Perugia, I-06123 Perugia, Italy
| |
Collapse
|
26
|
Capaccioli S, Ngai KL, Ancherbak S, Paciaroni A. Evidence of Coexistence of Change of Caged Dynamics at Tg and the Dynamic Transition at Td in Solvated Proteins. J Phys Chem B 2012; 116:1745-57. [DOI: 10.1021/jp2057892] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S. Capaccioli
- CNR-IPCF, Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici,
c/o Dipartimento di Fisica, Largo Bruno Pontecorvo 3, I-56127 Pisa,
Italy
- Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3,
I-56127 Pisa, Italy
| | - K. L. Ngai
- CNR-IPCF, Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici,
c/o Dipartimento di Fisica, Largo Bruno Pontecorvo 3, I-56127 Pisa,
Italy
| | - S. Ancherbak
- Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3,
I-56127 Pisa, Italy
| | - A. Paciaroni
- Dipartimento di Fisica, Università di Perugia & IOM-CNR, Via A. Pascoli 1, 06123 Perugia, Italy
| |
Collapse
|
27
|
Abstract
Cell surface glycosaminoglycans (GAG), such as heparan sulfate (HS) and heparin, are key multifunctional cell regulators, which are involved in numerous molecular events associated with tumor growth, metastasis, pathogen attachment, and immune response. GAG dynamically bind and regulate the activities of many signaling proteins such as growth factors, chemokines, and cytokines. GAG-binding interactions with proteins rely on the coupling between the geometry, flexibility, and rigidity of the polysaccharide chain. Understanding GAG dynamics at the molecular level can therefore provide fundamental insights into GAG function in a cellular context. Elastic incoherent neutron scattering is a powerful tool for the exploration of fast molecular motions in biological macromolecules. Recently, the technique was used to evaluate HS flexibility and rigidity on different timescales between the picosecond (ps) and the nanosecond (ns). Here, neutron spectroscopy experimental procedures are presented, with emphasis on the practical details necessary to prepare samples, run neutron scattering experiments, and extract the dynamics parameters from the data.
Collapse
Affiliation(s)
- Marion Jasnin
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
28
|
|
29
|
|
30
|
The DFPase from Loligo vulgaris in sugar surfactant-based bicontinuous microemulsions: structure, dynamics, and enzyme activity. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:761-74. [DOI: 10.1007/s00249-011-0689-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 02/11/2011] [Accepted: 02/17/2011] [Indexed: 11/25/2022]
|
31
|
Natali F, Marasini C, Ferrando R, Gliozzi A. Study of Protein Dynamics vs. Amyloid Formation. ACTA ACUST UNITED AC 2010. [DOI: 10.1524/zpch.2010.6100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Protein fibril formation has been often associated to manifestation of serious and devastating amyloyd diseases, including Alzheimer and BSA. The main mechanism for the formation of amyloid fibrils is the accumulation of protein aggregates in body´s organs.In this paper, we try to compare the dynamical behaviour of two amyloidogenic proteins, the Insulin and the Myoglobin. Insulin has been chosen for its pharmacological extensive use in diabete´s therapy, while Myoglobin is used as control, since its dynamics is now largely known. The investigation has been performed through incoherent elastic neutron scattering over a wide temperature range. Our results suggest an enhanced stiffness of Insulin with respect to Myoglobin.
Collapse
|
32
|
Leu BM, Alatas A, Sinn H, Alp EE, Said AH, Yavaş H, Zhao J, Sage JT, Sturhahn W. Protein elasticity probed with two synchrotron-based techniques. J Chem Phys 2010; 132:085103. [DOI: 10.1063/1.3332585] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Jasnin M, van Eijck L, Marek Koza M, Peters J, Laguri C, Lortat-Jacob H, Zaccai G. Dynamics of heparan sulfate explored by neutron scattering. Phys Chem Chem Phys 2010; 12:3360-2. [DOI: 10.1039/b923878f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Jasnin M, Stadler A, Tehei M, Zaccai G. Specific cellular water dynamics observed in vivo by neutron scattering and NMR. Phys Chem Chem Phys 2010; 12:10154-60. [DOI: 10.1039/c0cp01048k] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Orecchini A, Paciaroni A, De Francesco A, Petrillo C, Sacchetti F. Collective dynamics of protein hydration water by brillouin neutron spectroscopy. J Am Chem Soc 2009; 131:4664-9. [PMID: 19284757 DOI: 10.1021/ja807957p] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By a detailed experimental study of THz dynamics in the ribonuclease protein, we could detect the propagation of coherent collective density fluctuations within the protein hydration shell. The emerging picture indicates the presence of both a dispersing mode, traveling with a speed greater than 3000 m/s, and a nondispersing one, characterized by an almost constant energy of 6-7 meV. In agreement with molecular dynamics simulations [Phys. Rev. Lett. 2002, 89, 275501], the features of the dispersion curves closely resemble those observed in pure liquid water [Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2004, 69, 061203]. On the contrary, the observed damping factors are much larger than in bulk water, with the dispersing mode becoming overdamped at Q = 0.6 A(-1) already. Such novel experimental findings are discussed as a dynamic signature of the disordering effect induced by the protein surface on the local structure of water.
Collapse
Affiliation(s)
- Andrea Orecchini
- Dipartimento di Fisica, Università degli Studi di Perugia, Via Pascoli I-06123 Perugia, Italy.
| | | | | | | | | |
Collapse
|
36
|
Wood K, Plazanet M, Gabel F, Kessler B, Oesterhelt D, Zaccai G, Weik M. Dynamics of hydration water in deuterated purple membranes explored by neutron scattering. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:619-26. [PMID: 18286273 PMCID: PMC2755797 DOI: 10.1007/s00249-008-0285-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 01/22/2008] [Accepted: 01/31/2008] [Indexed: 11/29/2022]
Abstract
The function and dynamics of proteins depend on their direct environment, and much evidence has pointed to a strong coupling between water and protein motions. Recently however, neutron scattering measurements on deuterated and natural-abundance purple membrane (PM), hydrated in H2O and D2O, respectively, revealed that membrane and water motions on the ns-ps time scale are not directly coupled below 260 K (Wood et al. in Proc Natl Acad Sci USA 104:18049-18054, 2007). In the initial study, samples with a high level of hydration were measured. Here, we have measured the dynamics of PM and water separately, at a low-hydration level corresponding to the first layer of hydration water only. As in the case of the higher hydration samples previously studied, the dynamics of PM and water display different temperature dependencies, with a transition in the hydration water at 200 K not triggering a transition in the membrane at the same temperature. Furthermore, neutron diffraction experiments were carried out to monitor the lamellar spacing of a flash-cooled deuterated PM stack hydrated in H2O as a function of temperature. At 200 K, a sudden decrease in lamellar spacing indicated the onset of long-range translational water diffusion in the second hydration layer as has already been observed on flash-cooled natural-abundance PM stacks hydrated in D2O (Weik et al. in J Mol Biol 275:632-634, 2005), excluding thus a notable isotope effect. Our results reinforce the notion that membrane-protein dynamics may be less strongly coupled to hydration water motions than the dynamics of soluble proteins.
Collapse
Affiliation(s)
- K Wood
- Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale CEA-CNRS-UJF, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | | | | | | | | | | | | |
Collapse
|