1
|
Godoy P, Rezanezhad Dizaji B, Zardini Buzatto A, Sanchez L, Li L. The Lipid Composition of the Exo-Metabolome from Haemonchus contortus. Metabolites 2025; 15:193. [PMID: 40137157 PMCID: PMC11944095 DOI: 10.3390/metabo15030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Background/Objectives: Metabolomic studies of different parasite-derived biomolecules, such as lipids, are needed to broaden the discovery of novel targets and overcome anthelmintic resistance. Lipids are involved in diverse functions in biological systems, including parasitic helminths, but little is known about their role in the biology of these organisms and their impact on host-parasite interactions. This study aimed to characterize the lipid profile secreted by Haemonchus contortus, the major parasitic nematodes of farm ruminants. Methods: H. contortus adult worms were recovered from infected sheep and cultured ex vivo. Parasite medium was collected at different time points and samples were subjected to an untargeted global lipidomic analysis. Lipids were extracted and subjected to Liquid Chromatography-Mass Spectrometry (LC-MS/MS). Annotated lipids were normalized and subjected to statistical analysis. Lipid clusters' fold change (FC) and individual lipid features were compared at different time points. Lipids were also analyzed by structural composition and saturation bonding. Results: A total of 1057 H. contortus lipid features were annotated, including glycerophospholipids, fatty acyls, sphingolipids, glycerolipids, and sterols. Most of these compounds were unsaturated lipids. We found significant FC differences in the lipid profile in a time-dependent manner. Conclusions: We predict that many lipids found in our study act as signaling molecules for nematodes' physiological functions, such as adaptation to nutrient changes, life span and mating, and as modulators on the host immune responses.
Collapse
Affiliation(s)
- Pablo Godoy
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (B.R.D.); (L.S.)
- Independent Researcher and Animal Health Consultant, Montreal, QC H4A 2V2, Canada
| | - Behrouz Rezanezhad Dizaji
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (B.R.D.); (L.S.)
| | | | - Laura Sanchez
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (B.R.D.); (L.S.)
| | - Liang Li
- The Metabolomics Innovation Centre (TMIC), Edmonton, AB T6G 2E9, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2N4, Canada
| |
Collapse
|
2
|
Witting M, Salzer L, Meyer SW, Barsch A. Phosphorylated glycosphingolipids are commonly detected in Caenorhabditis elegans lipidomes. Metabolomics 2025; 21:29. [PMID: 39979652 PMCID: PMC11842410 DOI: 10.1007/s11306-024-02216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/31/2024] [Indexed: 02/22/2025]
Abstract
INTRODUCTION The identification of lipids is a cornerstone of lipidomics, and due to the specific characteristics of lipids, it requires dedicated analysis workflows. Identifying novel lipids and lipid species for which no reference spectra are available is tedious and often involves a lot of manual work. Integrating high-resolution mass spectrometry with enhancements from chromatographic and ion mobility separation enables the in-depth investigation of intact lipids. OBJECTIVES We investigated phosphorylated glycosphingolipids from the nematode Caenorhabditis elegans, a biomedical model organism, and aimed to identify different species from this class of lipids, which have been described in one particular publication only. We checked if these lipids can be detected in lipid extracts of C. elegans. METHODS We used UHPLC-UHR-TOF-MS and UHPLC-TIMS-TOF-MS in combination with dedicated data analysis to check for the presence of phosphorylated glycosphingolipids. Specifically, candidate features were identified in two datasets using Mass Spec Query Language (MassQL) to search fragmentation data. The additional use of retention time (RT) and collisional cross section (CCS) information allowed to filter false positive annotations. RESULTS As a result, we detected all previously described phosphorylated glycosphingolipids and novel species as well as their biosynthetic precursors in two different lipidomics datasets. MassQL significantly speeds up the process by saving time that would otherwise be spent on manual data investigations. In total over 20 sphingolipids could be described. CONCLUSION MassQL allowed us to search for phosphorylated glycosphingolipids and their potential biosynthetic precursors systematically. Using orthogonal information such as RT and CCS helped filter false positive results. With the detection in two different datasets, we demonstrate that these sphingolipids are a general part of the C. elegans lipidome.
Collapse
Affiliation(s)
- Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
| | - Liesa Salzer
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Sven W Meyer
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Aiko Barsch
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359, Bremen, Germany
| |
Collapse
|
3
|
Scholz J, Rudt E, Gremme A, Gaßmöller Née Wienken CM, Bornhorst J, Hayen H. Hyphenation of supercritical fluid chromatography and trapped ion mobility-mass spectrometry for quantitative lipidomics. Anal Chim Acta 2024; 1317:342913. [PMID: 39030025 DOI: 10.1016/j.aca.2024.342913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Lipidomics studies require rapid separations with accurate and reliable quantification results to further elucidate the role of lipids in biological processes and their biological functions. Supercritical fluid chromatography (SFC), in particular, can provide this rapid and high-resolution separation. The combination with trapped ion mobility spectrometry (TIMS) has not yet been applied, although the post-ionization separation method in combination with liquid chromatography or imaging techniques has already proven itself in resolving isomeric and isobaric lipids and preventing false identifications. However, a multidimensional separation method should not only allow confident identification but also provide quantitative results to substantiate studies with absolute concentrations. RESULTS A SFC method was developed and the hyphenation of SFC and TIMS was further explored towards the separation of different isobaric overlaps. Furthermore, lipid identification was performed using mass spectrometry (MS) and parallel accumulation serial fragmentation (PASEF) MS/MS experiments in addition to retention time and collision cross section (CCS). Quantification was further investigated with short TIMS ramps and performed based on the ion mobility signal of lipids, since TIMS increases the sensitivity by noise filtering. The final method was, as an exemplary study, applied to investigate the function of different ceramide synthases (CerS) in the nematode and model organism Caenorhabditis elegans (C. elegans). Loss of three known CerS hyl-1, hyl-2 and lagr-1 demonstrated different influences on and alterations in the sphingolipidome. SIGNIFICANCE This method describes for the first time the combination of SFC and TIMS-MS/MS, which enables a fast and sensitive quantification of lipids. The results of the application to C. elegans samples prove the functionality of the method and support research on the metabolism of sphingolipids in nematodes.
Collapse
Affiliation(s)
- Johannes Scholz
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149, Münster, Germany
| | - Edward Rudt
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149, Münster, Germany
| | - Anna Gremme
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | | | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Heiko Hayen
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
4
|
Nguyen BT, Le QV, Ahn J, Nguyen KA, Nguyen HT, Kang JS, Long NP, Kim HM. Omics analysis unveils changes in the metabolome and lipidome of Caenorhabditis elegans upon polydopamine exposure. J Pharm Biomed Anal 2024; 244:116126. [PMID: 38581931 DOI: 10.1016/j.jpba.2024.116126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Polydopamine (PDA) is an insoluble biopolymer with a dark brown-black color that forms through the autoxidation of dopamine. Because of its outstanding biocompatibility and durability, PDA holds enormous promise for various applications, both in the biomedical and non-medical domains. To ensure human safety, protect health, and minimize environmental impacts, the assessment of PDA toxicity is important. In this study, metabolomics and lipidomics assessed the impact of acute PDA exposure on Caenorhabditis elegans (C. elegans). The findings revealed a pronounced perturbation in the metabolome and lipidome of C. elegans at the L4 stage following 24 hours of exposure to 100 µg/mL PDA. The changes in lipid composition varied based on lipid classes. Increased lipid classes included lysophosphatidylethanolamine, triacylglycerides, and fatty acids, while decreased species involved in several sub-classes of glycerophospholipids and sphingolipids. Besides, we detected 37 significantly affected metabolites in the positive and 8 in the negative ion modes due to exposure to PDA in C. elegans. The metabolites most impacted by PDA exposure were associated with purine metabolism, biosynthesis of valine, leucine, and isoleucine; aminoacyl-tRNA biosynthesis; and cysteine and methionine metabolism, along with pantothenate and CoA biosynthesis; the citrate cycle (TCA cycle); and beta-alanine metabolism. In conclusion, PDA exposure may intricately influence the metabolome and lipidome of C. elegans. The combined application of metabolomics and lipidomics offers additional insights into the metabolic perturbations involved in PDA-induced biological effects and presents potential biomarkers for the assessment of PDA safety.
Collapse
Affiliation(s)
- Bao Tan Nguyen
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Quoc-Viet Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Jeongjun Ahn
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ky Anh Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea.
| | - Hyung Min Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
5
|
Luo H, Zhao X, Wang ZD, Wu G, Xia Y, Dong MQ, Ma Y. Sphingolipid profiling reveals differential functions of sphingolipid biosynthesis isozymes of Caenorhabditis elegans. J Lipid Res 2024; 65:100553. [PMID: 38704027 PMCID: PMC11153919 DOI: 10.1016/j.jlr.2024.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Multiple isozymes are encoded in the Caenorhabditis elegans genome for the various sphingolipid biosynthesis reactions, but the contributions of individual isozymes are characterized only in part. We developed a simple but effective reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method that enables simultaneous identification and quantification of ceramides (Cer), glucosylceramides (GlcCer), and sphingomyelins (SM) from the same MS run. Validating this sphingolipid profiling method, we show that nearly all 47 quantifiable sphingolipid species found in young adult worms were reduced upon RNA interference (RNAi) of sptl-1 or elo-5, which are both required for synthesis of the id17:1 sphingoid base. We also confirm that HYL-1 and HYL-2, but not LAGR-1, constitute the major ceramide synthase activity with different preference for fatty acid substrates, and that CGT-3, but not CGT-1 and CGT-2, plays a major role in producing GlcCers. Deletion of sms-5 hardly affected SM levels. RNAi of sms-1, sms-2, and sms-3 all lowered the abundance of certain SMs with an odd-numbered N-acyl chains (mostly C21 and C23, with or without hydroxylation). Unexpectedly, sms-2 RNAi and sms-3 RNAi elevated a subset of SM species containing even-numbered N-acyls. This suggests that sphingolipids containing even-numbered N-acyls could be regulated separately, sometimes in opposite directions, from those containing odd-numbered N-acyls, which are presumably monomethyl branched chain fatty acyls. We also find that ceramide levels are kept in balance with those of GlcCers and SMs. These findings underscore the effectiveness of this RPLC-MS/MS method in studies of C. elegans sphingolipid biology.
Collapse
Affiliation(s)
- Hui Luo
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Institute of Biological Sciences (NIBS), Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xue Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Zi-Dan Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Gang Wu
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Meng-Qiu Dong
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Institute of Biological Sciences (NIBS), Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Yan Ma
- National Institute of Biological Sciences (NIBS), Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Holzapfel R, Prell A, Schumacher F, Perschin V, Friedmann Angeli JP, Kleuser B, Stigloher C, Fazeli G. Degradation of hexosylceramides is required for timely corpse clearance via formation of cargo-containing phagolysosomal vesicles. Eur J Cell Biol 2024; 103:151411. [PMID: 38582051 DOI: 10.1016/j.ejcb.2024.151411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024] Open
Abstract
Efficient degradation of phagocytic cargo in lysosomes is crucial to maintain cellular homeostasis and defending cells against pathogens. However, the mechanisms underlying the degradation and recycling of macromolecular cargo within the phagolysosome remain incompletely understood. We previously reported that the phagolysosome containing the corpse of the polar body in C. elegans tubulates into small vesicles to facilitate corpse clearance, a process that requires cargo protein degradation and amino acid export. Here we show that degradation of hexosylceramides by the prosaposin ortholog SPP-10 and glucosylceramidases is required for timely corpse clearance. We observed accumulation of membranous structures inside endolysosomes of spp-10-deficient worms, which are likely caused by increased hexosylceramide species. spp-10 deficiency also caused alteration of additional sphingolipid subclasses, like dihydroceramides, 2-OH-ceramides, and dihydrosphingomyelins. While corpse engulfment, initial breakdown of corpse membrane inside the phagolysosome and lumen acidification proceeded normally in spp-10-deficient worms, formation of the cargo-containing vesicles from the corpse phagolysosome was reduced, resulting in delayed cargo degradation and phagolysosome resolution. Thus, by combining ultrastructural studies and sphingolipidomic analysis with observing single phagolysosomes over time, we identified a role of prosaposin/SPP-10 in maintaining phagolysosomal structure, which promotes efficient resolution of phagocytic cargos.
Collapse
Affiliation(s)
- Rebecca Holzapfel
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Agata Prell
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany; Core-Facility BioSupraMol, Pharma-MS subunit, Freie Universität Berlin, Germany
| | - Veronika Perschin
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - José Pedro Friedmann Angeli
- Chair of Translational Cell Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Gholamreza Fazeli
- Chair of Translational Cell Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
7
|
Zhao J, Qiao L, Xia Y. In-Depth Characterization of Sphingoid Bases via Radical-Directed Dissociation Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2394-2402. [PMID: 37735971 DOI: 10.1021/jasms.3c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Sphingoid base (SPH) is a basic structural unit of all classes of sphingolipids. A sphingoid base typically consists of an aliphatic chain that may be desaturated between C4 and C5, an amine group at C2, and a variable number of OH groups located at C1, C3, and C4. Variations in the chain length and the occurrence of chemical modifications, such as methyl branching, desaturation, and hydroxylation, lead to a large structural diversity and distinct functional properties of sphingoid bases. However, conventional tandem mass spectrometry (MS/MS) via collision-induced dissociation (CID) faces challenges in characterizing these modifications. Herein, we developed an MS/MS method based on CID-triggered radical-directed dissociation (RDD) for in-depth characterization of sphingoid bases. The method involves derivatizing the sphingoid amine with 3-(2,2,6,6-tetramethylpiperidin-1-yloxymethyl)-picolinic acid 2,5-dioxopyrrolidin-1-yl ester (TPN), followed by MS2 CID to unleash the pyridine methyl radical moiety for subsequent RDD. This MS/MS method was integrated on a reversed-phase liquid chromatography-mass spectrometry workflow and further applied for in-depth profiling of total sphingoid bases in bovine heart and Caenorhabditis elegans. Notably, we identified and relatively quantified a series of unusual sphingoid bases, including SPH id17:2 (4,13) and SPH it19:0 in C. elegans, revealing that the metabolic pathways of sphingolipids are more diverse than previously known.
Collapse
Affiliation(s)
- Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lipeng Qiao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Xatse MA, Olsen CP. Defining the glucosylceramide population of C. elegans. Front Physiol 2023; 14:1244158. [PMID: 37772059 PMCID: PMC10524606 DOI: 10.3389/fphys.2023.1244158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
Glucosylceramides (GlcCer) are lipids that impact signaling pathways, serve as critical components of cellular membranes, and act as precursors for hundreds of other complex glycolipid species. Abnormal GlcCer metabolism is linked to many diseases, including cancers, diabetes, Gaucher disease, neurological disorders, and skin disorders. A key hurdle to fully understanding the role of GlcCer in disease is the development of methods to accurately detect and quantify these lipid species in a model organism. This will allow for the dissection of the role of this pool in vivo with a focus on all the individual types of GlcCer. In this review, we will discuss the analysis of the GlcCer population specifically in the nematode Caenorhabditis elegans, focusing on the mass spectrometry-based methods available for GlcCer quantification. We will also consider the combination of these approaches with genetic interrogation of GlcCer metabolic genes to define the biological role of these unique lipids. Furthermore, we will explore the implications and obstacles for future research.
Collapse
Affiliation(s)
| | - Carissa Perez Olsen
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
9
|
Xatse MA, Vieira AFC, Byrne C, Olsen CP. Targeted Lipidomics Reveals a Novel Role for Glucosylceramides in Glucose Response. J Lipid Res 2023:100394. [PMID: 37245562 PMCID: PMC10320606 DOI: 10.1016/j.jlr.2023.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023] Open
Abstract
The addition of excess glucose to the diet drives a coordinated response of lipid metabolism pathways to tune the membrane composition to the altered diet. Here, we have employed targeted lipidomic approaches to quantify the specific changes in the phospholipid and sphingolipid populations that occur in elevated glucose conditions. The lipids within wildtype Caenorhabditis elegans are strikingly stable with no significant changes identified in our global mass spectrometry-based analysis. Previous work has identified ELO-5, an elongase that is critical for the synthesis of monomethyl-branched chain fatty acids (mmBCFAs), as essential for surviving elevated glucose conditions. Therefore, we performed targeted lipidomics on elo-5 RNAi-fed animals and identified several significant changes in these animals in lipid species that contain mmBCFAs as well as in species that do not contain mmBCFAs. Of particular note, we identified a specific glucosylceramide (GlcCer 17:1;O2/22:0;O) that is also significantly upregulated with glucose in wildtype animals. Furthermore, compromising the production of the glucosylceramide pool with elo-3 or cgt-3 RNAi leads to premature death in glucose-fed animals. Taken together, our lipid analysis has expanded the mechanistic understanding of metabolic rewiring with glucose feeding and has identified a new role for the GlcCer 17:1;O2/22:0;O.
Collapse
Affiliation(s)
- Mark A Xatse
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Andre F C Vieira
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Chloe Byrne
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Carissa Perez Olsen
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.
| |
Collapse
|
10
|
Staab TA, McIntyre G, Wang L, Radeny J, Bettcher L, Guillen M, Peck MP, Kalil AP, Bromley SP, Raftery D, Chan JP. The lipidomes of C. elegans with mutations in asm-3/acid sphingomyelinase and hyl-2/ceramide synthase show distinct lipid profiles during aging. Aging (Albany NY) 2023; 15:650-674. [PMID: 36787434 PMCID: PMC9970312 DOI: 10.18632/aging.204515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
Lipid metabolism affects cell and physiological functions that mediate animal healthspan and lifespan. Lipidomics approaches in model organisms have allowed us to better understand changes in lipid composition related to age and lifespan. Here, using the model C. elegans, we examine the lipidomes of mutants lacking enzymes critical for sphingolipid metabolism; specifically, we examine acid sphingomyelinase (asm-3), which breaks down sphingomyelin to ceramide, and ceramide synthase (hyl-2), which synthesizes ceramide from sphingosine. Worm asm-3 and hyl-2 mutants have been previously found to be long- and short-lived, respectively. We analyzed longitudinal lipid changes in wild type animals compared to mutants at 1-, 5-, and 10-days of age. We detected over 700 different lipids in several lipid classes. Results indicate that wildtype animals exhibit increased triacylglycerols (TAG) at 10-days compared to 1-day, and decreased lysophoshatidylcholines (LPC). We find that 10-day hyl-2 mutants have elevated total polyunsaturated fatty acids (PUFA) and increased LPCs compared to 10-day wildtype animals. These changes mirror another short-lived model, the daf-16/FOXO transcription factor that is downstream of the insulin-like signaling pathway. In addition, we find that hyl-2 mutants have poor oxidative stress response, supporting a model where mutants with elevated PUFAs may accumulate more oxidative damage. On the other hand, 10-day asm-3 mutants have fewer TAGs. Intriguingly, asm-3 mutants have a similar lipid composition as the long-lived, caloric restriction model eat-2/mAChR mutant. Together, these analyses highlight the utility of lipidomic analyses to characterize metabolic changes during aging in C. elegans.
Collapse
Affiliation(s)
- Trisha A. Staab
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Grace McIntyre
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Joycelyn Radeny
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| | - Lisa Bettcher
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98195, USA
| | - Melissa Guillen
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Margaret P. Peck
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| | - Azia P. Kalil
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| | | | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98195, USA
| | - Jason P. Chan
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| |
Collapse
|
11
|
Sun X, Zhang T, Zhao P, Tao G, Liu R, Chang M, Wang X. 2D2D HILIC‐ELSD/UPLC‐Q‐TOF‐MS Method for Acquiring Phospholipid Profiles and the Application in
Caenorhabditis elegans. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaotian Sun
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Tao Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- European Research Institute for the Biology of Aging University Medical Center Groningen University of Groningen Groningen 9713 AV The Netherlands
| | - Pinzhen Zhao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Guanjun Tao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Ruijie Liu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Ming Chang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
12
|
Scholz J, Helmer PO, Nicolai MM, Bornhorst J, Hayen H. Profiling of sphingolipids in Caenorhabditis elegans by two-dimensional multiple heart-cut liquid chromatography - mass spectrometry. J Chromatogr A 2021; 1655:462481. [PMID: 34455370 DOI: 10.1016/j.chroma.2021.462481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Sphingolipids exert important functions in cells, ranging from stabilising the cell membrane to bioactive signalling in signal transduction pathways. Changed concentrations of sphingolipids are associated with, among others, neurodegenerative and cardiovascular diseases. In this work, we present a novel two-dimensional liquid chromatography method (2D-LC) coupled to tandem mass spectrometry (MS/MS) for the identification of ceramides, hexosylceramides and sphingomyelins in the model organism Caenorhabditis elegans (C. elegans). The method utilises a multiple heart-cut approach with a hydrophilic interaction liquid chromatography (HILIC) separation in the first dimension. The fractions of the sphingolipid classes were cut out and thereby separated from the abundant glycerolipids, which offers a simplified sample preparation and a high degree of automation as it compensates the alkaline depletion step usually conducted prior to the chromatographic analysis. The fractions were stored in a sample loop and transferred onto the second column with the combination of two six port valves. A reversed phase liquid chromatography was performed as the second dimension and allowed for a separation of the species within a sphingolipid class and according to the fatty acid moiety of the sphingolipid. The segregation of the abundant glycerolipids and the reduced matrix effects allowed for better identification of low abundant species, especially dihydro-sphingolipids with a saturated sphingoid base. In addition, the separation of the three fractions was carried out parallel to the separation and equilibration in the first dimension, which leads to no extension of the analysis time for the 2D-LC compared to the one-dimensional HILIC method. In total 45 sphingolipids were detected in the C. elegans lipid extract and identified via accurate mass and MS/MS fragments.
Collapse
Affiliation(s)
- Johannes Scholz
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany
| | - Patrick O Helmer
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany
| | - Merle M Nicolai
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Heiko Hayen
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany.
| |
Collapse
|
13
|
Saturated very long chain fatty acid configures glycosphingolipid for lysosome homeostasis in long-lived C. elegans. Nat Commun 2021; 12:5073. [PMID: 34417467 PMCID: PMC8379269 DOI: 10.1038/s41467-021-25398-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/28/2021] [Indexed: 01/21/2023] Open
Abstract
The contents of numerous membrane lipids change upon ageing. However, it is unknown whether and how any of these changes are causally linked to lifespan regulation. Acyl chains contribute to the functional specificity of membrane lipids. In this study, working with C. elegans, we identified an acyl chain-specific sphingolipid, C22 glucosylceramide, as a longevity metabolite. Germline deficiency, a conserved lifespan-extending paradigm, induces somatic expression of the fatty acid elongase ELO-3, and behenic acid (22:0) generated by ELO-3 is incorporated into glucosylceramide for lifespan regulation. Mechanistically, C22 glucosylceramide is required for the membrane localization of clathrin, a protein that regulates membrane budding. The reduction in C22 glucosylceramide impairs the clathrin-dependent autophagic lysosome reformation, which subsequently leads to TOR activation and longevity suppression. These findings reveal a mechanistic link between membrane lipids and ageing and suggest a model of lifespan regulation by fatty acid-mediated membrane configuration. The membrane lipids change with ageing and function as regulatory molecules, but the underlying mechanisms are incompletely understood. Here, the authors identify C22 glucosylceramide as a regulator of the longevity transcription factor SKN-1, and show that C22 glucosylceramide regulates lifespan by controlling lysosome homeostasis and subsequent TOR activation.
Collapse
|
14
|
Salzer L, Witting M. Quo Vadis Caenorhabditis elegans Metabolomics-A Review of Current Methods and Applications to Explore Metabolism in the Nematode. Metabolites 2021; 11:metabo11050284. [PMID: 33947148 PMCID: PMC8146106 DOI: 10.3390/metabo11050284] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolomics and lipidomics recently gained interest in the model organism Caenorhabditis elegans (C. elegans). The fast development, easy cultivation and existing forward and reverse genetic tools make the small nematode an ideal organism for metabolic investigations in development, aging, different disease models, infection, or toxicology research. The conducted type of analysis is strongly depending on the biological question and requires different analytical approaches. Metabolomic analyses in C. elegans have been performed using nuclear magnetic resonance (NMR) spectroscopy, direct infusion mass spectrometry (DI-MS), gas-chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS) or combinations of them. In this review we provide general information on the employed techniques and their advantages and disadvantages in regard to C. elegans metabolomics. Additionally, we reviewed different fields of application, e.g., longevity, starvation, aging, development or metabolism of secondary metabolites such as ascarosides or maradolipids. We also summarised applied bioinformatic tools that recently have been used for the evaluation of metabolomics or lipidomics data from C. elegans. Lastly, we curated metabolites and lipids from the reviewed literature, enabling a prototypic collection which serves as basis for a future C. elegans specific metabolome database.
Collapse
Affiliation(s)
- Liesa Salzer
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany;
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany;
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
- Correspondence:
| |
Collapse
|
15
|
Molenaars M, Schomakers BV, Elfrink HL, Gao AW, Vervaart MAT, Pras-Raves ML, Luyf AC, Smith RL, Sterken MG, Kammenga JE, van Kampen AHC, Janssens GE, Vaz FM, van Weeghel M, Houtkooper RH. Metabolomics and lipidomics in Caenorhabditis elegans using a single-sample preparation. Dis Model Mech 2021; 14:dmm047746. [PMID: 33653825 PMCID: PMC8106956 DOI: 10.1242/dmm.047746] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/23/2021] [Indexed: 12/29/2022] Open
Abstract
Comprehensive metabolomic and lipidomic mass spectrometry methods are in increasing demand; for instance, in research related to nutrition and aging. The nematode Caenorhabditis elegans is a key model organism in these fields, owing to the large repository of available C. elegans mutants and their convenient natural lifespan. Here, we describe a robust and sensitive analytical method for the semi-quantitative analysis of >100 polar (metabolomics) and >1000 apolar (lipidomics) metabolites in C. elegans, using a single-sample preparation. Our method is capable of reliably detecting a wide variety of biologically relevant metabolic aberrations in, for example, glycolysis and the tricarboxylic acid cycle, pyrimidine metabolism and complex lipid biosynthesis. In conclusion, we provide a powerful analytical tool that maximizes metabolic data yield from a single sample. This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Bauke V. Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Hyung L. Elfrink
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Arwen W. Gao
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Martin A. T. Vervaart
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Mia L. Pras-Raves
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Bioinformatics Laboratory, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Angela C. Luyf
- Bioinformatics Laboratory, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Reuben L. Smith
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Mark G. Sterken
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Antoine H. C. van Kampen
- Bioinformatics Laboratory, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Georges E. Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Frédéric M. Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
16
|
Spanier B, Laurençon A, Weiser A, Pujol N, Omi S, Barsch A, Korf A, Meyer SW, Ewbank JJ, Paladino F, Garvis S, Aguilaniu H, Witting M. Comparison of lipidome profiles of Caenorhabditis elegans-results from an inter-laboratory ring trial. Metabolomics 2021; 17:25. [PMID: 33594638 PMCID: PMC7886748 DOI: 10.1007/s11306-021-01775-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Lipidomic profiling allows 100s if not 1000s of lipids in a sample to be detected and quantified. Modern lipidomics techniques are ultra-sensitive assays that enable the discovery of novel biomarkers in a variety of fields and provide new insight in mechanistic investigations. Despite much progress in lipidomics, there remains, as for all high throughput "omics" strategies, the need to develop strategies to standardize and integrate quality control into studies in order to enhance robustness, reproducibility, and usability of studies within specific fields and beyond. OBJECTIVES We aimed to understand how much results from lipid profiling in the model organism Caenorhabditis elegans are influenced by different culture conditions in different laboratories. METHODS In this work we have undertaken an inter-laboratory study, comparing the lipid profiles of N2 wild type C. elegans and daf-2(e1370) mutants lacking a functional insulin receptor. Sample were collected from worms grown in four separate laboratories under standardized growth conditions. We used an UPLC-UHR-ToF-MS system allowing chromatographic separation before MS analysis. RESULTS We found common qualitative changes in several marker lipids in samples from the individual laboratories. On the other hand, even in this controlled experimental system, the exact fold-changes for each marker varied between laboratories. CONCLUSION Our results thus reveal a serious limitation to the reproducibility of current lipid profiling experiments and reveal challenges to the integration of such data from different laboratories.
Collapse
Affiliation(s)
- Britta Spanier
- Chair of Metabolic Programming, Technische Universität München, Gregor-Mendel-Straße 2, 85354, Freising, Germany
| | - Anne Laurençon
- UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université de Lyon, Lyon, France
| | - Anna Weiser
- Chair of Metabolic Programming, Technische Universität München, Gregor-Mendel-Straße 2, 85354, Freising, Germany
| | - Nathalie Pujol
- Turing Center for Living Systems, Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Shizue Omi
- Turing Center for Living Systems, Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Aiko Barsch
- Bruker Daltonics, Fahrenheitstr. 4, 28359, Bremen, Germany
| | - Ansgar Korf
- Bruker Daltonics, Fahrenheitstr. 4, 28359, Bremen, Germany
| | - Sven W Meyer
- Bruker Daltonics, Fahrenheitstr. 4, 28359, Bremen, Germany
| | - Jonathan J Ewbank
- Turing Center for Living Systems, Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Francesca Paladino
- Laboratoire de Biologie Moléculaire de la Cellule UMR5239 CNRS/ENS Lyon/UCBL/HCL Ecole Normale Supérieure de Lyon 46, allée d'Italie, 69364, Lyon cedex 07, France
| | - Steve Garvis
- Laboratoire de Biologie Moléculaire de la Cellule UMR5239 CNRS/ENS Lyon/UCBL/HCL Ecole Normale Supérieure de Lyon 46, allée d'Italie, 69364, Lyon cedex 07, France
| | - Hugo Aguilaniu
- UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université de Lyon, Lyon, France
- Instituto Serrapilheira, Rua Dias Ferreira 78, Leblon, Rio de Janeiro, Brazil
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
17
|
Zhao X, Wu G, Zhang W, Dong M, Xia Y. Resolving Modifications on Sphingoid Base and N-Acyl Chain of Sphingomyelin Lipids in Complex Lipid Extracts. Anal Chem 2020; 92:14775-14782. [PMID: 33052665 DOI: 10.1021/acs.analchem.0c03502] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sphingomyelins (SMs) are an essential class of lipids widely existing in different organisms. The sphingoid base and N-acyl chain are two building blocks which can undergo different types of modifications during lipogenesis, including desaturation, hydroxylation, and methyl branching. Current lipidomic analysis methods cannot provide detailed information on these structural motifs. Herein, we developed a tandem mass spectrometric method by harnessing radical-directed dissociation (RDD) from collision-induced dissociation (CID) of the bicarbonate anion adduct of SM ([M + HCO3]-). A major RDD channel produced a high-abundance fragment carrying the intact N-acyl chain, termed as "N-acyl fragment", allowing the assignment of the sphingoid base/N-acyl composition and relative quantitation of compositional isomers of SM at high sensitivity. RDD also produced intrachain fragments in lower abundances, which helped localization of methyl branching and hydroxylation in SM. The acetone Paternò-Büchi (PB) reaction was found to be capable of derivatizing the Δ4 carbon-carbon double bond (C═C) in sphingosine (SPH) base and producing C═C diagnostic ions upon CID, albeit at much lower efficiencies than those of the isolated C═C in alkyl chains. A liquid chromatography-mass spectrometry workflow was developed by incorporating MS2 CID of SM via [M + HCO3]- and PB-MS2 CID. The capability of profiling SM with detailed structural information was demonstrated by analyzing complex lipid extracts from porcine brain and Caenorhabditis elegans. These results provided visualization of the sphingoid base/N-acyl compositional isomers of SM lipids and revealed large structural diversity from each sample. These included identification of the sphingadiene base [d18:1(Δ4,14)], C═C location isomers in N-acyls, C-2 hydroxylation of N-acyls, and iso-methyl branched SPH base.
Collapse
Affiliation(s)
- Xue Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Gang Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wenpeng Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mengqiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Witting M. Suggestions for Standardized Identifiers for Fatty Acyl Compounds in Genome Scale Metabolic Models and Their Application to the WormJam Caenorhabditis elegans Model. Metabolites 2020; 10:E130. [PMID: 32231124 PMCID: PMC7241080 DOI: 10.3390/metabo10040130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/27/2022] Open
Abstract
Genome scale metabolic models (GSMs) are a representation of the current knowledge on the metabolism of a given organism or superorganism. They group metabolites, genes, enzymes and reactions together to form a mathematical model and representation that can be used to analyze metabolic networks in silico or used for analysis of omics data. Beside correct mass and charge balance, correct structural annotation of metabolites represents an important factor for analysis of these metabolic networks. However, several metabolites in different GSMs have no or only partial structural information associated with them. Here, a new systematic nomenclature for acyl-based metabolites such as fatty acids, acyl-carnitines, acyl-coenzymes A or acyl-carrier proteins is presented. This nomenclature enables one to encode structural details in the metabolite identifiers and improves human readability of reactions. As proof of principle, it was applied to the fatty acid biosynthesis and degradation in the Caenorhabditis elegans consensus model WormJam.
Collapse
Affiliation(s)
- Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, TU München, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| |
Collapse
|
19
|
Kim HM, Long NP, Yoon SJ, Anh NH, Kim SJ, Park JH, Kwon SW. Omics approach reveals perturbation of metabolism and phenotype in Caenorhabditis elegans triggered by perfluorinated compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135500. [PMID: 31759720 DOI: 10.1016/j.scitotenv.2019.135500] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 05/15/2023]
Abstract
Perfluorinated compounds (PFCs) are widely used in consumer products because of their remarkable endurance. However, their distinct stability prolongs degradation, resulting in bioaccumulation in the environment which is a severe environmental issue. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are principal constituents in the PFCs. In this study, the potential toxic effects of PFOS and PFOA were evaluated by adopting an in vivo animal model, Caenorhabditis elegans (C. elegans). The uptake of PFCs was confirmed by the quantification of internal concentration in C. elegans. Metabolomics and lipidomics were applied along with reproduction assay and reactive oxygen species (ROS) assay. In the C. elegans exposed to PFOS and PFOA, amino acids including phenylalanine, tyrosine, and tryptophan, were significantly affected. Also, various species that belong to glycerophospholipids and triacylglycerol were perturbed in the exposed groups. The alteration patterns of the lipidome in PFOS and PFOA treated C. elegans were significantly different. Additionally, dichlorodihydrofluorescein diacetate (H2DCFDA)-based ROS assay revealed increased internal ROS in PFOS (1.5 fold, p-value = 0.0067) and PFOA (1.46 fold, p-value = 0.0253) groups. Decrease in reproduction was confirmed in PFOS (0.53 fold, p-value < 0.0001) and PFOA (0.69 fold, p-value = 0.0003) by counting progeny. Collectively, our findings suggest that exposure to PFCs in C. elegans leads to perturbation of various phenotypes as well as crucial amino acid and lipid metabolism.
Collapse
Affiliation(s)
- Hyung Min Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Nguyen Phuoc Long
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Jun Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Jo Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Hill Park
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|