1
|
Pem B, Pišonić M, Momčilov M, Crnolatac I, Brkljača Z, Vazdar M, Bakarić D. Protonation of palmitic acid embedded in DPPC lipid bilayers obscures detection of ripple phase by FTIR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124773. [PMID: 39002469 DOI: 10.1016/j.saa.2024.124773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
The transformation of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers from the gel (Lβ') to the fluid (Lα) phase involves an intermediate ripple (Pβ') phase forming a few degrees below the main transition temperature (Tm). While the exact cause of bilayer rippling is still debated, the presence of amphiphilic molecules, pH, and lipid bilayer architecture are all known to influence (pre)transition behavior. In particular, fatty acid chains interact with hydrophobic lipid tails, while the carboxylic groups simultaneously participate in proton transfer with interfacial water in the polar lipid region which is controlled by the pH of the surrounding aqueous medium. The molecular-level variations in the DPPC ripple phase in the presence of 2% palmitic acid (PA) were studied at pH levels 4.0, 7.3, and 9.1, where PA is fully protonated, partially protonated, or fully deprotonated. Bilayer thermotropic behavior was investigated by differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy which agreed in their characterization of (pre)transition at pH of 9.1, but not at pH 4.0 and especially not at 7.3. Owing to the different insertion depths of protonated and deprotonated PA, along with the ability of protonated PA to undergo flip-flop in the bilayer, these two forms of PA show a different hydration pattern in the interfacial water layer. Finally, these results demonstrated the hitherto undiscovered potential of FTIR spectroscopy in the detection of the events occurring at the surface of lipid bilayers that obscure the low-cooperativity phase transition explored in this work.
Collapse
Affiliation(s)
- Barbara Pem
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Marina Pišonić
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Marina Momčilov
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ivo Crnolatac
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Zlatko Brkljača
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Mario Vazdar
- Department of Mathematics, Informatics, and Cybernetics, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|
2
|
Pašalić L, Maleš P, Čikoš A, Pem B, Bakarić D. The rise of FTIR spectroscopy in the characterization of asymmetric lipid membranes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123488. [PMID: 37813090 DOI: 10.1016/j.saa.2023.123488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
In contrast to symmetric unilamellar liposomes (sLUVs) prepared from a mixture of different lipids, asymmetric ones (aLUVs) with different lipid composition in the inner and outer membrane leaflets are more suitable model systems of eukaryotic plasma membranes. However, apart from the challenging preparation of asymmetric liposomes and small amounts of obtained asymmetric unilamellar liposomes (aLUVs), a major drawback is the qualitative characterization of asymmetry, as each of the techniques used so far has certain limitations. In this regard, we prepared aLUVs composed dominantly of DPPC(out)/DPPS(in) lipids and, along with 1H NMR and DSC characterization, we showed for the first time how FTIR spectroscopy can be used in the presence of (a)symmetry between DPPC/DPPS lipid bilayers. Using second derivative FTIR spectra we demonstrated not only that the hydration of lipids glycerol backbone and choline moiety of DPPC differs in s/aLUVs, but in addition that the lateral interactions between hydrocarbon chains during the phase change display different trend in s/aLUVs. Molecular dynamics simulations confirmed different chain ordering and packing between s/a bilayers, with a significant influence of temperature, i.e. membrane phase.
Collapse
Affiliation(s)
- Lea Pašalić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Ana Čikoš
- The Centre for Nuclear Magnetic Resonance (NMR), Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Barbara Pem
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|
3
|
Pašalić L, Pem B, Bakarić D. Lamellarity-Driven Differences in Surface Structural Features of DPPS Lipids: Spectroscopic, Calorimetric and Computational Study. MEMBRANES 2023; 13:83. [PMID: 36676890 PMCID: PMC9865892 DOI: 10.3390/membranes13010083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Although single-lipid bilayers are usually considered models of eukaryotic plasma membranes, their research drops drastically when it comes to exclusively anionic lipid membranes. Being a major anionic phospholipid in the inner leaflet of eukaryote membranes, phosphatidylserine-constituted lipid membranes were occasionally explored in the form of multilamellar liposomes (MLV), but their inherent instability caused a serious lack of efforts undertaken on large unilamellar liposomes (LUVs) as more realistic model membrane systems. In order to compensate the existing shortcomings, we performed a comprehensive calorimetric, spectroscopic and MD simulation study of time-varying structural features of LUV made from 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS), whereas the corresponding MLV were examined as a reference. A substantial uncertainty of UV/Vis data of LUV from which only Tm was unambiguously determined (53.9 ± 0.8 °C), along with rather high uncertainty on the high-temperature range of DPPS melting profile obtained from DSC (≈50-59 °C), presumably reflect distinguished surface structural features in LUV. The FTIR signatures of glycerol moiety and those originated from carboxyl group serve as a strong support that in LUV, unlike in MLV, highly curved surfaces occur continuously, whereas the details on the attenuation of surface features in MLV were unraveled by molecular dynamics.
Collapse
|
4
|
Ferreira TH, Maximiano P, Ureta M, Gomez-Zavaglia A, Simões PN. Molecular Simulation: a remarkable tool to study mechanisms of cell membrane preservation in probiotic bacteria. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2022.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
5
|
Valente ÉC, Polêto MD, de Oliveira TV, Soares LDS, dos Reis Coimbra JS, Guimarães AP, de Oliveira EB. Effects of the Cations Li+, Na+, K+, Mg2+, or Ca2+ on Physicochemical Properties of Xanthan Gum in Aqueous Medium – A view from Computational Molecular Dynamics Calculations. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Maleš P, Pem B, Petrov D, Jurašin DD, Bakarić D. Deciphering the origin of the melting profile of unilamellar phosphatidylcholine liposomes by measuring the turbidity of its suspensions. SOFT MATTER 2022; 18:6703-6715. [PMID: 36017811 DOI: 10.1039/d2sm00878e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The elucidation of the thermal properties of phosphatidylcholine liposomes is often based on the analysis of the thermal capacity profiles of multilamellar liposomes (MLV), which may qualitatively disagree with those of unilamellar liposomes (LUV). Experiments and interpretation of LUV liposomes is further complicated by aggregation and lamellarization of lipid bilayers in a short time period, which makes it almost impossible to distinguish the signatures of the two types of bilayers. To characterize independently MLV and LUV of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the latter were prepared with the addition of small amounts of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) which, due to the sterical hindrance and negative charge at a given pH value, cause LUV repellence and contribute to their stability. Differential scanning calorimetry curves and temperature-dependent UV/Vis spectra of the prepared MLV and LUV were measured. Multivariate analysis of spectrophotometric data determined the phase transition temperatures (pretransition at Tp and the main phase transition at Tm), and based on the changes in turbidities, the thickness of the lipid bilayer in LUV was determined. The obtained data suggested that the curvature change is a key distinguishing factor in MLV and LUV heat capacity profiles. By combining the experimental results and those obtained by MD simulations, the interfacial water layer was characterized and its contribution to the thermal properties of LUV was discussed.
Collapse
Affiliation(s)
- Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Barbara Pem
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Dražen Petrov
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Darija Domazet Jurašin
- Division for Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|
7
|
Maleš P, Brkljača Z, Domazet Jurašin D, Bakarić D. New spirit of an old technique: Characterization of lipid phase transitions via UV/Vis spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121013. [PMID: 35176647 DOI: 10.1016/j.saa.2022.121013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
One of the advantages of investigating lipid phase transitions by thermoanalytical techniques such as DSC is manifested in the proportionality of the signal strength on a DSC curve, attributed to a particular thermotropic event, and its cooperativity degree. Accordingly, the pretransition of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) is less noticeable than its main phase transition; as a matter of fact, when DSC measurements are performed at low heating rate, such low-cooperativity phase transition could go (almost) unnoticed. The aim of this work is to present temperature-dependent UV/Vis spectroscopy, based on a temperature-dependent change in DPPC suspension turbidity, as a technique applicable for determination of lipid phase transition temperatures. Multivariate analyzes of the acquired UV/Vis spectra show that phase transitions of the low-cooperativity degree, such as pretransitions, can be identified with the same certainty as transitions of a high-cooperativity degree.
Collapse
Affiliation(s)
- Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Zlatko Brkljača
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Darija Domazet Jurašin
- Division for Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia.
| |
Collapse
|
8
|
Vitkova V, Yordanova V, Staneva G, Petkov O, Stoyanova-Ivanova A, Antonova K, Popkirov G. Dielectric Properties of Phosphatidylcholine Membranes and the Effect of Sugars. MEMBRANES 2021; 11:membranes11110847. [PMID: 34832076 PMCID: PMC8623822 DOI: 10.3390/membranes11110847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
Simple carbohydrates are associated with the enhanced risk of cardiovascular disease and adverse changes in lipoproteins in the organism. Conversely, sugars are known to exert a stabilizing effect on biological membranes, and this effect is widely exploited in medicine and industry for cryopreservation of tissues and materials. In view of elucidating molecular mechanisms involved in the interaction of mono- and disaccharides with biomimetic lipid systems, we study the alteration of dielectric properties, the degree of hydration, and the rotational order parameter and dipole potential of lipid bilayers in the presence of sugars. Frequency-dependent deformation of cell-size unilamellar lipid vesicles in alternating electric fields and fast Fourier transform electrochemical impedance spectroscopy are applied to measure the specific capacitance of phosphatidylcholine lipid bilayers in sucrose, glucose and fructose aqueous solutions. Alteration of membrane specific capacitance is reported in sucrose solutions, while preservation of membrane dielectric properties is established in the presence of glucose and fructose. We address the effect of sugars on the hydration and the rotational order parameter for 1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine (POPC) and 1-stearoyl-2-oleoyl-sn-glycero-3- phosphocholine (SOPC). An increased degree of lipid packing is reported in sucrose solutions. The obtained results provide evidence that some small carbohydrates are able to change membrane dielectric properties, structure, and order related to membrane homeostasis. The reported data are also relevant to future developments based on the response of lipid bilayers to external physical stimuli such as electric fields and temperature changes.
Collapse
Affiliation(s)
- Victoria Vitkova
- Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria; (O.P.); (A.S.-I.); (K.A.)
- Correspondence:
| | - Vesela Yordanova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (V.Y.); (G.S.)
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (V.Y.); (G.S.)
| | - Ognyan Petkov
- Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria; (O.P.); (A.S.-I.); (K.A.)
| | - Angelina Stoyanova-Ivanova
- Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria; (O.P.); (A.S.-I.); (K.A.)
| | - Krassimira Antonova
- Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria; (O.P.); (A.S.-I.); (K.A.)
| | - Georgi Popkirov
- Central Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Blvd., 1784 Sofia, Bulgaria;
| |
Collapse
|
9
|
Petrov D, Tunega D, Gerzabek MH, Oostenbrink C. Molecular modelling of sorption processes of a range of diverse small organic molecules in Leonardite humic acid. EUROPEAN JOURNAL OF SOIL SCIENCE 2020; 71:831-844. [PMID: 33041627 PMCID: PMC7540484 DOI: 10.1111/ejss.12868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 05/08/2023]
Abstract
Soil organic matter (SOM) is abundant in the environment and plays an important role in several biogeochemical processes, including microbial activity, soil aggregation, plant growth and carbon storage. One of its key functions is the retention and release of various chemical compounds, primarily governed by the sorption process, which strongly affects the environmental fate of nutrients and pollutants. Sorption largely depends on the composition of SOM, as well as its structure, dynamics and the thermodynamic conditions. Although several approaches are available, experimental characterization of sorption mechanisms is not easy. Computational models for predicting sorption coefficients often require a wealth of experimental data for training and are only applicable to compounds and conditions related to the training dataset. Here, we use molecular dynamics (MD) simulations to study the sorption of a range of small organic compounds. As a model SOM system we use the standard Leonardite humic acid (LHA) sample, which physicochemical properties have recently been characterized computationally in detail. This model allowed us to estimate sorption propensities of the systems at two different hydration levels (water activities close to 0 and 1), showing a remarkable correlation with experimental data. Importantly, this molecular modelling approach based on perturbation free-energy calculations is rigorously derived from statistical thermodynamics and requires no experimental sorption data for training. It is therefore in principle applicable to any SOM model or thermodynamic condition. Moreover, the power of MD simulations to provide high-resolution insight into atomistic and molecular interactions was employed to explore how sorbate molecules associate with the LHA matrix and which contacts they form. The heteroatoms of both sorbate and sorbent play an important role and water molecules are identified as further key players in facilitating the sorption process. HIGHLIGHTS Modelling of the sorption processes in soil organic matter at atomistic level.Rigorous, physics-based approach applicable to a range of SOM systems and conditions.Remarkable level of matching with experimental data with additional insight into the molecular mechanism.Interactions between the sorbate and local environment strongly affects the sorption process.
Collapse
Affiliation(s)
- Drazen Petrov
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and SimulationUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| | - Daniel Tunega
- Department of Forest and Soil SciencesInstitute of Soil Research, University of Natural Resources and Life Sciences ViennaViennaAustria
- School of Pharmaceutical Science and Technology, Tianjin UniversityTianjinPeople's Republic of China
| | - Martin H. Gerzabek
- Department of Forest and Soil SciencesInstitute of Soil Research, University of Natural Resources and Life Sciences ViennaViennaAustria
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and SimulationUniversity of Natural Resources and Life Sciences ViennaViennaAustria
| |
Collapse
|
10
|
Friedman R. Simulations of Biomolecules in Electrolyte Solutions. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical SciencesLinnæus UniversityKalmar SE‐391 82 Sweden
| |
Collapse
|