1
|
Kengwerere MK, Kenyaga JM, Xiao P, Gunaga SS, Scott FJ, Wutoh-Hughes X, Wang J, Lum B, Sun Y, Mentink-Vigier F, Wang T, Qiang W. Structural convergence and membrane interactions of Aβ 1-42 along the primary nucleation process studied by solid state NMR. Commun Chem 2025; 8:131. [PMID: 40307575 PMCID: PMC12043865 DOI: 10.1038/s42004-025-01537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
Non-specific disruption of cellular membranes induced by amyloidogenic aggregation of β-amyloid (Aβ) peptides remains a viable cytotoxicity mechanism in Alzheimer's disease (AD). Obtaining structural information about the intermediate states of Aβ-membrane systems and their molecular interactions is challenging due to their heterogeneity and low abundance. Here, we systematically study the molecular interactions of membrane-associated Aβ1-42 peptides using solid-state nuclear magnetic resonance (ssNMR) spectroscopy, focusing on the primary nucleation phase of the fibrillation process. Compared to the less pathogenic Aβ1-40 peptide, Aβ1-42 forms smaller oligomers prior to fibrillation, as evidenced by a higher overall population of lipid-proximity peptides. Aβ1-42 also exhibits more pronounced residue-specific contacts with phospholipid headgroups compared to Aβ1-40, with multiple lipid-proximity segments throughout the entire primary sequence. The segments involved in initial inter-strand assembly overlap with those located near the lipid headgroups in Aβ1-42, whereas these two segments are distinct in Aβ1-40. ssNMR spectroscopy with sensitivity enhanced by Dynamic nuclear polarization (DNP) confirmed local secondary structural convergence during the nucleation process of Aβ1-42 and the presence of long-range tertiary contacts at early stages of nucleation. Overall, our results provide a molecular-level understanding of the Aβ1-42 nucleation process in a membrane-like environment and its membrane-disrupting intermediates. The comparison between Aβ1-42 and Aβ1-40 explains its higher cytotoxicity from the perspective of membrane disruption.
Collapse
Affiliation(s)
- Maurine K Kengwerere
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA
| | - June M Kenyaga
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Peng Xiao
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Shubha S Gunaga
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Faith J Scott
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Xyomara Wutoh-Hughes
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA
| | - James Wang
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Brian Lum
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Yan Sun
- Small Scale System Integration and Packaging (S3IP), Binghamton University, Binghamton, NY, USA
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Wei Qiang
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA.
| |
Collapse
|
2
|
Middleton DA. NMR studies of amyloid interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:63-96. [PMID: 39645351 DOI: 10.1016/j.pnmrs.2024.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 12/09/2024]
Abstract
Amyloid fibrils are insoluble, fibrous nanostructures that accumulate extracellularly in biological tissue during the progression of several human disorders, including Alzheimer's disease (AD) and type 2 diabetes. Fibrils are assembled from protein monomers via the transient formation of soluble, cytotoxic oligomers, and have a common molecular architecture consisting of a spinal core of hydrogen-bonded protein β-strands. For the past 25 years, NMR spectroscopy has been at the forefront of research into the structure and assembly mechanisms of amyloid aggregates. Until the recent boom in fibril structure analysis by cryo-electron microscopy, solid-state NMR was unrivalled in its ability to provide atomic-level models of amyloid fibril architecture. Solution-state NMR has also provided complementary information on the early stages in the amyloid assembly mechanism. Now, both NMR modalities are proving to be valuable in unravelling the complex interactions between amyloid species and a diverse range of physiological metal ions, molecules and surfaces that influence the assembly pathway, kinetics, morphology and clearance in vivo. Here, an overview is presented of the main applications of solid-state and solution-state NMR for studying the interactions between amyloid proteins and biomembranes, glycosaminoglycan polysaccharides, metal ions, polyphenols, synthetic therapeutics and diagnostics. Key NMR methodology is reviewed along with examples of how to overcome the challenges of detecting interactions with aggregating proteins. The review heralds this new role for NMR in providing a comprehensive and pathologically-relevant view of the interactions between protein and non-protein components of amyloid. Coverage of both solid- and solution-state NMR methods and applications herein will be informative and valuable to the broad communities that are interested in amyloid proteins.
Collapse
Affiliation(s)
- David A Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| |
Collapse
|
3
|
Vugmeyster L, Au DF, Frazier B, Qiang W, Ostrovsky D. Rigidifying of the internal dynamics of amyloid-beta fibrils generated in the presence of synaptic plasma vesicles. Phys Chem Chem Phys 2024; 26:5466-5478. [PMID: 38277177 PMCID: PMC10956644 DOI: 10.1039/d3cp04824a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We investigated the changes in internal flexibility of amyloid-β1-40 (Aβ) fibrils grown in the presence of rat synaptic plasma vesicles. The fibrils are produced using a modified seeded growth protocol, in which the Aβ concentration is progressively increased at the expense of the decreased lipid to protein ratio. The morphologies of each generation are carefully assessed at several fibrils' growth time points using transmission electron microscopy. The side-chain dynamics in the fibrils is investigated using deuterium solid-state NMR measurements, with techniques spanning line shapes analysis and several NMR relaxation rates measurements. The dynamics is probed in the site-specific fashion in the hydrophobic C-terminal domain and the disordered N-terminal domain. An overall strong rigidifying effect is observed in comparison with the wild-type fibrils generated in the absence of the membranes. In particular, the overall large-scale fluctuations of the N-terminal domain are significantly reduced, and the activation energies of rotameric inter-conversion in methyl-bearing side-chains of the core (L17, L34, M35, V36), as well as the ring-flipping motions of F19 are increased, indicating a restricted core environment. Membrane-induced flexibility changes in Aβ aggregates can be important for the re-alignment of protein aggregates within the membrane, which in turn would act as a disruption pathway of the bilayers' integrity.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, CO, USA, 80204.
| | - Dan Fai Au
- Department of Chemistry, University of Colorado Denver, Denver, CO, USA, 80204.
| | - Bailey Frazier
- Department of Chemistry, University of Colorado Denver, Denver, CO, USA, 80204.
| | - Wei Qiang
- Department of Chemistry, Binghamton University, Binghamton, New York, USA, 13902
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver, CO, USA, 80204
| |
Collapse
|
4
|
Qiang W, Kengwerere M, Zhao W, Scott FJ, Wutoh-Hughes X, Wang T, Mentink-Vigier F. Heterotypic Interactions between the 40- and 42-Residue Isoforms of β-Amyloid Peptides on Lipid Bilayer Surfaces. ACS Chem Neurosci 2023; 14:4153-4162. [PMID: 37991929 PMCID: PMC10867818 DOI: 10.1021/acschemneuro.3c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Abstract
Co-aggregation involving different amyloidogenic sequences has been emphasized recently in the modified amyloid cascade hypothesis. Yet, molecular-level interactions between two predominant β-amyloid peptide sequences, Aβ40 and Aβ42, in the fibrillation process in membrane-mimicked environments remain unclear. Here, we report biophysical evidence that demonstrates the molecular-level interactions between Aβ40 and Aβ42 at the membrane-associated conucleation stage using dynamic nuclear polarization-enhanced solid-state NMR spectroscopy. These residue-specific contacts are distinguished from those reported in mature fibrils formed by either Aβ40 or Aβ42. Meanwhile, site-specific interactions between Aβ and lipid molecules and modulation of microsecond-time-scale lipid dynamics are observed, which may be responsible for the more rapid and significant membrane content leakage compared to that with Aβ40 alone.
Collapse
Affiliation(s)
- Wei Qiang
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Maurine Kengwerere
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Wancheng Zhao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Faith J. Scott
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Xyomara Wutoh-Hughes
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
5
|
Dobrynina EA, Zykova VA, Surovtsev NV. In-plane and out-of-plane gigahertz sound velocities of saturated and unsaturated phospholipid bilayers from cryogenic to room temperatures. Chem Phys Lipids 2023; 256:105335. [PMID: 37579988 DOI: 10.1016/j.chemphyslip.2023.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Here, we examined the gigahertz sound velocities of hydrated multibilayers of saturated (1,2-dimyristoyl-sn-glycero-3-phosphocholine, DMPC) and unsaturated (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC) phospholipids by Brillouin spectroscopy. Out-of-plane and in-plane (lateral) phonons were studied independently of each other. Similar strong temperature dependences of the sound velocities were found for phonons of both types. The sound velocities in the low-temperature limit were two-fold higher than that at physiological temperatures; a significant part of the changes in sound velocity occurs in the solid-like gel phase. The factors that may be involved in the peculiar behavior of sound velocity include changes in the chain conformational state, relaxation susceptibility, changes in the elastic modulus at infinite frequencies, and lateral packing of molecules.
Collapse
Affiliation(s)
- E A Dobrynina
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - V A Zykova
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - N V Surovtsev
- Institute of Automation and Electrometry, Russian Academy of Sciences, Novosibirsk 630090, Russia.
| |
Collapse
|
6
|
Lends A, Birlirakis N, Cai X, Daskalov A, Shenoy J, Abdul-Shukkoor MB, Berbon M, Ferrage F, Liu Y, Loquet A, Tan KO. Efficient 18.8 T MAS-DNP NMR reveals hidden side chains in amyloid fibrils. JOURNAL OF BIOMOLECULAR NMR 2023:10.1007/s10858-023-00416-5. [PMID: 37289306 DOI: 10.1007/s10858-023-00416-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Amyloid fibrils are large and insoluble protein assemblies composed of a rigid core associated with a cross-β arrangement rich in β-sheet structural elements. It has been widely observed in solid-state NMR experiments that semi-rigid protein segments or side chains do not yield easily observable NMR signals at room temperature. The reasons for the missing peaks may be due to the presence of unfavorable dynamics that interfere with NMR experiments, which result in very weak or unobservable NMR signals. Therefore, for amyloid fibrils, semi-rigid and dynamically disordered segments flanking the amyloid core are very challenging to study. Here, we show that high-field dynamic nuclear polarization (DNP), an NMR hyperpolarization technique typically performed at low temperatures, can circumvent this issue because (i) the low-temperature environment (~ 100 K) slows down the protein dynamics to escape unfavorable detection regime, (ii) DNP improves the overall NMR sensitivity including those of flexible side chains, and (iii) efficient cross-effect DNP biradicals (SNAPol-1) optimized for high-field DNP (≥ 18.8 T) are employed to offer high sensitivity and resolution suitable for biomolecular NMR applications. By combining these factors, we have successfully established an impressive enhancement factor of ε ~ 50 on amyloid fibrils using an 18.8 T/ 800 MHz magnet. We have compared the DNP efficiencies of M-TinyPol, NATriPol-3, and SNAPol-1 biradicals on amyloid fibrils. We found that SNAPol-1 (with ε ~ 50) outperformed the other two radicals. The MAS DNP experiments revealed signals of flexible side chains previously inaccessible at conventional room-temperature experiments. These results demonstrate the potential of MAS-DNP NMR as a valuable tool for structural investigations of amyloid fibrils, particularly for side chains and dynamically disordered segments otherwise hidden at room temperature.
Collapse
Affiliation(s)
- Alons Lends
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Nicolas Birlirakis
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Xinyi Cai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Asen Daskalov
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Jayakrishna Shenoy
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Muhammed Bilal Abdul-Shukkoor
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Mélanie Berbon
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Antoine Loquet
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France.
| | - Kong Ooi Tan
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
7
|
Liu J, Wu XL, Zeng YT, Hu ZH, Lu JX. Solid-state NMR studies of amyloids. Structure 2023; 31:230-243. [PMID: 36750098 DOI: 10.1016/j.str.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/10/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Amyloids have special structural properties and are involved in many aspects of biological function. In particular, amyloids are the cause or hallmarks of a group of notorious and incurable neurodegenerative diseases. The extraordinary high molecular weight and aggregation states of amyloids have posed a challenge for researchers studying them. Solid-state NMR (SSNMR) has been extensively applied to study the structures and dynamics of amyloids for the past 20 or more years and brought us tremendous progress in understanding their structure and related diseases. These studies, at the same time, helped to push SSNMR technical developments in sensitivity and resolution. In this review, some interesting research studies and important technical developments are highlighted to give the reader an overview of the current state of this field.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xia-Lian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu-Teng Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhi-Heng Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Xia Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
8
|
Ma L, Li X, Petersen RB, Peng A, Huang K. Probing the interactions between amyloidogenic proteins and bio-membranes. Biophys Chem 2023; 296:106984. [PMID: 36889133 DOI: 10.1016/j.bpc.2023.106984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Protein misfolding diseases (PMDs) in humans are characterized by the deposition of protein aggregates in tissues, including Alzheimer's disease, Parkinson's disease, type 2 diabetes, and amyotrophic lateral sclerosis. Misfolding and aggregation of amyloidogenic proteins play a central role in the onset and progression of PMDs, and these processes are regulated by multiple factors, especially the interaction between proteins and bio-membranes. Bio-membranes induce conformational changes in amyloidogenic proteins and affect their aggregation; on the other hand, the aggregates of amyloidogenic proteins may cause membrane damage or dysfunction leading to cytotoxicity. In this review, we summarize the factors that affect the binding of amyloidogenic proteins and membranes, the effects of bio-membranes on the aggregation of amyloidogenic proteins, mechanisms of membrane disruption by amyloidogenic aggregates, technical approaches for detecting these interactions, and finally therapeutic strategies targeting membrane damage caused by amyloidogenic proteins.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pharmacy, Wuhan Mental Health Center, Wuhan, China; Department of Pharmacy, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China.
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Kenyaga JM, Cheng Q, Qiang W. Early-Stage β-Amyloid-Membrane Interactions Modulate Lipid Dynamics and Influence Structural Interfaces and Fibrillation. J Biol Chem 2022; 298:102491. [PMID: 36115457 PMCID: PMC9556791 DOI: 10.1016/j.jbc.2022.102491] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/02/2022] Open
Abstract
Molecular interactions between β-amyloid (Aβ) peptide and membranes contribute to the neuronal toxicity of Aβ and the pathology of Alzheimer's disease (AD). Neuronal plasma membranes serve as biologically relevant environments for the Aβ aggregation process as well as affect the structural polymorphisms of Aβ aggregates. However, the nature of these interactions is unknown. Here, we utilized solid-state NMR spectroscopy to explore the site-specific interactions between Aβ peptides and lipids in synaptic plasma membranes at the membrane-associated nucleation stage. The key results show that different segments in the hydrophobic sequence of Aβ initiate membrane binding and inter-strand assembling. We demonstrate early-stage Aβ-lipid interactions modulate lipid dynamics, leading to more rapid lipid headgroup motion and reduced lateral diffusive motion. These early events influence the structural polymorphisms of yielded membrane-associated Aβ fibrils with distinct C-terminal quaternary interface structure compared to fibrils grown in aqueous solutions. Based on our results, we propose a schematic mechanism by which Aβ-lipid interactions drive membrane-associated nucleation processes, providing molecular insights into the early events of fibrillation in biological environments.
Collapse
Affiliation(s)
- June M Kenyaga
- Department of Chemistry, Binghamton University, the State University of New York
| | - Qinghui Cheng
- Department of Chemistry, Binghamton University, the State University of New York
| | - Wei Qiang
- Department of Chemistry, Binghamton University, the State University of New York.
| |
Collapse
|