1
|
Lin SL, Zhao F, Wei F, Shi YT, Wen JK, Yang C, Zhang HS, Li CC, Liu C, Ye WC, Cheng MJ, Wang L. Visible-Light Photocatalyzed Skeletal Rearrangement Enables the Synthesis of Highly Functionalized Xanthenes with Antitumor Activity. Angew Chem Int Ed Engl 2025; 64:e202420671. [PMID: 39714462 DOI: 10.1002/anie.202420671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Highly functionalized xanthenes possess an impressive range of bioactivities and daunting synthetic challenge due to their unique ring systems and stereocenters. Here, we report an unprecedented ketyl radicals-induced skeletal rearrangement reaction of spirodihydrobenzofurans, enabled by zero-valent iron as reducing agents via photoredox catalysis, facilitating the facile preparation of various highly functionalized xanthenes. The features of this protocol include high chemo- and regioselectivity, exceptionally mild conditions, a broad substrate scope, scalability to gram-scale quantities, and consistent delivery of good to excellent yields. Mechanistic studies rationalize the function of this zero-valent iron-based reactivity in radical generation. Notably, this reaction was applied to the first asymmetric total synthesis of the complex polycyclic xanthene ent-myrtucomvalones E-F. Moreover, this work led to the discovery of an agent with highly effective antiosteosarcoma activity in vitro and in vivo, potentially paving the way for the development of new xanthene-based candidates for osteosarcoma treatment.
Collapse
Affiliation(s)
- Shi-Lin Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632, P. R. China "
- Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Fen Zhao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632, P. R. China "
- Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Fen Wei
- Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Ying-Tong Shi
- Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Jing-Kai Wen
- Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Chao Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632, P. R. China "
- Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Hao-Shuo Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632, P. R. China "
- Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Chuang-Chuang Li
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Chang Liu
- Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632, P. R. China "
- Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Min-Jing Cheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632, P. R. China "
- Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| | - Lei Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632, P. R. China "
- Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
2
|
Li Y, Xue Q, Zhao X, Ma D. Total Syntheses of Diepoxy- ent-Kaurane Diterpenoids Enabled by a Bridgehead-Enone-Initiated Intramolecular Cycloaddition. J Am Chem Soc 2025; 147:1197-1206. [PMID: 39726142 DOI: 10.1021/jacs.4c15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Here, we report the enantioselective total syntheses of four diepoxy-ent-kaurane diterpenoids including (-)-Macrocalin B, (-)-Acetyl-macrocalin B, and (-)-Isoadenolin A and the revised structure of (-)-Phyllostacin I, which hinges on the strategic design of a regioselective and stereospecific trapping of a highly reactive [3.2.1]-bridgehead enone intermediate via a tethered intramolecular Diels-Alder reaction. Combined experimental and computational studies demonstrated that the novel bridgehead-enone-initiated intramolecular cycloaddition could proceed in a stepwise diradical mechanism. Although the key step partially led to unexpected [2 + 2]-cycloaddition outcomes, we ultimately implemented an unprecedented TiIII-catalyzed cyclobutane ring-opening-annulation radical cascade to reassemble a keystone pentacyclic core. Coupled with a sequence of organized oxidation-state manipulations and an efficient late-stage assembly of the C-7,20 hemiketal bridge, our strategy would streamline the synthetic design of diepoxy-ent-kaurane diterpenoids and pave the way for their modular syntheses as well as highlight the powerful utility of [3.2.1]-bridgehead enone intermediates in the construction of structural complexity.
Collapse
Affiliation(s)
- Yin Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qilin Xue
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiangbo Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Dawei Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
3
|
Wang XY, Wang YJ, Guo BW, Hou ZL, Zhang GX, Han Z, Liu Q, Yao GD, Song SJ. 13-Oxyingenol-dodecanoate inhibits the growth of non-small cell lung cancer cells by targeting ULK1. Bioorg Chem 2024; 147:107367. [PMID: 38626492 DOI: 10.1016/j.bioorg.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for 80-85% of all lung cancers. Euphorbia kansui yielded 13-oxyingenol-dodecanoate (13OD), an ingenane-type diterpenoid, which had a strong cytotoxic effect on NSCLC cells. The underlying mechanism and potential target, however, remained unknown. The study found that 13OD effectively inhibited the cell proliferation and colony formation of NSCLC cells (A549 and H460 cells), with less toxicity in normal human lung epithelial BEAS-2B cells. Moreover, 13OD can cause mitochondrial dysfunction, and apoptosis in NSCLC cells. Mechanistically, the transcriptomics results showed that differential genes were mainly enriched in the mTOR and AMPK signaling pathways, which are closely related to cellular autophagy, the related indicators were subsequently validated. Additionally, bafilomycin A1 (Baf A1), an autophagy inhibitor, reversed the mitochondrial damage caused by 13OD. Furthermore, the Omics and Text-based Target Enrichment and Ranking (OTTER) method predicted ULK1 as a potential target of 13OD against NSCLC cells. This hypothesis was further confirmed using molecular docking, the cellular thermal shift assay (CETSA), and Western blot analysis. Remarkably, ULK1 siRNA inhibited 13OD's toxic activity in NSCLC cells. In line with these findings, 13OD was potent and non-toxic in the tumor xenograft model. Our findings suggested a possible mechanism for 13OD's role as a tumor suppressor and laid the groundwork for identifying targets for ingenane-type diterpenoids.
Collapse
Affiliation(s)
- Xin-Ye Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yu-Jue Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Bo-Wen Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zi-Lin Hou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Gu-Xue Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zheng Han
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
4
|
Zhang Z, Qian X, Gu Y, Gui J. Controllable skeletal reorganizations in natural product synthesis. Nat Prod Rep 2024; 41:251-272. [PMID: 38291905 DOI: 10.1039/d3np00066d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Covering: 2016 to 2023The synthetic chemistry community is always in pursuit of efficient routes to natural products. Among the many available general strategies, skeletal reorganization, which involves the formation, cleavage, and migration of C-C and C-heteroatom bonds, stands out as a particularly useful approach for the efficient assembly of molecular skeletons. In addition, it allows for late-stage modification of natural products for quick access to other family members or unnatural derivatives. This review summarizes efficient syntheses of steroid, terpenoid, and alkaloid natural products that have been achieved by means of this strategy in the past eight years. Our goal is to illustrate the strategy's potency and reveal the spectacular human ingenuity demonstrated in its use and development.
Collapse
Affiliation(s)
- Zeliang Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xiao Qian
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Jinghan Gui
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
5
|
Wang Y, Gui J. Bioinspired Skeletal Reorganization Approach for the Synthesis of Steroid Natural Products. Acc Chem Res 2024. [PMID: 38301249 DOI: 10.1021/acs.accounts.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
ConspectusSteroids, termed "keys to life" by Rupert Witzmann, have a wide variety of biological activities, including anti-inflammatory, antishock, immunosuppressive, stress-response-enhancing, and antifertility activities, and steroid research has made great contributions to drug discovery and development. According to a chart compiled by the Njardarson group at the University of Arizona, 15 of the top 200 small-molecule drugs (by retail sales in 2022) are steroid-related compounds. Therefore, synthetic and medicinal chemists have long pursued the chemical synthesis of steroid natural products (SNPs) with diverse architectures, and vital progress has been achieved, especially in the twentieth century. In fact, several chemists have been rewarded with a Nobel Prize for original contributions to the isolation of steroids, the elucidation of their structures and biosynthetic pathways, and their chemical synthesis. However, in contrast to classical steroids, which have a 6/6/6/5-tetracyclic framework, rearranged steroids (i.e., abeo-steroids and secosteroids), which are derived from classical steroids by reorganization of one or more C-C bonds of the tetracyclic skeleton, have started to gain attention from the synthetic community only in the last two decades. These unique rearranged steroids have complex frameworks with high oxidation states, are rich in stereogenic centers, and have attractive biological activities, rendering them popular yet formidable synthetic targets.Our group has a strong interest in the efficient synthesis of SNPs and, drawing inspiration from nature, we have found that bioinspired skeletal reorganization (BSR) is an efficient strategy for synthesizing challenging rearranged steroids. Using this strategy, we recently achieved concise syntheses of five different kinds of SNPs (cyclocitrinols, propindilactone G, bufospirostenin A, pinnigorgiol B, and sarocladione) with considerably rearranged skeletons; our work also enabled us to reassign the originally proposed structure of sarocladione. In this Account, we summarize the proposed biosyntheses of these SNPs and describe our BSR approach for the rapid construction of their core frameworks. In the work described herein, information gleaned from the proposed biosyntheses allowed us to develop routes for chemical synthesis. However, in several cases, the synthetic precursors that we used for our BSR approach differed substantially from the intermediates in the proposed biosyntheses, indicating the considerable challenges we encountered during this synthetic campaign. It is worth mentioning that during our pursuit of concise and scalable syntheses of these natural products, we developed two methods for accessing synthetically challenging targets: a method for rapid construction of bridged-ring molecules by means of point-to-planar chirality transfer and a method for efficient construction of macrocyclic molecules via a novel ruthenium-catalyzed endoperoxide fragmentation. Our syntheses vividly demonstrate that consideration of natural product biosynthesis can greatly facilitate chemical synthesis, and we expect that the BSR approach will find additional applications in the efficient syntheses of other structurally complex steroid and terpenoid natural products.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinghan Gui
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
6
|
Li C, Lu F, Cai Y, Zhang C, Shao Y, Zhang Y, Liu XY, Qin Y. Catalytic Asymmetric Total Synthesis of (-)-Garryine via an Enantioselective Heck Reaction. J Am Chem Soc 2024; 146:1081-1088. [PMID: 38113465 DOI: 10.1021/jacs.3c12171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The first asymmetric total synthesis of the hexacyclic veatchine-type C20-diterpenoid alkaloid (-)-garryine is presented. Key steps include a Pd-catalyzed enantioselective Heck reaction, a radical cyclization, and a photoinduced C-H activation/oxazolidine formation sequence. Of note, a highly enantioselective Heck reaction developed in this work provides efficient access to 6/6/6 tricyclic compounds, in particular, containing a C19-functionalitiy, which is useful for diverse transformations.
Collapse
Affiliation(s)
- Chuang Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fei Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yukun Cai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cheng Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Shao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuanyuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiao-Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Das J, Ali W, Ghosh A, Pal T, Mandal A, Teja C, Dutta S, Pothikumar R, Ge H, Zhang X, Maiti D. Access to unsaturated bicyclic lactones by overriding conventional C(sp 3)-H site selectivity. Nat Chem 2023; 15:1626-1635. [PMID: 37563324 PMCID: PMC10624629 DOI: 10.1038/s41557-023-01295-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
Transition metal catalysis plays a pivotal role in transforming unreactive C-H bonds. However, regioselective activation of distal aliphatic C-H bonds poses a tremendous challenge, particularly in the absence of directing templates. Activation of a methylene C-H bond in the presence of methyl C-H is underexplored. Here we show activation of a methylene C-H bond in the presence of methyl C-H bonds to form unsaturated bicyclic lactones. The protocol allows the reversal of the general selectivity in aliphatic C-H bond activation. Computational studies suggest that reversible C-H activation is followed by β-hydride elimination to generate the Pd-coordinated cycloalkene that undergoes stereoselective C-O cyclization, and subsequent β-hydride elimination to provide bicyclic unsaturated lactones. The broad generality of this reaction has been highlighted via dehydrogenative lactonization of mid to macro ring containing acids along with the C-H olefination reaction with olefin and allyl alcohol. The method substantially simplifies the synthesis of important bicyclic lactones that are important features of natural products as well as pharmacoactive molecules.
Collapse
Affiliation(s)
- Jayabrata Das
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Wajid Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Animesh Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Tanay Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Astam Mandal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Chitrala Teja
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Suparna Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | | | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - Xinglong Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
8
|
Fu P, Liu T, Shen Y, Lei X, Xiao T, Chen P, Qiu D, Wang Z, Zhang Y. Divergent Total Syntheses of Illicium Sesquiterpenes through Late-Stage Skeletal Reorganization. J Am Chem Soc 2023; 145:18642-18648. [PMID: 37562030 DOI: 10.1021/jacs.3c06442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
We disclose unified, protecting-group-free, bioinspired divergent total syntheses of eight allo-cedrane and seco-prezizaane Illicium sesquiterpenes and formal syntheses of five anislactone sesquiterpenes. The efficiency of our approach derives from rapid access to the 15-carbon tricyclic carboxylic acid through cationic epoxide-ene cyclization and HAT oxygenation, transformation of this intermediate into three distinct tricyclic precursors via Lewis acid-mediated skeletal reorganizations, subsequent programmed oxidation level enhancement, and a biomimetic oxidation-initiated skeletal rearrangement cascade. Consequently, we created a synthetic correlation map of the three most prevalent Illicium sesquiterpene families.
Collapse
Affiliation(s)
- Pengfei Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Tao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yang Shen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xin Lei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Tianjie Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Peng Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Dongsheng Qiu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhen Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yandong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, iCHEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
9
|
Yang CS, Jiang HL, Mao HY, Zhang Y, Zhang YY, Dong XY. Strophioblin, a novel rearranged dinor-diterpenoid from Strophioblachia fimbricalyx. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Wu J, Li SJ, Jiang L, Ma XC, Lan Y, Shen L. UV light-driven late-stage skeletal reorganization to diverse limonoid frameworks: A proof of concept for photobiosynthesis. SCIENCE ADVANCES 2023; 9:eade2981. [PMID: 36706176 PMCID: PMC9882982 DOI: 10.1126/sciadv.ade2981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Late-stage skeletal reorganization (LSSR) is a type of fascinating organic transformation processes in natural product total synthesis. However, few facile and effective LSSR methodologies have hitherto been developed. Here, LSSR of limonoid natural products via photochemical cascades is first reported. Starting from xyloelves A and B, nine distinct limonoid products with five unprecedented scaffolds are generated. The photocascade pathways of these natural products and mechanistic rationale via intramolecular triplet energy transfer are revealed by quantum mechanical calculations. Most notably, ultraviolet light-driven transannular and stereoselective C → C 1,4-acyl migration is first found as a photochemical approach, particularly for LSSR of natural products. This approach holds promise for designing LSSR strategies to access bioactive cage-like molecules. Besides that, our findings provide a clear proof of concept for natural product photobiosynthesis. Xyloelf A, substantially ameliorating concanavalin A-induced liver injury in mice, could be used as a unique molecular template for hepatoprotective drug discovery.
Collapse
Affiliation(s)
- Jun Wu
- Guangdong Key Laboratory of Natural Medicine Research and Development, College of Pharmacy, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Shi-Jun Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Long Jiang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Chi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Yu Lan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Li Shen
- Guangdong Key Laboratory of Natural Medicine Research and Development, College of Pharmacy, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
11
|
Lübken D, Siekmeyer B, Kalesse M. Photochemical 1,3‐Acyl Shifts in Natural Product Synthesis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dennis Lübken
- Leibniz Universität Hannover: Leibniz Universitat Hannover Institut für Organische Chemie GERMANY
| | - Björn Siekmeyer
- Leibniz Universität Hannover: Leibniz Universitat Hannover Institute for Organic Chemistry Schneiderberg 1b 30167 Hannover GERMANY
| | - Markus Kalesse
- Leibniz Universität Hannover: Leibniz Universitat Hannover Organische Chemie Schneiderberg 1B 30167 Hannover GERMANY
| |
Collapse
|
12
|
Siekmeyer B, Lübken D, Bajerke K, Bernhardt B, Schreiner PR, Kalesse M. Total Synthesis of (-)-Antroalbocin A Enabled by a Strain Release-Controlled Photochemical 1,3-Acyl Shift. Org Lett 2022; 24:5812-5816. [PMID: 35912985 DOI: 10.1021/acs.orglett.2c02347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first bioinspired, enantioselective, and protecting group free total synthesis of the antibacterial sesquiterpenoid (-)-antroalbocin A (1) has been achieved in 12 steps (5.4% overall yield) from dimedone. An organocatalytic Robinson annulation gave rapid access to the tricyclic enone (19) as starting material for the photochemical domino process of deconjugation and sigmatropic 1,3-acyl shift. Computational data of this process indicate that the 1,3-acyl shift benefits from the highly strained 1,3-enone 8. The transformation of 8 to its bridged isomer 5 is exergonic and, therefore, enables an increased conversion compared to unstrained substrates.
Collapse
Affiliation(s)
- Björn Siekmeyer
- Institute of Organic Chemistry, Gottfried Wilhelm Leibniz University Hannover, 30167 Hannover, Germany
| | - Dennis Lübken
- Institute of Organic Chemistry, Gottfried Wilhelm Leibniz University Hannover, 30167 Hannover, Germany
| | - Kevin Bajerke
- Institute of Organic Chemistry, Gottfried Wilhelm Leibniz University Hannover, 30167 Hannover, Germany
| | - Bastian Bernhardt
- Institute of Organic Chemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Markus Kalesse
- Institute of Organic Chemistry, Gottfried Wilhelm Leibniz University Hannover, 30167 Hannover, Germany.,Centre of Biomolecular Drug Research (BMWZ), Gottfried Wilhelm Leibniz University Hannover, 30167 Hannover, Germany.,Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| |
Collapse
|
13
|
Zhou Y, Yan B, Yang Q, Long X, Zhang D, Luo R, Wang H, Sun H, Xue X, Zheng Y, Puno P. Harnessing Natural Products by a Pharmacophore-Oriented Semisynthesis Approach for the Discovery of Potential Anti-SARS-CoV-2 Agents. Angew Chem Int Ed Engl 2022; 61:e202201684. [PMID: 35484726 PMCID: PMC9074085 DOI: 10.1002/anie.202201684] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Indexed: 12/11/2022]
Abstract
Natural products possessing unique scaffolds may have antiviral activity but their complex structures hinder facile synthesis. A pharmacophore-oriented semisynthesis approach was applied to (-)-maoelactone A (1) and oridonin (2) for the discovery of anti-SARS-CoV-2 agents. The Wolff rearrangement/lactonization cascade (WRLC) reaction was developed to construct the unprecedented maoelactone-type scaffold during semisynthesis of 1. Further mechanistic study suggested a concerted mechanism for Wolff rearrangement and a water-assisted stepwise process for lactonization. The WRLC reaction then enabled the creation of a novel family by assembly of the maoelactone-type scaffold and the pharmacophore of 2, whereby one derivative inhibited SARS-CoV-2 replication in HPA EpiC cells with a low EC50 value (19±1 nM) and a high TI value (>1000), both values better than those of remdesivir.
Collapse
Affiliation(s)
- Yuan‐Fei Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West Chinaand Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of SciencesKunming650201China
| | - Bing‐Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West Chinaand Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of SciencesKunming650201China
| | - Qian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West Chinaand Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of SciencesKunming650201China
| | - Xin‐Yan Long
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of SciencesKunming Institute of ZoologyChinese Academy of SciencesKunming650223China
| | - Dan‐Qi Zhang
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai UniversityTianjin300071China
- Key Laboratory of Organofluorine ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences345 Lingling RoadShanghai200032China
| | - Rong‐Hua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of SciencesKunming Institute of ZoologyChinese Academy of SciencesKunming650223China
| | - Han‐Yu Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West Chinaand Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of SciencesKunming650201China
| | - Han‐Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West Chinaand Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of SciencesKunming650201China
| | - Xiao‐Song Xue
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai UniversityTianjin300071China
- Key Laboratory of Organofluorine ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences345 Lingling RoadShanghai200032China
| | - Yong‐Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of SciencesKunming Institute of ZoologyChinese Academy of SciencesKunming650223China
| | - Pema‐Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West Chinaand Yunnan Key Laboratory of Natural Medicinal ChemistryKunming Institute of BotanyUniversity of Chinese Academy of SciencesChinese Academy of SciencesKunming650201China
| |
Collapse
|
14
|
Zhou YF, Yan BC, Yang Q, Long XY, Zhang DQ, Luo RH, Wang HY, Sun HD, Xue XS, Zheng YT, Puno PT. Harnessing Natural Products by a Pharmacophore‐Oriented Semisynthesis Approach for the Discovery of Potential Anti‐SARS‐CoV‐2 Agents. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuan-Fei Zhou
- Kunming Institute of Botany Chinese Academy of Sciences State Key Laboratory of Phytochemistry and Plant Resources in West China CHINA
| | - Bing-Chao Yan
- Kunming Institute of Botany Chinese Academy of Sciences State Key Laboratory of Phytochemistry and Plant Resources in West China CHINA
| | - Qian Yang
- Kunming Institute of Botany Chinese Academy of Sciences State Key Laboratory of Phytochemistry and Plant Resources in West China CHINA
| | - Xin-Yan Long
- Kunming Institute of Zoology Chinese Academy of Sciences Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences CHINA
| | - Dan-Qi Zhang
- Nankai University State Key Laboratory of Elemento-organic Chemistry CHINA
| | - Rong-Hua Luo
- Kunming Institute of Zoology Chinese Academy of Sciences Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences CHINA
| | - Han-Yu Wang
- Kunming Institute of Botany Chinese Academy of Sciences State Key Laboratory of Phytochemistry and Plant Resources in West China CHINA
| | - Han-Dong Sun
- Kunming Institute of Botany Chinese Academy of Sciences State Key Laboratory of Phytochemistry and Plant Resources in West China CHINA
| | - Xiao-Song Xue
- Nankai University State Key Laboratory of Elemento-organic Chemistry CHINA
| | - Yong-Tang Zheng
- Kunming Institute of Zoology Chinese Academy of Sciences Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences CHINA
| | - Pema-Tenzin Puno
- Kunming Institute of Botany Chinese Academy of Sciences State Key Laboratory of Phytochemistry and Plant Resources in West China No. 132, Lanhei Road 650201 Kunming CHINA
| |
Collapse
|
15
|
Ao J, Sun C, Chen B, Yu N, Liang G. Total Synthesis of Isorosthin L and Isoadenolin I. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junli Ao
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Chao Sun
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Bolin Chen
- State Key Laboratory of Elemento-organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Na Yu
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Guangxin Liang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
16
|
Ma W, Zhu L, Zhang M, Lee C. Asymmetric Synthesis of AB Rings in ent-Kaurene Carbon Framework. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Abstract
The synthetic utility of rearrangement reactions in total synthesis for the rapid construction of core skeletons, the precise control of stereochemistry, and the identification of suitable synthons has been discussed.
Collapse
Affiliation(s)
- Lu Chen
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Guang Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Liansuo Zu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Wang Y, Tian H, Gui J. Gram-Scale Synthesis of Bufospirostenin A by a Biomimetic Skeletal Rearrangement Approach. J Am Chem Soc 2021; 143:19576-19586. [PMID: 34762408 DOI: 10.1021/jacs.1c10067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bufospirostenin A, which was the first spirostanol to be isolated from an animal, possesses an unprecedented 5/7/6/5/5/6 hexacyclic framework. Herein, we report two biomimetic syntheses of this natural product in just seven or nine steps from a readily available steroidal lactone. Key features of the syntheses include a photosantonin rearrangement and a Wagner-Meerwein rearrangement for rapid construction of the rearranged A/B ring system, as well as a cobalt-mediated olefin hydroselenylation and a selenide E2 reaction to accomplish a challenging olefin transposition. Our syntheses provide experimental support for the biogenetic pathway to 5(10→1)abeo-steroids that we have proposed.
Collapse
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China
| | - Hailong Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China
| | - Jinghan Gui
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai200032, China
| |
Collapse
|
19
|
Ao J, Sun C, Chen B, Yu N, Liang G. Total Synthesis of Isorosthin L and Isoadenolin I. Angew Chem Int Ed Engl 2021; 61:e202114489. [PMID: 34773349 DOI: 10.1002/anie.202114489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/05/2022]
Abstract
Total syntheses of two Isodon diterpenes, isorosthin L and isoadenolin I, are reported. The synthetic strategy features a quick assembly of two simple building blocks through a diastereoselective intermolecular aldol reaction and a subsequent radical cyclization for efficient construction of a rather complex advanced intermediate bearing a quaternary stereocenter present in all Isodon diterpenes. Oxidative cleavage of the C-C bond in the cyclopentane enabled the conversion to a lactone moiety which is desired for the construction of the molecular skeleton through reductive coupling with an aldehyde carbonyl group.
Collapse
Affiliation(s)
- Junli Ao
- Nankai University, College of Chemistry, 300071, Tianjin, CHINA
| | - Chao Sun
- ShanghaiTech University, School of Physical Science and Technology, 201210, Shanghai, CHINA
| | - Bolin Chen
- Nankai University, College of Chemistry, 300071, CHINA
| | - Na Yu
- ShanghaiTech University, School of Physical Science and Technology, 201210, Shanghai, CHINA
| | - Guangxin Liang
- ShanghaiTech University, School of Physical Science and Technology, 94 Weijin Road, Nankai District, 300071, Tianjin, CHINA
| |
Collapse
|
20
|
Liu Z, Hu J, Ding H. Electrochemical ODI-[5+2] Cascade for the Syntheses of Diversely Functionalized Bicyclo[3.2.1]octane Frameworks. Org Lett 2021; 23:6745-6749. [PMID: 34402626 DOI: 10.1021/acs.orglett.1c02321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A metal- and hypervalent iodine reagent-free electrochemical oxidative dearomatization-induced [5+2] cycloaddition/pinacol rearrangement cascade reaction was described. The electrosynthetic method showed strong tolerance for vinylphenols, ethynylphenols, and allenylphenols, which thus enabled the rapid assembly of diversely functionalized bicyclo[3.2.1]octanes in 41-95% yields and up to >20:1 dr. This protocol could be scaled up to gram amounts and should find wide application in complex natural product synthesis.
Collapse
Affiliation(s)
- Zhaobo Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jialei Hu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanfeng Ding
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Zhao X, Cacherat B, Hu Q, Ma D. Recent advances in the synthesis of ent-kaurane diterpenoids. Nat Prod Rep 2021; 39:119-138. [PMID: 34263890 DOI: 10.1039/d1np00028d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 2015 to 2020The ent-kaurane diterpenoids are integral parts of tetracyclic natural products that are widely distributed in terrestrial plants. These compounds have been found to possess interesting bioactivities, ranging from antitumor, antifungal and antibacterial to anti-inflammatory activities. Structurally, the different tetracyclic moieties of ent-kauranes can be seen as the results of intramolecular cyclizations, oxidations, C-C bond cleavages, degradation, or rearrangements, starting from their parent skeleton. During the past decade, great efforts have been made to develop novel strategies for synthesizing these natural products. The purpose of this review is to describe the recent advances in the total synthesis of ent-kaurane diterpenoids covering the period from 2015 to date.
Collapse
Affiliation(s)
- Xiangbo Zhao
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Bastien Cacherat
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Qifei Hu
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
22
|
Zhang Y, Ji Y, Franzoni I, Guo C, Jia H, Hong B, Li H. Enantioselective Total Synthesis of Berkeleyone A and Preaustinoids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Yunpeng Ji
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Ivan Franzoni
- NuChem Sciences 2350 rue Cohen Suite 201, Saint-Laurent Quebec H4R 2N6 Canada
| | - Chuning Guo
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Hongli Jia
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Benke Hong
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| |
Collapse
|
23
|
Zhang Y, Ji Y, Franzoni I, Guo C, Jia H, Hong B, Li H. Enantioselective Total Synthesis of Berkeleyone A and Preaustinoids. Angew Chem Int Ed Engl 2021; 60:14869-14874. [PMID: 33856105 DOI: 10.1002/anie.202104014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 01/09/2023]
Abstract
Herein we report the first enantioselective total synthesis of 3,5-dimethylorsellinic acid-derived meroterpenoids (-)-berkeleyone A and its five congeners ((-)-preaustinoids A, A1, B, B1, and B2) in 12-15 steps, starting from commercially available 2,4,6-trihydroxybenzoic acid hydrate. Based upon the recognition of latent symmetry within D-ring, our convergent synthesis features two critical reactions: 1) a symmetry-breaking, diastereoselective dearomative alkylation to assemble the entire carbon core, and 2) a Sc(OTf)3 -mediated sequential Krapcho dealkoxycarbonylation/carbonyl α-tert-alkylation to forge the intricate bicyclo[3.3.1]nonane framework. We also conducted our preliminary biomimetic investigations and uncovered a series of rearrangements (α-ketol, α-hydroxyl-β-diketone, etc.) responsible for the biomimetic diversification of (-)-berkeleyone A into its five preaustinoid congeners.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Yunpeng Ji
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Ivan Franzoni
- NuChem Sciences, 2350 rue Cohen Suite 201, Saint-Laurent, Quebec, H4R 2N6, Canada
| | - Chuning Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Hongli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Benke Hong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
24
|
Wang B, Liu Z, Tong Z, Gao B, Ding H. Asymmetric Total Syntheses of 8,9‐Seco‐
ent
‐kaurane Diterpenoids Enabled by an Electrochemical ODI‐[5+2] Cascade. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bingnan Wang
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Zhaobo Liu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Zhenzhong Tong
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Beiling Gao
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Hanfeng Ding
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
25
|
Wang B, Liu Z, Tong Z, Gao B, Ding H. Asymmetric Total Syntheses of 8,9-Seco-ent-kaurane Diterpenoids Enabled by an Electrochemical ODI-[5+2] Cascade. Angew Chem Int Ed Engl 2021; 60:14892-14896. [PMID: 33900670 DOI: 10.1002/anie.202104410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 12/11/2022]
Abstract
An electrochemical ODI-[5+2] cascade reaction was developed which enables the rapid assembly of diversely functionalized bicyclo[3.2.1]octadienones from sensitive ethynylphenols. By combining a directed retro-aldol/aldol process, a [2,3]-sigmatropic rearrangement, and an Al(O-iPr)3 -promoted reductive 1,3-transposition, the asymmetric total syntheses of five 8,9-seco-ent-kauranoids-(-)-shikoccin, (-)-O-methylshikoccin, (-)-epoxyshikoccin, (+)-O-methylepoxyshikoccin, and (+)-rabdo-hakusin-have been achieved in a concise and efficient manner.
Collapse
Affiliation(s)
- Bingnan Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhaobo Liu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhenzhong Tong
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Beiling Gao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
26
|
Yan B, Zhou M, Li J, Li X, He S, Zuo J, Sun H, Li A, Puno P. (−)‐Isoscopariusin A, a Naturally Occurring Immunosuppressive Meroditerpenoid: Structure Elucidation and Scalable Chemical Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bing‐Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Min Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Jian Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao‐Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Shi‐Jun He
- Laboratory of Immunopharmacology State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian‐Ping Zuo
- Laboratory of Immunopharmacology State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Han‐Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pema‐Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| |
Collapse
|
27
|
Affiliation(s)
- Kaiqi Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University Beijing 100871 China
| | - Fan Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University Beijing 100871 China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University Beijing 100871 China
- Peking‐Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
| |
Collapse
|
28
|
Yan B, Zhou M, Li J, Li X, He S, Zuo J, Sun H, Li A, Puno P. (−)‐Isoscopariusin A, a Naturally Occurring Immunosuppressive Meroditerpenoid: Structure Elucidation and Scalable Chemical Synthesis. Angew Chem Int Ed Engl 2021; 60:12859-12867. [PMID: 33620745 DOI: 10.1002/anie.202100288] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/29/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Bing‐Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Min Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Jian Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiao‐Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Shi‐Jun He
- Laboratory of Immunopharmacology State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jian‐Ping Zuo
- Laboratory of Immunopharmacology State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Han‐Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pema‐Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| |
Collapse
|
29
|
Long X, Wu H, Ding Y, Qu C, Deng J. Biosynthetically Inspired Divergent Syntheses of Merocytochalasans. Chem 2021. [DOI: 10.1016/j.chempr.2020.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Liu W, Hong B, Wang J, Lei X. New Strategies in the Efficient Total Syntheses of Polycyclic Natural Products. Acc Chem Res 2020; 53:2569-2586. [PMID: 33136373 DOI: 10.1021/acs.accounts.0c00531] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polycyclic natural products are an inexhaustible source of medicinal agents, and their complex molecular architecture renders challenging synthetic targets where innovative and effective approaches for their rapid construction are urgently required. The total synthesis of polycyclic natural products has witnessed exponential progression along with the emergence of new synthetic strategies and concepts, such as sequential C-H functionalizations, radical-based transformations, and functional group pairing strategies. Our group exerts continued interest in the construction of bioactive and structurally complex natural products as well as evaluation of the mode of action of these molecules. In this Account, we will showcase how these new synthetic strategies are employed and guide our total synthesis endeavors.During the last two decades, a series of remarkable advances in C-H functionalization have led to the emergence of many new approaches to directly functionalize C-H bonds into useful functional groups. These selective transformations have provided a great opportunity for the step- and atom-economical construction of key fragments in complex molecule synthesis. We recently furnished the total syntheses for polycyclic natural products: incarviatone A, chrysomycin A, polycarcin V, and gilvocarcin V by employing a multiple C-H bond functionalization strategy. The polysubstituted benzene or naphthalene skeleton was constructed through sequential and site-selective C-H functionalizations from readily available simple starting materials, which reduced the number of steps and streamlined synthesis.Recently, we have also completed the total syntheses for a number of skeletally diverse tetracyclic Isodon diterpenoids inspired by their biogenesis and radical-based retrosynthetic disconnections. Radical transformations are strategically and tactically utilized in our syntheses, and radical-based reactions, including organo-SOMO catalysis, Birch reduction, regioselective 1,6-dienyne reductive cyclization, visible-light-mediated Schenck ene reaction, and photoradical-mediated late-stage skeletal rearrangement, play significant roles in our synthetic endeavors. Protecting-group-free and scalable syntheses are also built into our work to achieve the "ideal" synthesis. Furthermore, our synthetic work reveals that late-stage skeletal rearrangement through a photo radical process is possible in a biological setting in complement with nature's carbocation chemistry in complex natural product biosynthesis.Lycopodium alkaloids are a large family of structurally unique polycyclic natural products with impressive biological activities. Owing to their fascinating polycyclic architectures and diverse biological activities, these alkaloids have continued to serve as targets as well as inspirations for the synthetic community for decades. To access these bioactive natural products or natural product-like molecules for biological exploration and drug discovery, we applied a novel functional group pairing strategy to furnish the total syntheses for several Lycopodium alkaloids and obtained numerous skeletally diverse compounds with structural complexity comparable to natural products.
Collapse
Affiliation(s)
- Weilong Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering and Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Benke Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering and Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Jin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering and Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering and Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Liu W, Yue Z, Wang Z, Li H, Lei X. Syntheses of Skeletally Diverse Tetracyclic Isodon Diterpenoid Scaffolds Guided by Dienyne Radical Cyclization Logic. Org Lett 2020; 22:7991-7996. [PMID: 33021378 DOI: 10.1021/acs.orglett.0c02920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report herein the diversity-oriented synthesis of various tetracyclic Isodon diterpenoid scaffolds guided by radical cyclization logic. Our substrate-based dienyne radical cyclization approach is distinctive from reagent-based rearrangement approaches that are generally applied in biosynthesis or previous synthetic studies. An unprecedented cyclization at C14 via 1,5-radical translocation/5-exo-trig cyclization is observed, which enriches our radical cyclization pattern. Furthermore, biological evaluations revealed that several new natural product-like compounds showed promising anticancer activities against various cancer cell lines.
Collapse
|
32
|
Xu Z, Zong Y, Qiao Y, Zhang J, Liu X, Zhu M, Xu Y, Zheng H, Fang L, Wang X, Lou H. Divergent Total Synthesis of Euphoranginol C, Euphoranginone D,
ent
‐Trachyloban‐3β‐ol,
ent
‐Trachyloban‐3‐one, Excoecarin E, and
ent
‐16α‐Hydroxy‐atisane‐3‐one. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ze‐Jun Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Yan Zong
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Ya‐Nan Qiao
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Jiao‐Zhen Zhang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Xuyuan Liu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Ming‐Zhu Zhu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Yuliang Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Hongbo Zheng
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Liyuan Fang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Xiao‐ning Wang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Hong‐Xiang Lou
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| |
Collapse
|
33
|
Xu Z, Zong Y, Qiao Y, Zhang J, Liu X, Zhu M, Xu Y, Zheng H, Fang L, Wang X, Lou H. Divergent Total Synthesis of Euphoranginol C, Euphoranginone D,
ent
‐Trachyloban‐3β‐ol,
ent
‐Trachyloban‐3‐one, Excoecarin E, and
ent
‐16α‐Hydroxy‐atisane‐3‐one. Angew Chem Int Ed Engl 2020; 59:19919-19923. [PMID: 32696611 DOI: 10.1002/anie.202009128] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Ze‐Jun Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Yan Zong
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Ya‐Nan Qiao
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Jiao‐Zhen Zhang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Xuyuan Liu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Ming‐Zhu Zhu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Yuliang Xu
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Hongbo Zheng
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Liyuan Fang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Xiao‐ning Wang
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| | - Hong‐Xiang Lou
- Department of Natural Products Chemistry Key Lab of Chemical Biology (MOE) School of Pharmaceutical Sciences Shandong University No. 44 West Wenhua Road Jinan 250012 P. R. China
| |
Collapse
|
34
|
Guo J, Li B, Ma W, Pitchakuntla M, Jia Y. Total Synthesis of (−)‐Glaucocalyxin A. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jiuzhou Guo
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Bo Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Weihao Ma
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Mallesham Pitchakuntla
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| |
Collapse
|
35
|
Guo J, Li B, Ma W, Pitchakuntla M, Jia Y. Total Synthesis of (−)‐Glaucocalyxin A. Angew Chem Int Ed Engl 2020; 59:15195-15198. [DOI: 10.1002/anie.202005932] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/17/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Jiuzhou Guo
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Bo Li
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Weihao Ma
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Mallesham Pitchakuntla
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| |
Collapse
|
36
|
Hong B, Luo T, Lei X. Late-Stage Diversification of Natural Products. ACS CENTRAL SCIENCE 2020; 6:622-635. [PMID: 32490181 PMCID: PMC7256965 DOI: 10.1021/acscentsci.9b00916] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 05/18/2023]
Abstract
Late-stage diversification of natural products is an efficient way to generate natural product derivatives for drug discovery and chemical biology. Benefiting from the development of site-selective synthetic methodologies, late-stage diversification of natural products has achieved notable success. This outlook will outline selected examples of novel methodologies for site-selective transformations of reactive functional groups and inert C-H bonds that enable late-stage diversification of complex natural products. Accordingly, late-stage diversification provides an opportunity to rapidly access various derivatives for modifying lead compounds, identifying cellular targets, probing protein-protein interactions, and elucidating natural product biosynthetic relationships.
Collapse
Affiliation(s)
- Benke Hong
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
- Department
of Chemical Biology, Peking University, Beijing 100871, China
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Synthetic
and Functional Biomolecules Center, Peking
University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
- Academy
for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaoguang Lei
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
- Department
of Chemical Biology, Peking University, Beijing 100871, China
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Synthetic
and Functional Biomolecules Center, Peking
University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
- E-mail:
| |
Collapse
|
37
|
Que Y, Shao H, He H, Gao S. Total Synthesis of Farnesin through an Excited‐State Nazarov Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001350] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yonglei Que
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Hao Shao
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| |
Collapse
|
38
|
Que Y, Shao H, He H, Gao S. Total Synthesis of Farnesin through an Excited‐State Nazarov Reaction. Angew Chem Int Ed Engl 2020; 59:7444-7449. [DOI: 10.1002/anie.202001350] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Yonglei Que
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Hao Shao
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical, ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug DevelopmentEast China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| |
Collapse
|
39
|
Gao J, Rao P, Xu K, Wang S, Wu Y, He C, Ding H. Total Synthesis of (−)-Rhodomollanol A. J Am Chem Soc 2020; 142:4592-4597. [DOI: 10.1021/jacs.0c00308] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jianhong Gao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Peirong Rao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Kaixiang Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Shuaifeng Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yufei Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Chi He
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
40
|
Wang J, Hong B, Hu D, Kadonaga Y, Tang R, Lei X. Protecting-Group-Free Syntheses of ent-Kaurane Diterpenoids: [3+2+1] Cycloaddition/Cycloalkenylation Approach. J Am Chem Soc 2020; 142:2238-2243. [DOI: 10.1021/jacs.9b13722] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Benke Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Dachao Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Yuichiro Kadonaga
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Ruyao Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
41
|
Li Y, Xu Z, Zhu R, Zhou J, Zong Y, Zhang J, Zhu M, Jin X, Qiao Y, Zheng H, Lou H. Probing the Interconversion of Labdane Lactones from the Chinese Liverwort Pallavicinia ambigua. Org Lett 2019; 22:510-514. [DOI: 10.1021/acs.orglett.9b04270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yi Li
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Zejun Xu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Rongxiu Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jinchuan Zhou
- School of Pharmacy, Linyi University, Linyi 276000, China
| | - Yan Zong
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Jiaozhen Zhang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Mingzhu Zhu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xueyang Jin
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yanan Qiao
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hongbo Zheng
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hongxiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
42
|
Wang J, Ma D. 6‐Methylenebicyclo[3.2.1]oct‐1‐en‐3‐one: A Twisted Olefin as Diels–Alder Dienophile for Expedited Syntheses of Four Kaurane Diterpenoids. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Junjie Wang
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
43
|
Wang J, Ma D. 6‐Methylenebicyclo[3.2.1]oct‐1‐en‐3‐one: A Twisted Olefin as Diels–Alder Dienophile for Expedited Syntheses of Four Kaurane Diterpenoids. Angew Chem Int Ed Engl 2019; 58:15731-15735. [DOI: 10.1002/anie.201909349] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Junjie Wang
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
44
|
Wu J, Kadonaga Y, Hong B, Wang J, Lei X. Enantioselective Total Synthesis of (+)‐Jungermatrobrunin A. Angew Chem Int Ed Engl 2019; 58:10879-10883. [DOI: 10.1002/anie.201903682] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Jinbao Wu
- School of Pharmaceutical Science and TechnologyTianjin University Tianjin 300072 China
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Yuichiro Kadonaga
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Benke Hong
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Jin Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| |
Collapse
|
45
|
Wu J, Kadonaga Y, Hong B, Wang J, Lei X. Enantioselective Total Synthesis of (+)‐Jungermatrobrunin A. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903682] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinbao Wu
- School of Pharmaceutical Science and TechnologyTianjin University Tianjin 300072 China
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Yuichiro Kadonaga
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Benke Hong
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Jin Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationDepartment of Chemical BiologyCollege of Chemistry and Molecular EngineeringSynthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life SciencesPeking University Beijing 100871 China
| |
Collapse
|
46
|
Tong B, Maimone TJ. Enlightening Terpene Synthesis. Chem 2019. [DOI: 10.1016/j.chempr.2019.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|