1
|
Acconcia F, Fiocchetti M, Busonero C, Fernandez VS, Montalesi E, Cipolletti M, Pallottini V, Marino M. The extra-nuclear interactome of the estrogen receptors: implications for physiological functions. Mol Cell Endocrinol 2021; 538:111452. [PMID: 34500041 DOI: 10.1016/j.mce.2021.111452] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Over the last decades, a great body of evidence has defined a novel view of the cellular mechanism of action of the steroid hormone 17β-estradiol (E2) through its estrogen receptors (i.e., ERα and ERβ). It is now clear that the E2-activated ERs work both as transcription factors and extra-nuclear plasma membrane-localized receptors. The activation of a plethora of signal transduction cascades follows the E2-dependent engagement of plasma membrane-localized ERs and is required for the coordination of gene expression, which ultimately controls the occurrence of the pleiotropic effects of E2. The definition of the molecular mechanisms by which the ERs locate at the cell surface (i.e., palmitoylation and protein association) determined the quest for understanding the specificity of the extra-nuclear E2 signaling. The use of mice models lacking the plasma membrane ERα localization unveiled that the extra-nuclear E2 signaling is operational in vivo but tissue-specific. However, the underlying molecular details for such ERs signaling diversity in the perspective of the E2 physiological functions in the different cellular contexts are still not understood. Therefore, to gain insights into the tissue specificity of the extra-nuclear E2 signaling to physiological functions, here we reviewed the known ERs extra-nuclear interactors and tried to extrapolate from available databases the ERα and ERβ extra-nuclear interactomes. Based on literature data, it is possible to conclude that by specifically binding to extra-nuclear localized proteins in different sub-cellular compartments, the ERs fine-tune their molecular activities. Moreover, we report that the context-dependent diversity of the ERs-mediated extra-nuclear E2 actions can be ascribed to the great flexibility of the physical structures of ERs and the spatial-temporal organization of the logistics of the cells (i.e., the endocytic compartments). Finally, we provide lists of proteins belonging to the potential ERα and ERβ extra-nuclear interactomes and propose that the systematic experimental definition of the ERs extra-nuclear interactomes in different tissues represents the next step for the research in the ERs field. Such characterization will be fundamental for the identification of novel druggable targets for the innovative treatment of ERs-related diseases.
Collapse
Affiliation(s)
- Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| | - Marco Fiocchetti
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Claudia Busonero
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Virginia Solar Fernandez
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Emiliano Montalesi
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Manuela Cipolletti
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Valentina Pallottini
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Maria Marino
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| |
Collapse
|
2
|
Kremkow J, Luck M, Huster D, Müller P, Scheidt HA. Membrane Interaction of Ibuprofen with Cholesterol-Containing Lipid Membranes. Biomolecules 2020; 10:biom10101384. [PMID: 32998467 PMCID: PMC7650631 DOI: 10.3390/biom10101384] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Deciphering the membrane interaction of drug molecules is important for improving drug delivery, cellular uptake, and the understanding of side effects of a given drug molecule. For the anti-inflammatory drug ibuprofen, several studies reported contradictory results regarding the impact of ibuprofen on cholesterol-containing lipid membranes. Here, we investigated membrane localization and orientation as well as the influence of ibuprofen on membrane properties in POPC/cholesterol bilayers using solid-state NMR spectroscopy and other biophysical assays. The presence of ibuprofen disturbs the molecular order of phospholipids as shown by alterations of the 2H and 31P-NMR spectra of the lipids, but does not lead to an increased membrane permeability or changes of the phase state of the bilayer. 1H MAS NOESY NMR results demonstrate that ibuprofen adopts a mean position in the upper chain/glycerol region of the POPC membrane, oriented with its polar carbonyl group towards the aqueous phase. This membrane position is only marginally altered in the presence of cholesterol. A previously reported result that ibuprofen is expelled from the membrane interface in cholesterol-containing DMPC bilayers could not be confirmed.
Collapse
Affiliation(s)
- Jan Kremkow
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany; (J.K.); (D.H.)
| | - Meike Luck
- Department of Biology, Humboldt University Berlin, Invalidenstr. 42, D-10115 Berlin, Germany; (M.L.); (P.M.)
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany; (J.K.); (D.H.)
| | - Peter Müller
- Department of Biology, Humboldt University Berlin, Invalidenstr. 42, D-10115 Berlin, Germany; (M.L.); (P.M.)
| | - Holger A. Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany; (J.K.); (D.H.)
- Correspondence:
| |
Collapse
|
3
|
Mazurek AH, Szeleszczuk Ł, Simonson T, Pisklak DM. Application of Various Molecular Modelling Methods in the Study of Estrogens and Xenoestrogens. Int J Mol Sci 2020; 21:E6411. [PMID: 32899216 PMCID: PMC7504198 DOI: 10.3390/ijms21176411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
In this review, applications of various molecular modelling methods in the study of estrogens and xenoestrogens are summarized. Selected biomolecules that are the most commonly chosen as molecular modelling objects in this field are presented. In most of the reviewed works, ligand docking using solely force field methods was performed, employing various molecular targets involved in metabolism and action of estrogens. Other molecular modelling methods such as molecular dynamics and combined quantum mechanics with molecular mechanics have also been successfully used to predict the properties of estrogens and xenoestrogens. Among published works, a great number also focused on the application of different types of quantitative structure-activity relationship (QSAR) analyses to examine estrogen's structures and activities. Although the interactions between estrogens and xenoestrogens with various proteins are the most commonly studied, other aspects such as penetration of estrogens through lipid bilayers or their ability to adsorb on different materials are also explored using theoretical calculations. Apart from molecular mechanics and statistical methods, quantum mechanics calculations are also employed in the studies of estrogens and xenoestrogens. Their applications include computation of spectroscopic properties, both vibrational and Nuclear Magnetic Resonance (NMR), and also in quantum molecular dynamics simulations and crystal structure prediction. The main aim of this review is to present the great potential and versatility of various molecular modelling methods in the studies on estrogens and xenoestrogens.
Collapse
Affiliation(s)
- Anna Helena Mazurek
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; (A.H.M.); (D.M.P.)
| | - Łukasz Szeleszczuk
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; (A.H.M.); (D.M.P.)
| | - Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91-120 Palaiseau, France;
| | - Dariusz Maciej Pisklak
- Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; (A.H.M.); (D.M.P.)
| |
Collapse
|
4
|
Khodov I, Dyshin A, Efimov S, Ivlev D, Kiselev M. High-pressure NMR spectroscopy in studies of the conformational composition of small molecules in supercritical carbon dioxide. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Galiullina LF, Scheidt HA, Huster D, Aganov A, Klochkov V. Interaction of statins with phospholipid bilayers studied by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:584-593. [PMID: 30578770 DOI: 10.1016/j.bbamem.2018.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/23/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022]
Abstract
Statins are drugs that specifically inhibit the enzyme HMG-CoA reductase and thereby reduce the concentration of low-density lipoprotein cholesterol, which represents a well-established risk factor for the development of atherosclerosis. The results of several clinical trials have shown that there are important intermolecular differences responsible for the broader pharmacologic actions of statins, even beyond HMG-CoA reductase inhibition. According to one hypothesis, the biological effects exerted by these compounds depend on their localization in the cellular membrane. The aim of the current work was to study the interactions of different statins with phospholipid membranes and to investigate their influence on the membrane structure and dynamics using various solid-state NMR techniques. Using 1H NOESY MAS NMR, it was shown that atorvastatin, cerivastatin, fluvastatin, rosuvastatin, and some percentage of pravastatin intercalate the lipid-water interface of POPC membranes to different degrees. Based on cross-relaxation rates, the different average distribution of the individual statins in the bilayer was determined quantitatively. Investigation of the influence of the investigated statins on membrane structure revealed that lovastatin had the least effect on lipid packing and chain order, pravastatin significantly lowered lipid chain order, while the other statins slightly decreased lipid chain order parameters mostly in the middle segments of the phospholipid chains.
Collapse
Affiliation(s)
- Leisan F Galiullina
- Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russian Federation
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Albert Aganov
- Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russian Federation
| | - Vladimir Klochkov
- Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russian Federation
| |
Collapse
|
6
|
Biophysical methods: Complementary tools to study the influence of human steroid hormones on the liposome membrane properties. Biochimie 2018; 153:13-25. [DOI: 10.1016/j.biochi.2018.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/07/2018] [Indexed: 11/21/2022]
|
7
|
17β-Estradiol Directly Lowers Mitochondrial Membrane Microviscosity and Improves Bioenergetic Function in Skeletal Muscle. Cell Metab 2018; 27:167-179.e7. [PMID: 29103922 PMCID: PMC5762397 DOI: 10.1016/j.cmet.2017.10.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 08/07/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022]
Abstract
Menopause results in a progressive decline in 17β-estradiol (E2) levels, increased adiposity, decreased insulin sensitivity, and a higher risk for type 2 diabetes. Estrogen therapies can help reverse these effects, but the mechanism(s) by which E2 modulates susceptibility to metabolic disease is not well understood. In young C57BL/6N mice, short-term ovariectomy decreased-whereas E2 therapy restored-mitochondrial respiratory function, cellular redox state (GSH/GSSG), and insulin sensitivity in skeletal muscle. E2 was detected by liquid chromatography-mass spectrometry in mitochondrial membranes and varied according to whole-body E2 status independently of ERα. Loss of E2 increased mitochondrial membrane microviscosity and H2O2 emitting potential, whereas E2 administration in vivo and in vitro restored membrane E2 content, microviscosity, complex I and I + III activities, H2O2 emitting potential, and submaximal OXPHOS responsiveness. These findings demonstrate that E2 directly modulates membrane biophysical properties and bioenergetic function in mitochondria, offering a direct mechanism by which E2 status broadly influences energy homeostasis.
Collapse
|
8
|
Stunges GM, Martin CS, Ruiz GC, Oliveira ON, Constantino CJ, Alessio P. Interaction between 17 α-ethynylestradiol hormone with Langmuir monolayers: The role of charged headgroups. Colloids Surf B Biointerfaces 2017; 158:627-633. [DOI: 10.1016/j.colsurfb.2017.07.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/29/2017] [Accepted: 07/15/2017] [Indexed: 12/31/2022]
|
9
|
Guo JJ, Yang DP, Tian X, Vemuri VK, Yin D, Li C, Duclos RI, Shen L, Ma X, Janero DR, Makriyannis A. 17β-estradiol (E2) in membranes: Orientation and dynamic properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:344-53. [PMID: 26607010 DOI: 10.1016/j.bbamem.2015.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 11/27/2022]
Abstract
Non-genomic membrane effects of estrogens are of great interest because of the diverse biological activities they may elicit. To further our understanding of the molecular features of the interaction between estrogenic hormones and membrane bilayers, we have determined the preferred orientation, location, and dynamic properties of 17β-estradiol (E2) in two different phospholipid membrane environments using (2)H-NMR and 2D (1)H-(13)C HSQC in conjunction with molecular dynamics simulations. Unequivocal spectral assignments to specific (2)H labels were made possible by synthesizing six selectively deuterated E2 molecules. The data allow us to conclude that the E2 molecule adopts a nearly "horizontal" orientation in the membrane bilayer with its long axis essentially perpendicular to the lipid acyl-chains. All four rings of the E2 molecule are located near the membrane interface, allowing both the E2 3-OH and the 17β-OH groups to engage in hydrogen bonding and electrostatic interactions with polar phospholipid groups. The findings augment our knowledge of the molecular interactions between E2 and membrane bilayer and highlight the asymmetric nature of the dynamic motions of the rigid E2 molecule in a membrane environment.
Collapse
Affiliation(s)
- Jason J Guo
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA; Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA.
| | - De-Ping Yang
- Physics Department, College of the Holy Cross, 1 College Street, Worcester, MA 01610, USA
| | - Xiaoyu Tian
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA; Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA
| | - V Kiran Vemuri
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA; Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA
| | - Dali Yin
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA; Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA
| | - Chen Li
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA; Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA
| | - Richard I Duclos
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA; Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA
| | - Lingling Shen
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA; Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA
| | - Xiaoyu Ma
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA; Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA
| | - David R Janero
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA; Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA; Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115-5000, USA.
| |
Collapse
|
10
|
The orientation and dynamics of estradiol and estradiol oleate in lipid membranes and HDL disc models. Biophys J 2015; 107:114-25. [PMID: 24988346 DOI: 10.1016/j.bpj.2014.04.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/03/2014] [Accepted: 04/28/2014] [Indexed: 12/28/2022] Open
Abstract
Estradiol (E2) and E2 oleate associate with high-density lipoproteins (HDLs). Their orientation in HDLs is unknown. We studied the orientation of E2 and E2 oleate in membranes and reconstituted HDLs, finding that E2 and E2 oleate are membrane-associated and highly mobile. Our combination of NMR measurements, molecular dynamics simulation, and analytic theory identifies three major conformations where the long axis of E2 assumes a parallel, perpendicular, or antiparallel orientation relative to the membrane's z-direction. The perpendicular orientation is preferred, and furthermore, in this orientation, E2 strongly favors a particular roll angle, facing the membrane with carbons 6, 7, 15, and 16, whereas carbons 1, 2, 11, and 12 point toward the aqueous phase. In contrast, the long axis of E2 oleate is almost exclusively oriented at an angle of ∼60° to the z-direction. In such an orientation, the oleoyl chain is firmly inserted into the membrane. Thus, both E2 and E2 oleate have a preference for interface localization in the membrane. These orientations were also found in HDL discs, suggesting that only lipid-E2 interactions determine the localization of the molecule. The structural mapping of E2 and E2 oleate may provide a design platform for specific E2-HDL-targeted pharmacological therapies.
Collapse
|
11
|
Abot A, Fontaine C, Buscato M, Solinhac R, Flouriot G, Fabre A, Drougard A, Rajan S, Laine M, Milon A, Muller I, Henrion D, Adlanmerini M, Valéra MC, Gompel A, Gerard C, Péqueux C, Mestdagt M, Raymond-Letron I, Knauf C, Ferriere F, Valet P, Gourdy P, Katzenellenbogen BS, Katzenellenbogen JA, Lenfant F, Greene GL, Foidart JM, Arnal JF. The uterine and vascular actions of estetrol delineate a distinctive profile of estrogen receptor α modulation, uncoupling nuclear and membrane activation. EMBO Mol Med 2015; 6:1328-46. [PMID: 25214462 PMCID: PMC4287935 DOI: 10.15252/emmm.201404112] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Estetrol (E4) is a natural estrogen with a long half-life produced only by the human fetal liver during pregnancy. The crystal structures of the estrogen receptor α (ERα) ligand-binding domain bound to 17β-estradiol (E2) and E4 are very similar, as well as their capacity to activate the two activation functions AF-1 and AF-2 and to recruit the coactivator SRC3. In vivo administration of high doses of E4 stimulated uterine gene expression, epithelial proliferation, and prevented atheroma, three recognized nuclear ERα actions. However, E4 failed to promote endothelial NO synthase activation and acceleration of endothelial healing, two processes clearly dependent on membrane-initiated steroid signaling (MISS). Furthermore, E4 antagonized E2 MISS-dependent effects in endothelium but also in MCF-7 breast cancer cell line. This profile of ERα activation by E4, uncoupling nuclear and membrane activation, characterizes E4 as a selective ER modulator which could have medical applications that should now be considered further.
Collapse
Affiliation(s)
- Anne Abot
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Coralie Fontaine
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Mélissa Buscato
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Romain Solinhac
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Gilles Flouriot
- Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Université de Rennes I, Rennes, France
| | - Aurélie Fabre
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Anne Drougard
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Shyamala Rajan
- Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Muriel Laine
- Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Alain Milon
- CNRS and Université de Toulouse, IPBS, Toulouse, France
| | | | - Daniel Henrion
- INSERM U1083, CNRS UMR 6214, Université d'Angers, Angers, France
| | - Marine Adlanmerini
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Marie-Cécile Valéra
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Anne Gompel
- APHP, Unité de Gynécologie Endocrinienne, Université Paris Descartes, Paris, France
| | - Céline Gerard
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | - Christel Péqueux
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | - Mélanie Mestdagt
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | | | - Claude Knauf
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - François Ferriere
- Institut de Recherche en Santé Environnement et Travail, IRSET, INSERM U1085, Team TREC, Biosit, Université de Rennes I, Rennes, France
| | - Philippe Valet
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Pierre Gourdy
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Benita S Katzenellenbogen
- Departments of Molecular and Integrative Biology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John A Katzenellenbogen
- Departments of Molecular and Integrative Biology and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Françoise Lenfant
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| | - Geoffrey L Greene
- Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Jean-Michel Foidart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-cancer), Université de Liège, Liège, Belgique
| | - Jean-François Arnal
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, Toulouse, France
| |
Collapse
|
12
|
Morishima F, Inokuchi Y, Ebata T. Structure and hydrogen-bonding ability of estrogens studied in the gas phase. J Phys Chem A 2013; 117:13543-55. [PMID: 24131263 DOI: 10.1021/jp407438j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The structures of estrogens (estrone(E1), β-estradiol(E2), and estriol(E3)) and their 1:1 hydrogen-bonded (hydrated) clusters with water formed in supersonic jets have been investigated by various laser spectroscopic methods and quantum chemical calculations. In the S1-S0 electronic spectra, all three species exhibit the band origin in the 35,050-35,200 cm(-1) region. By use of ultraviolet-ultraviolet hole-burning (UV-UV HB) spectroscopy, two conformers, four conformers, and eight conformers, arising from different orientation of OH group(s) in the A-ring and D-ring, are identified for estrone, β-estradiol, and estriol, respectively. The infrared-ultraviolet double-resonance (IR-UV DR) spectra in the OH stretching vibration are observed to discriminate different conformers of the D-ring OH for β-estradiol and estriol, and it is suggested that in estriol only the intramolecular hydrogen bonded conformer exists in the jet. For the 1:1 hydrated cluster of estrogens, the S1-S0 electronic transition energies are quite different depending on whether the water molecule is bound to A-ring OH or D-ring OH. It is found that the water molecule prefers to form an H-bond to the A-ring OH for estrone and β-estradiol due to the higher acidity of phenolic OH than that of the alcoholic OH. On the other hand, in estriol the water molecule prefers to be bound to the D-ring OH due to the formation of a stable ring-structure H-bonding network with two OH groups. Thus, the substitution of one hydroxyl group to the D-ring drastically changes the hydrogen-bonding preference of estrogens.
Collapse
Affiliation(s)
- Fumiya Morishima
- Department of Chemistry, Graduate School of Science, Hiroshima University , Higashi-Hiroshima 739-8526, Japan
| | | | | |
Collapse
|
13
|
Gater DL, Réat V, Czaplicki G, Saurel O, Jolibois F, Cherezov V, Milon A. Hydrogen bonding of cholesterol in the lipidic cubic phase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8031-8038. [PMID: 23763339 PMCID: PMC3758441 DOI: 10.1021/la401351w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The addition of cholesterol to the monoolein-based lipidic cubic phase (LCP) has been instrumental in obtaining high-resolution crystal structures of several G protein-coupled receptors. Here, we report the use of high-resolution magic angle spinning NMR spectroscopy to record and assign the isotropic (13)C chemical shifts of cholesterol in lipidic lamellar and cubic phases at different hydration levels with monoolein and chain-deuterated DMPC as host lipids. The hydrogen-bonding patterns of cholesterol in these phases were determined from the NMR data by quantum chemical calculations. The results are consistent with the normal orientation of cholesterol in lipid bilayers and with the cholesterol hydroxyl group located at the hydrophobic/hydrophilic interface. The (13)C chemical shifts of cholesterol are mostly affected by the host lipid identity with little or no dependency on the hydration (20% vs 40%) or the phase identity (lamellar vs LCP). In chain-deuterated DMPC bilayers, the hydroxyl group of cholesterol forms most of its hydrogen bonds with water, while in monoolein bilayers it predominately interacts with monoolein. Such differences in the hydrogen-bonding network of cholesterol may have implications for the design of experiments in monoolein-based LCP.
Collapse
Affiliation(s)
- Deborah L. Gater
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 CNRS - Université de Toulouse, UPS, BP 64182, 205 route de Narbonne, 31077 Toulouse Cedex04 (France)
| | - Valérie Réat
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 CNRS - Université de Toulouse, UPS, BP 64182, 205 route de Narbonne, 31077 Toulouse Cedex04 (France)
| | - Georges Czaplicki
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 CNRS - Université de Toulouse, UPS, BP 64182, 205 route de Narbonne, 31077 Toulouse Cedex04 (France)
| | - Olivier Saurel
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 CNRS - Université de Toulouse, UPS, BP 64182, 205 route de Narbonne, 31077 Toulouse Cedex04 (France)
| | - Franck Jolibois
- Laboratoire de Physique et Chimie des Nano Objets, UMR 5215, IRSAMC -Université de Toulouse, UPS, 135 Avenue de Rangueil, 31077 Toulouse Cedex04 (France)
| | - Vadim Cherezov
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA 92037 (USA)
| | - Alain Milon
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 CNRS - Université de Toulouse, UPS, BP 64182, 205 route de Narbonne, 31077 Toulouse Cedex04 (France)
| |
Collapse
|
14
|
Weizenmann N, Huster D, Scheidt HA. Interaction of local anesthetics with lipid bilayers investigated by 1H MAS NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:3010-8. [DOI: 10.1016/j.bbamem.2012.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/16/2012] [Accepted: 07/19/2012] [Indexed: 11/25/2022]
|
15
|
Effect of sex and prior exposure to a cafeteria diet on the distribution of sex hormones between plasma and blood cells. PLoS One 2012; 7:e34381. [PMID: 22479617 PMCID: PMC3313971 DOI: 10.1371/journal.pone.0034381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/28/2012] [Indexed: 01/01/2023] Open
Abstract
It is generally assumed that steroid hormones are carried in the blood free and/or bound to plasma proteins. We investigated whether blood cells were also able to bind/carry sex-related hormones: estrone, estradiol, DHEA and testosterone. Wistar male and female rats were fed a cafeteria diet for 30 days, which induced overweight. The rats were fed the standard rat diet for 15 additional days to minimize the immediate effects of excess ingested energy. Controls were always kept on standard diet. After the rats were killed, their blood was used for 1) measuring plasma hormone levels, 2) determining the binding of labeled hormones to washed red blood cells (RBC), 3) incubating whole blood with labeled hormones and determining the distribution of label between plasma and packed cells, discounting the trapped plasma volume, 4) determining free plasma hormone using labeled hormones, both through membrane ultrafiltration and dextran-charcoal removal. The results were computed individually for each rat. Cells retained up to 32% estrone, and down to 10% of testosterone, with marked differences due to sex and diet (the latter only for estrogens, not for DHEA and testosterone). Sex and diet also affected the concentrations of all hormones, with no significant diet effects for estradiol and DHEA, but with considerable interaction between both factors. Binding to RBC was non-specific for all hormones. Estrogen distribution in plasma compartments was affected by sex and diet. In conclusion: a) there is a large non-specific RBC-carried compartment for estrone, estradiol, DHEA and testosterone deeply affected by sex; b) Prior exposure to a cafeteria (hyperlipidic) diet induced hormone distribution changes, affected by sex, which hint at sex-related structural differences in RBC membranes; c) We postulate that the RBC compartment may contribute to maintain free (i.e., fully active) sex hormone levels in a way similar to plasma proteins non-specific binding.
Collapse
|
16
|
Acconcia F, Marino M. The Effects of 17β-estradiol in Cancer are Mediated by Estrogen Receptor Signaling at the Plasma Membrane. Front Physiol 2011; 2:30. [PMID: 21747767 PMCID: PMC3129035 DOI: 10.3389/fphys.2011.00030] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/17/2011] [Indexed: 12/16/2022] Open
Abstract
Two different isoforms of the estrogen receptors (i.e., ERα and ERβ) mediate pleiotropic 17β-estradiol (E2)-induced cellular effects. The ERs are principally localized in the nucleus where they act by globally modifying the expression of the E2-target genes. The premise that E2 effects are exclusively mediated through the nuclear localized ERs has been rendered obsolete by research over the last 15 years demonstrating that ERα and ERβ proteins are also localized at the plasma membranes and in other extra-nuclear organelles. The E2 modulation of cancer cell proliferation represents a good example of the impact of membrane-initiated signals on E2 effects. In fact, E2 via ERα elicits rapid signals driving cancer cells to proliferation (e.g., in breast cancer cells), while E2-induced ERβ rapid signaling inhibits proliferation (e.g., in colon cancer cells). In this review we provide with an overview of the complex system of E2-induced signal transduction pathways, their impact on E2-induced cancer cell proliferation, and the participation of E2-induced membrane-initiated signals in tumor environment.
Collapse
Affiliation(s)
- Filippo Acconcia
- Cell Physiology Laboratory, Department of Biology, University Roma Tre Rome, Italy
| | | |
Collapse
|
17
|
Nakata S, Ikeguchi A, Shiota T, Komori R, Kumazawa N, Tsutsumi M, Denda M. Interactions between Sex Hormones and a 1,2-Di-O-myristoyl-sn-glycero-3-phosphocholine Molecular Layer: Characteristics of the Liposome, Surface Area versus Surface Pressure of the Monolayer, and Microscopic Observation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2011. [DOI: 10.1246/bcsj.20100256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|