1
|
Rahman S, Khan R, Khan A, Ahmad W, Ilyas M, Tussupbekova G, Krykbaevna ZM. Synthesis and characterization of chitosanyl-N-(Naphthalene-1-yl-amine)acetimidamide as a novel adsorbent for effective removal of bromophenol blue from the aqueous medium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-15. [PMID: 40325997 DOI: 10.1080/09603123.2025.2502020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
In the present study, Chitosanyl-N-(Naphthalene-1-yl-amine)acetimidamide was synthesized and used for the removal of bromophenol blue dye (BPB). The modified chitosan is confirmed by different characterization tools, i.e. FTIR, SEM, CHN and XRD. FTIR spectroscopy confirmed synthesis of N-chitosanylacetamide. While morphology, nature, size of modified chitosan was verified by XRD and SEM. The effects of several operational parameters, including pH (3-9), adsorbent dosage (0.06-0.16), time (30-135), and initial dye concentration (20-90ppm), were investigated. Optimal conditions for BPB adsorption were determined as 90 minutes contact time, pH 4, 80 ppm concentration, and 0.1 g adsorbent dosage. The adsorption process was evaluated using kinetic models and isotherms, showing that BPB adsorption follow a pseudo-second-order kinetic model. The Langmuir isotherm provided the best fit for the experimental data. Synthesized material showed profound stability after consecutive adsorption desorption cycle of reuse and achieving 92% dye removal at each stage. This result suggested that prepared biosorbent have potential applications in the treatment of effluents from textile industries.
Collapse
Affiliation(s)
- Sobia Rahman
- Institute of Chemical Sciences, University of Peshawar, KPK, Pakistan
| | - Rasool Khan
- Institute of Chemical Sciences, University of Peshawar, KPK, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, KPK, Pakistan
| | - Waqas Ahmad
- Institute of Chemical Sciences, University of Peshawar, KPK, Pakistan
| | - Muhammad Ilyas
- Department of Environmental Sciences, International Islamic University, Islamabad, Pakistan
| | - Gulmira Tussupbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | |
Collapse
|
2
|
Fan W, Lv B, Jiao Y, Deng X, Fang C, Xing B. Preparation and application of composite magnetic flocculants for wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124626. [PMID: 39983575 DOI: 10.1016/j.jenvman.2025.124626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/26/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Wastewater treatment plays a vital role in protecting natural environments. Among the various wastewater treatment methods, flocculation achieves effective wastewater treatment, owing to its high efficiency, convenience, and cost-effectiveness. Compared to traditional flocculants, Composite magnetic flocculants have attracted significant attention due to their distinctive "core-shell" structure, magnetic flocculation mechanism and high efficiency recovery. This promotes sustainable development in wastewater treatment, highlighting the significant prospects for its application and potential advancement. This review begins by discussing the raw materials and treatment methods of composite magnetic flocculants and presenting common materials and associated preparation techniques. By combining the advantages of organic and inorganic components, disparate raw materials give flocculants different properties and flocculation efficiency. Through the comprehensive analysis of the flocculation mechanism, the flocculation efficiency of various wastewater treatment targets was elucidated, and the exceptional performance in overcoming steric hindrance was introduced. Subsequently, recycling approaches were summarized to determine the advantages and disadvantages in terms of recovery efficiency, operational difficulty, and impact on particle structure. Based on the current developmental status, this review provides a prospective outlook on future exploration trends in composite magnetic flocculants, valuable references, and theoretical foundations for related research and engineering practices.
Collapse
Affiliation(s)
- Wen Fan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; National Key Laboratory of Green Development of Coking Coal Resources, Pingdingshan, 467000, China
| | - Bo Lv
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; National Key Laboratory of Green Development of Coking Coal Resources, Pingdingshan, 467000, China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Yutong Jiao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiaowei Deng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; National Key Laboratory of Green Development of Coking Coal Resources, Pingdingshan, 467000, China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Chaojun Fang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; National Key Laboratory of Green Development of Coking Coal Resources, Pingdingshan, 467000, China
| | - Baolin Xing
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China
| |
Collapse
|
3
|
Yadav A, Raghav S, Jangid NK, Srivastava A, Jadoun S, Srivastava M, Dwivedi J. Myrica esculenta Leaf Extract-Assisted Green Synthesis of Porous Magnetic Chitosan Composites for Fast Removal of Cd (II) from Water: Kinetics and Thermodynamics of Adsorption. Polymers (Basel) 2023; 15:4339. [PMID: 37960019 PMCID: PMC10649474 DOI: 10.3390/polym15214339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023] Open
Abstract
Heavy metal contamination in water resources is a major issue worldwide. Metals released into the environment endanger human health, owing to their persistence and absorption into the food chain. Cadmium is a highly toxic heavy metal, which causes severe health hazards in human beings as well as in animals. To overcome the issue, current research focused on cadmium ion removal from the polluted water by using porous magnetic chitosan composite produced from Kaphal (Myrica esculenta) leaves. The synthesized composite was characterized by BET, XRD, FT-IR, FE-SEM with EDX, and VSM to understand the structural, textural, surface functional, morphological-compositional, and magnetic properties, respectively, that contributed to the adsorption of Cd. The maximum Cd adsorption capacities observed for the Fe3O4 nanoparticles (MNPs) and porous magnetic chitosan (MCS) composite were 290 mg/g and 426 mg/g, respectively. Both the adsorption processes followed second-order kinetics. Batch adsorption studies were carried out to understand the optimum conditions for the fast adsorption process. Both the adsorbents could be regenerated for up to seven cycles without appreciable loss in adsorption capacity. The porous magnetic chitosan composite showed improved adsorption compared to MNPs. The mechanism for cadmium ion adsorption by MNPs and MCS has been postulated. Magnetic-modified chitosan-based composites that exhibit high adsorption efficiency, regeneration, and easy separation from a solution have broad development prospects in various industrial sewage and wastewater treatment fields.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| | - Sapna Raghav
- Department of Chemistry, Nirankari Baba Gurubachan Singh Memorial College, Sohna 122103, India
| | | | - Anamika Srivastava
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| | - Sapana Jadoun
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General, Velásquez, Arica 1775, Chile;
| | - Manish Srivastava
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| |
Collapse
|
4
|
Recent Application Prospects of Chitosan Based Composites for the Metal Contaminants Wastewater Treatment. Polymers (Basel) 2023; 15:polym15061453. [PMID: 36987232 PMCID: PMC10057141 DOI: 10.3390/polym15061453] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Heavy metals, known for their toxic nature and ability to accumulate and magnify in the food chain, are a major environmental concern. The use of environmentally friendly adsorbents, such as chitosan (CS)—a biodegradable cationic polysaccharide, has gained attention for removing heavy metals from water. This review discusses the physicochemical properties of CS and its composites and nanocomposites and their potential application in wastewater treatment.
Collapse
|
5
|
Gao B, Liu K, Li F, Fang L. A chrysotile-based Fe/Ti nanoreactor enables efficient arsenic capture for sustainable environmental remediation. WATER RESEARCH 2023; 231:119613. [PMID: 36682237 DOI: 10.1016/j.watres.2023.119613] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Iron-based materials for arsenic (As) immobilization in practical groundwater and soil remediation suffer from a low removal capacity and an insufficient long-term stability. Herein, a unique chrysotile-based nanoreactor has been developed by incorporating iron/titanium oxides into the cylindrical cavity of chrysotile (TiFe-Chy), providing sufficient internal reaction sites for As immobilization. Results reveal that the adsorption capacities of TiFe-Chy for As(III) and As(V) are considerably higher than the commonly used amendments, i.e., layered double hydroxide (LDH) and Phoslock®, respectively. More importantly, TiFe-Chy exhibits a strong anti-interference capability of As immobilization in soils compared to those commercial products due to this unique incorporation approach. Fixed-bed leaching experiments indciate that this TiFe-Chy nanoreactor can efficiently decrase the As(III) and As(V) concentrations by 81.8-87.3% within a period of ten years, significantly improving the long-term stability of As immobilization in soils. Life cycle assessment analysis reveals that TiFe-Chy can reduce negative environmental impacts (such as carbon emissions), resulting in a low cost for soils and groundwater remediation. The findings of this work open a new avenue for sustainable heavy metal(loid)s remediation in groundwater and soils.
Collapse
Affiliation(s)
- Baolin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Kai Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
6
|
Wang K, Zhang F, Xu K, Che Y, Qi M, Song C. Modified magnetic chitosan materials for heavy metal adsorption: a review. RSC Adv 2023; 13:6713-6736. [PMID: 36860541 PMCID: PMC9969337 DOI: 10.1039/d2ra07112f] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Magnetic chitosan materials have the characteristics of both chitosan and magnetic particle nuclei, showing the characteristics of easy separation and recovery, strong adsorption capacity and high mechanical strength, and have received extensive attention in adsorption, especially in the treatment of heavy metal ions. In order to further improve its performance, many studies have modified magnetic chitosan materials. This review discusses the strategies for the preparation of magnetic chitosan using coprecipitation, crosslinking, and other methods in detail. Besides, this review mainly summarizes the application of modified magnetic chitosan materials in the removal of heavy metal ions in wastewater in recent years. Finally, this review also discusses the adsorption mechanism, and puts forward the prospect of the future development of magnetic chitosan in wastewater treatment.
Collapse
Affiliation(s)
- Ke Wang
- Marine College, Shandong University Weihai 264209 China
| | - Fanbing Zhang
- Marine College, Shandong University Weihai 264209 China
| | - Kexin Xu
- Marine College, Shandong University Weihai 264209 China
| | - Yuju Che
- Marine College, Shandong University Weihai 264209 China
| | - Mingying Qi
- Marine College, Shandong University Weihai 264209 China
| | - Cui Song
- Marine College, Shandong University Weihai 264209 China
- Shandong University-Weihai Research Institute of Industrial Technology Weihai 264209 China
| |
Collapse
|
7
|
Equilibrium Isotherms and Kinetic Effects during the Adsorption of Pb(II) on Titanosilicates Compared with Natural Zeolite Clinoptilolite. WATER 2022. [DOI: 10.3390/w14142152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study focuses on the adsorption of Pb(II) by the H-form of titanosilicates (ETS-4, GTS-1) and clinoptilolite. The H-forms were prepared by first exchanging the extra-framework cations—Na+, K+, Ca2+, etc.—with NH4+, and by subsequent thermal treatment for obtaining H-forms. The purity and thermal behaviour of the initial, NH4+, and H-forms of ETS-4, GTS-1, and clinoptilolite were analysed by powder XRD, while the morphology and size of the particles were determined by SEM. The chemical composition of the solids and the solutions was obtained by WDXRF and ICP-OES, respectively. The kinetics research of the Pb(II) adsorption processes was based on WDXRF and ICP-OES. The H-forms of the materials displayed favourable properties for the adsorption of Pb(II). The best behaviour in this respect was demonstrated by GTS-1 when compared to ETS-4 and clinoptilolite.
Collapse
|
8
|
Chen W, Zhang F, Tang Q, Du B, Ma D, Zhao Z, Fan L, Luo H, Zhao Z, Huang X, Zheng H. Evaluating the performance of bridging-assembly chelating flocculant for heavy metals removal: Role of branched architectures. CHEMOSPHERE 2022; 289:133260. [PMID: 34906524 DOI: 10.1016/j.chemosphere.2021.133260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/06/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
A novel chelating flocculant with branched architectures, polyacrylamide grafted maleoyl chitosan-mercaptoacetic acid (PAM-g-M(CS-MA)), was successfully fabricated using maleic anhydride as the "bridge" between chitosan and polyacrylamide. The functional groups and structural characteristic information of copolymers were obtained via characterization analysis. Flocculation performance was systematically investigated via purifying a series of simulated wastewater containing Cu or Cd. The properties of the flocs were studied to give in-depth evidences for the role of chelation groups and branched architectures in flocculation. Results indicated that PAM-g-M(CS-MA) showed excellent flocculation capacity for heavy metals in high concentrations and was superior to other chelating flocculants. The maximum flocculation efficiency of Cu (93.90%) and Cd (92.47%) was achieved by PAM-g-M(CS-MA) at pH 7, dosage of 100 mg L-1 and stirring speed of 90 rpm. The flocculation mechanisms of PAM-g-M(CS-MA) were deeply explored through the analyses of floc properties. The strong synergistic chelation of mercapto, carboxyl, amide and hydroxyl groups predominated for the capturing of heavy metals; and the branched architectures facilitated the formation of large and stable flocs via adsorption and bridging-furl effect. This study provided a solid foundation for the fabrication of flocculants for heavy metal wastewater treatment.
Collapse
Affiliation(s)
- Wei Chen
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China.
| | - Fengjiao Zhang
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Qian Tang
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Bin Du
- Admission and Employment Office, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dandan Ma
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Zhihan Zhao
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Liangqian Fan
- Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China
| | - Hongbing Luo
- Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China
| | - Zhongguo Zhao
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Xing Huang
- College of Architecture and Urban-Rural Planning, Sichuan Agricultural University, Chengdu, 611830, China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
9
|
Babakhani A, Sartaj M. Competitive adsorption of nickel(II) and cadmium(II) ions by chitosan cross-linked with sodium tripolyphosphate. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2021.1966424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ataollah Babakhani
- Faculty of Engineering, Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Majid Sartaj
- Faculty of Engineering, Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
10
|
Malek NNA, Jawad AH, Ismail K, Razuan R, ALOthman ZA. Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: Adsorption parametric optimization. Int J Biol Macromol 2021; 189:464-476. [PMID: 34450144 DOI: 10.1016/j.ijbiomac.2021.08.160] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/13/2023]
Abstract
A magnetic biocomposite blend of chitosan-polyvinyl alcohol/fly ash (m-Cs-PVA/FA) was developed by adding fly ash (FA) microparticles into the polymeric matrix of magnetic chitosan-polyvinyl alcohol (m-Cs-PVA). The effectiveness of m-Cs-PVA/FA as an adsorbent to remove textile dye (reactive orange 16, RO16) from aquatic environment was evaluated. The optimum adsorption key parameters and their significant interactions were determined by Box-Behnken Design (BBD). The analysis of variance (ANOVA) indicates the significant interactions can be observed between m-Cs-PVA/FA dose with solution pH, and m-Cs-PVA/FA dose with working temperature. Considering these significant interactions, the highest removal of RO16 (%) was found 90.3% at m-Cs-PVA/FA dose (0.06 g), solution pH (4), working temperature (30 °C), and contact time (17.5 min). The results of adsorption kinetics revealed that the RO16 adsorption was better described by the pseudo-second-order model. The results of adsorption isotherm indicated a multilayer adsorption process as well described by Freundlich model with maximum adsorption capacity of 123.8 mg/g at 30 °C. An external magnetic field can be easily applied to recover the adsorbent (m-Cs-PVA/FA). The results supported that the synthesized m-Cs-PVA/FA presents itself as an effective and promising adsorbent for textile dye with preferable adsorption capacity and separation ability during and after the adsorption process.
Collapse
Affiliation(s)
- Nurul Najwa Abd Malek
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Khudzir Ismail
- Faculty of Applied Sciences, Universiti Teknologi MARA, 02600 Arau, Perlis, Malaysia
| | - R Razuan
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Zeid A ALOthman
- Chemistry Department, P.O. Box 2455, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Gupta A, Sharma V, Sharma K, Kumar V, Choudhary S, Mankotia P, Kumar B, Mishra H, Moulick A, Ekielski A, Mishra PK. A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4702. [PMID: 34443225 PMCID: PMC8398132 DOI: 10.3390/ma14164702] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 02/05/2023]
Abstract
Heavy metal is released from many industries into water. Before the industrial wastewater is discharged, the contamination level should be reduced to meet the recommended level as prescribed by the local laws of a country. They may be poisonous or cancerous in origin. Their presence does not only damage people, but also animals and vegetation because of their mobility, toxicity, and non-biodegradability into aquatic ecosystems. The review comprehensively discusses the progress made by various adsorbents such as natural materials, synthetic, agricultural, biopolymers, and commercial for extraction of the metal ions such as Ni2+, Cu2+, Pb2+, Cd2+, As2+ and Zn2+ along with their adsorption mechanisms. The adsorption isotherm indicates the relation between the amount adsorbed by the adsorbent and the concentration. The Freundlich isotherm explains the effective physical adsorption of the solute particle from the solution on the adsorbent and Langmuir isotherm gives an idea about the effect of various factors on the adsorption process. The adsorption kinetics data provide valuable insights into the reaction pathways, the mechanism of the sorption reaction, and solute uptake. The pseudo-first-order and pseudo-second-order models were applied to describe the sorption kinetics. The presented information can be used for the development of bio-based water treatment strategies.
Collapse
Affiliation(s)
- Archana Gupta
- Department of Chemistry, MCM DAV College for Women, Sector 36,
Chandigarh 160036, India;
| | - Vishal Sharma
- Institute of Forensic Science and Criminology, Panjab University, Chandigarh 160014, India; (S.C.); (P.M.)
| | - Kashma Sharma
- Department of Chemistry, DAV College, Sector-10, Chandigarh 160011, India;
| | - Vijay Kumar
- Department of Physics, National Institute of Technology Srinagar, Srinagar 190006, India;
| | - Sonal Choudhary
- Institute of Forensic Science and Criminology, Panjab University, Chandigarh 160014, India; (S.C.); (P.M.)
| | - Priyanka Mankotia
- Institute of Forensic Science and Criminology, Panjab University, Chandigarh 160014, India; (S.C.); (P.M.)
| | - Brajesh Kumar
- Post Graduate Department of Chemistry, TATA College, Jharkhand, Chaibasa 833202, India;
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui 171103, Ecuador
| | - Harshita Mishra
- Smart Society Research Team, Faculty of Business and Economics, Mendel University in Brno, 61300 Brno, Czech Republic; (H.M.); (A.M.)
| | - Amitava Moulick
- Smart Society Research Team, Faculty of Business and Economics, Mendel University in Brno, 61300 Brno, Czech Republic; (H.M.); (A.M.)
| | - Adam Ekielski
- Department of Production Engineering, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Pawan Kumar Mishra
- Faculty of Business and Economics, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
12
|
Zhang X, Du T, Jia H. Efficient Activation of Coal Fly Ash for Silica and Alumina Leaches and the Dependence of Pb(II) Removal Capacity on the Crystallization Conditions of Al-MCM-41. Int J Mol Sci 2021; 22:6540. [PMID: 34207149 PMCID: PMC8233738 DOI: 10.3390/ijms22126540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/01/2023] Open
Abstract
In this study, four different coal fly ashes (CFAs) were used as raw materials of silica and alumina for the preparation of the alumina-containing Mobil Composition of Matter No. 41 (Al-MCM-41) and the exploration of an activation strategy that is efficient and universal for various CFAs. Alkaline hydrothermal and alkaline fusion activations proceeded at different temperatures to determine the best treatment parameters. We controlled the pore structure and surface hydroxyl density of the CFA-derived Al-MCM-41 by changing the crystallization temperature and aging time. The products were characterized by small-angle X-ray diffraction, nitrogen isotherms, Fourier-transform infrared spectroscopy, 29Si silica magic-angle spinning nuclear magnetic resonance, and transmission electron microscopy, and they were then grafted with thiol groups to remove Pb(II) from aqueous solutions. This paper innovatively evaluates the CFA activation strategies using energy consumption analysis and determines the optimal activation methodology and parameters. This paper also unveils the effect of the crystallization condition of Al-MCM-41 on its subsequent Pb(II) removal capacity. The results show that the appropriate selection of crystallization parameters can considerably increase the removal capacity over Pb(II), providing a new path to tackle the ever-increasing concern of aquic heavy-metal pollution.
Collapse
Affiliation(s)
- Xu Zhang
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China; (X.Z.); (H.J.)
- Simulation Center, Shenyang Institute of Engineering, Shenyang 110136, China
| | - Tao Du
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China; (X.Z.); (H.J.)
| | - He Jia
- State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China; (X.Z.); (H.J.)
| |
Collapse
|
13
|
Seidi F, Reza Saeb M, Huang Y, Akbari A, Xiao H. Thiomers of Chitosan and Cellulose: Effective Biosorbents for Detection, Removal and Recovery of Metal Ions from Aqueous Medium. CHEM REC 2021; 21:1876-1896. [PMID: 34101343 DOI: 10.1002/tcr.202100068] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Removal of toxic metal ions using adsorbents is a well-known strategy for water treatment. While chitosan and cellulose can adsorb weakly some types of metals, incorporating thiols as metal chelating agents can improve their sorption behaviors significantly. Presented in this review are the various chemical modification strategies applicable for thiolation of chitosan and cellulose in the forms of mercaptans, xanthates and dithiocarbamates. Moreover, much attention has been paid to the specific strategies for controlling the thiolation degree and characterization approaches for establishing the structure-property relationship. Also, the kinetics and isotherm models that elucidate the adsorption processes and mechanisms induced by the thiomers have been explained. These thiomers have found great potentials in the applications associated with metal removal, metal recovery and metal detection.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037, Nanjing, China
| | | | - Yang Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037, Nanjing, China
| | - Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, E3B 5A3, Fredericton, New Brunswick, Canada
| |
Collapse
|
14
|
Pomegranate-like MnO2@PANI sub-microspheres: Synthesis and application for Pb(II) ions removal from water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Abhinaya M, Parthiban R, Kumar PS, Vo DVN. A review on cleaner strategies for extraction of chitosan and its application in toxic pollutant removal. ENVIRONMENTAL RESEARCH 2021; 196:110996. [PMID: 33716028 DOI: 10.1016/j.envres.2021.110996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Existence of human beings in this world require a cleaner environment, in which, water is the main requirement for living. Owing to the considerable development in civilisation and considerable population explosion, an increase in the contamination of natural water resources by means of non-biodegradable contaminants like heavy metals is observed thereby increasing the need for treatment of water before usage. Despite the existence of specific limits for disposal of heavy metals in water resources, studies still show high contamination of heavy metals in all these water resources. This review provides a brief note on sources and toxicity of different heavy metals in various oxidation states, their effects as well as highlights the numerous available and advanced techniques for heavy metals removal. Of all techniques adsorption is found to be beneficial as it doesn't inculcate any secondary pollutants to the environment. Additionally, this article has investigated the advantages of polymer nanocomposites in adsorption and mainly focused on biopolymer chitosan owing to its abundance in natural environment. The cleaner techniques for the extraction of chitosan and its functionalisation using different types of nanofillers are comprehensively discussed in this review. This article suggests a better alternative for conventional adsorbents as well as aids in remediation of wastes.
Collapse
Affiliation(s)
- M Abhinaya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - R Parthiban
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
16
|
Le QTN, Vivas EL, Cho K. Oxalated blast-furnace slag for the removal of Cobalt(II) ions from aqueous solutions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Mahmoud ME, Nabil GM, Elweshahy SM. Novel NTiO2-chitosan@NZrO2-chitosan nanocomposite for effective adsorptive uptake of trivalent gadolinium and samarium ions from water. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.09.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Han P, Li Z, Wei X, Tang L, Li M, Liang Z, Yin X, Wei S. Ion-imprinted thermosensitive chitosan derivative for heavy metal remediation. Carbohydr Polym 2020; 248:116732. [DOI: 10.1016/j.carbpol.2020.116732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 12/27/2022]
|
19
|
Szymura A, Ilyas S, Horn M, Neundorf I, Mathur S. Multivalent magnetic nanoaggregates with unified antibacterial activity and selective uptake of heavy metals and organic pollutants. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Shahraki S, Delarami HS, Khosravi F, Nejat R. Improving the adsorption potential of chitosan for heavy metal ions using aromatic ring-rich derivatives. J Colloid Interface Sci 2020; 576:79-89. [DOI: 10.1016/j.jcis.2020.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 10/24/2022]
|
21
|
Flocculation Performance and Kinetics of Magnetic Polyacrylamide Microsphere under Different Magnetic Field Strengths. J CHEM-NY 2020. [DOI: 10.1155/2020/1579424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study, the flocculation performance and kinetics of magnetic cationic polyacrylamide (MCPAM) microspheres, compared with cationic polyacrylamide (CPAM), were systematically investigated under different magnetic field strengths. Flocculation performance was observed by jar test experiment. The density of flocs was estimated by the determination of floc settlement velocity and image analysis. The frequency distribution of floc size was measured with a Malvern Mastersizer instrument. When the diatomite suspension was treated by MCPAM and CPAM, the residual diatomite turbidity was 16.28 NTU and 244.13 NTU, respectively. The maximum turbidity removal efficiency of MCPAM was about 99.65% under 1000 Gauss magnetic field, which was higher than that (94.75%) of CPAM. The synergy of gravitational and magnetic fields for MCPAM promoted the formation of larger flocs with higher growth rates compared with CPAM. The effective density range of flocs in the MCPAM flocculation was increased to 10–252 kg m−3. The kinetic constants were calculated by monitoring the frequency of floc collisions. The increase of kinetic constant (k) to 25.81 × 10−11 s−1 suggested that interaction of contact and collision between magnetic flocs was sufficient. According to the evolution of the size and density of flocs under the synergy of gravitational and magnetic fields, the magnetic flocculation rate equation dN/dt=−1/9μρ−ρlg+ρkmHdH/dXai2−aj2−ai2e9μt/2ai2ρ+aj2e9μt/2aj2ρai+aj2 was derived. The study of magnetic flocculation kinetics can provide theoretical support for magnetic flocculation and is critical for the analysis of solid-liquid separation processes.
Collapse
|
22
|
Joshiba GJ, Kumar PS, Christopher FC, Pooja G, Kumar VV. Fabrication of novel amine-functionalized magnetic silica nanoparticles for toxic metals: kinetic and isotherm modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27202-27210. [PMID: 31041712 DOI: 10.1007/s11356-019-05186-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
In this research, an amine-functionalized magnetic silica nanosorbent was prepared using the co-precipitation technique, and this nanosorbent can be effortlessly detached using an external magnetic field. FTIR and SEM analyses identified that the nanosorbent holds extraordinary adsorption characteristics for toxic metals' (copper, cadmium, zinc, and nickel) removal. The adsorption-affecting parameters were optimized, and the thermodynamic studies assessed that the adsorption process seemed to be spontaneous, feasible, and exothermic. The pseudo-first-order and Freundlich models perfectly fit the kinetic and equilibrium data, respectively. Langmuir monolayer capacity of the nanosorbent was analyzed using nonlinear evaluation methods such as 419.9 mg/g for copper, 321.9 mg/g for nickel, 217.3 mg/g for cadmium, and 137.6 mg/g for zinc. The used adsorbent was simply rejuvenated using the 0.2 N HCl solution subsequently with intense agitation. The result of the present research confirms that the produced nanosorbent can be effectively utilized for industrial wastewater management.
Collapse
Affiliation(s)
- Ganesan Janet Joshiba
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam, Chennai, 603110, India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam, Chennai, 603110, India.
| | | | - Gowri Pooja
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam, Chennai, 603110, India
| | | |
Collapse
|
23
|
Federer C, Kurpiers M, Bernkop-Schnürch A. Thiolated Chitosans: A Multi-talented Class of Polymers for Various Applications. Biomacromolecules 2020; 22:24-56. [PMID: 32567846 PMCID: PMC7805012 DOI: 10.1021/acs.biomac.0c00663] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Various properties of chitosan can be customized by thiolation for very specific needs in a wide range of application areas. Since the discovery of thiolated chitosans, many studies have proven their advantageous characteristics, such as adhesion to biological surfaces, adjustable cross-linking and swelling behavior, controllable drug release, permeation as well as cellular uptake enhancement, inhibition of efflux pumps and enzymes, complexation of metal ions, antioxidative properties, and radical scavenging activity. Simultaneously, these polymers remain biodegradable without increased toxicity. Within this Review, an overview about the different possibilities to covalently attach sulfhydryl ligands to the polymeric backbone of chitosan is given, and the resulting versatile physiochemical properties are discussed in detail. Furthermore, the broad spectrum of applications for thiolated chitosans in science and industry, ranging from their most advanced use in pharmaceutical and medical science over wastewater treatment to the impregnation of textiles, is addressed.
Collapse
Affiliation(s)
- Christoph Federer
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Markus Kurpiers
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
24
|
Alipour A, Zarinabadi S, Azimi A, Mirzaei M. Adsorptive removal of Pb(II) ions from aqueous solutions by thiourea-functionalized magnetic ZnO/nanocellulose composite: Optimization by response surface methodology (RSM). Int J Biol Macromol 2020; 151:124-135. [DOI: 10.1016/j.ijbiomac.2020.02.109] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 01/18/2023]
|
25
|
Topal M, Arslan Topal EI. Optimization of tetracycline removal with chitosan obtained from mussel shells using RSM. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Implementation of Modified Acacia Tannin by Mannich Reaction for Removal of Heavy Metals (Cu, Cr and Hg). WATER 2020. [DOI: 10.3390/w12020352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The modified tannin by Mannich reaction was investigated for wastewater treatment. The removal of heavy metals, such as copper, chromium and mercury, in industrial wastewater was evaluated through the coagulation–flocculation technique, using modified Acacia tannin (MAT) as a coagulant agent. The successful tannin modification was evaluated by infrared spectopometry (FTIR), nuclear magnetic resonance (NMR); monitoring the removal of heavy metals was performed by atomic absorption (AA) and a direct mercury analyzer (DMA). Additionally, the parameters of water quality, total suspended solids (TSS), turbidity and chemical oxygen demand (COD) were assessed. Different doses of MAT were evaluated (375 ppm, 750 ppm, 1250 ppm and 1625 ppm) and three different levels of pH (4, 7 and 10). The highest percentages of removal obtained were copper 60%, chromium 87%, mercury 50%–80%, COD 88%, TSS 86% and turbidity 94%, which were achieved with the dose of 375 ppm of MAT at pH 10. The coagulation–flocculation process with the modified Acacia tannin is efficient for the removal of conventional parameters and for a significant removal of the metals studied.
Collapse
|
27
|
Shahraki S, Delarami HS, Khosravi F. Synthesis and characterization of an adsorptive Schiff base-chitosan nanocomposite for removal of Pb(II) ion from aqueous media. Int J Biol Macromol 2019; 139:577-586. [DOI: 10.1016/j.ijbiomac.2019.07.223] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/13/2019] [Accepted: 07/31/2019] [Indexed: 11/25/2022]
|
28
|
Janet Joshiba G, Senthil Kumar P, Christopher FC, Govindaraj BB. Insights of CMNPs in water pollution control. IET Nanobiotechnol 2019; 13:553-559. [PMID: 31432785 PMCID: PMC8675983 DOI: 10.1049/iet-nbt.2019.0030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
The various toxic contaminants such as dyes, heavy metals, pesticides, rare-earth elements, and hazardous chemicals are the major threats to all the flora and fauna. Owing to the harmful ill effects caused by the toxic contaminants, it is necessary to eliminate these compounds from the authors' ecosystem. The chitosan magnetic nanomaterials (CMNPs) are one of the superior materials used in the wastewater treatment through various conventional technologies. The chitosan is a natural source obtained from the crustacean shells of crabs, prawns etc. The magnetic nanomaterial prepared by the reinforcement of chitosan is highly effective in the removal of heavy metals, dyes, organic matter, and harmful chemicals. It is used in various technologies such as adsorption, flocculation, immobilisation, photocatalytic technology, and bioremediation. This possesses unique surface and magnetic characteristics, Moreover, it is simple, economically feasible, and eco-friendly material used efficiently in wastewater treatment. This review paper depicts the overview of CMNP in the industrial effluent treatment.
Collapse
Affiliation(s)
- Ganesan Janet Joshiba
- Department of Chemical Engineering, SSN College of Engineering, Chennai 603 110, India
| | | | | | | |
Collapse
|
29
|
Preparation of CoFe2O4 nanoparticles based on high-gravity technology and application for the removal of lead. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.05.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Controllable preparation of porous hollow carbon sphere@ZIF-8: Novel core-shell nanomaterial for Pb2+ adsorption. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Preparation of thiourea-modified magnetic chitosan composite with efficient removal efficiency for Cr(VI). Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.01.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Kavosi Rakati K, Mirzaei M, Maghsoodi S, Shahbazi A. Preparation and characterization of poly aniline modified chitosan embedded with ZnO-Fe 3O 4 for Cu(II) removal from aqueous solution. Int J Biol Macromol 2019; 130:1025-1045. [PMID: 30826403 DOI: 10.1016/j.ijbiomac.2019.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/02/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
Abstract
Poly aniline modified chitosan embedded with ZnO/Fe3O4 nanocomposites were synthesized using a precipitation method and applied to the removal of Cu(II) from aqueous solution. The synthesized nanocomposite was characterized by FT-IR, XRD, FESEM, TEM, EDS, TGA, BET and zeta-potential analyses. The adsorption batch experiments were conducted as a function of five effective parameters including pH, contact time, initial concentration of copper, temperature, and adsorbent dosage using a central composite design (CCD) in response surface methodology (RSM). Contour and surface plots were used to determine the interaction effects of main factors and optimum conditions of process. The regression equation coefficients were calculated and the data confirmed the validity of second-order polynomial equation for the removal of Cu(II) with novel absorbent. Analysis of variance (ANOVA) showed a high coefficient of determination value (R2) for copper removal being 0.99. The optimum level of the pH, temperature, initial concentration of copper, adsorbent dosage and contact time for maximum Cu(II) removal (94.51%) were found to be 6.5, 31 °C, 82 mg L-1, 0.81 g L-1, and 51 min, respectively. It was confirmed from XPS and EDS analyses that heavy metal ions were present on the surface of nanocomposite after adsorption. The adsorption equilibrium data fitted well with the Langmuir isotherm model and the adsorption process followed the pseudo-second-order and intra-particle diffusion kinetic model. The saturated adsorption capacity is found to be 328.4 mg/g. Thermodynamics analysis suggests that the adsorption process is endothermic, with increasing entropy and spontaneous in nature. Further recycling experiments show that nanocomposite still retains 95% of the original adsorption following the 5th adsorption-desorption cycle. The effects of coexist cation ions on the adsorption of Cu(II) was also investigated under optimal condition. All the results demonstrate that nanocomposite is a potential recyclable adsorbent for hazardous metal ions in wastewater.
Collapse
Affiliation(s)
- Khodadad Kavosi Rakati
- Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
| | - Masoomeh Mirzaei
- Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran.
| | - Sarah Maghsoodi
- Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
| | - Amirhossein Shahbazi
- Department of Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
| |
Collapse
|
33
|
Akhbarizadeh R, Moore F, Mowla D, Keshavarzi B. Improved waste-sourced biocomposite for simultaneous removal of crude oil and heavy metals from synthetic and real oilfield-produced water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31407-31420. [PMID: 30196464 DOI: 10.1007/s11356-018-3136-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/03/2018] [Indexed: 05/13/2023]
Abstract
Oil- and gas-produced water (PW) which contains various pollutants is an enormous threat to the environment. In this study, a novel low-cost bio-adsorbent was prepared from shrimp shell and acid-activated montmorillonite. The results of FT-IR spectroscopy, energy dispersive X-ray (EDX) analysis, and SEM-EDX technique indicated that the chitosan-activated montmorillonite (CTS-A-MMT) was prepared successfully. The synthesized CTS-A-MMT was applied to remove simultaneously five cationic and anionic metal species and crude oil from synthetic and real oilfield PW. The adsorption data indicated that crude oil and all studied metals (except As) were adsorbed to CTS-A-MMT in a monolayer model (best fitted by Langmuir model), while As adsorption fits well with Freundlich model. Kinetic models' evaluation demonstrated that the adsorption kinetics of metals on CTS-A-MMT are initially controlled by the chemical reaction (film diffusion) followed by intra-particle diffusion. Application of the prepared CTS-A-MMT in real oilfield PW indicated removal efficiency of 65 to 93% for metals and 87% for crude oil in simultaneous removal experiments. Presence of additional ions in PW decreased the removal of studied metals and crude oil considerably; however, the concentration of the investigated pollutants in treated PW is less than the ocean discharge criteria. It is concluded that the prepared CTS-A-MMT composite is a low-cost and effective adsorbent for treating wastewater contaminated with crude oil and heavy metals (i.e., PW).
Collapse
Affiliation(s)
- Razegheh Akhbarizadeh
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran.
| | - Farid Moore
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran
| | - Dariush Mowla
- School of Chemical and Petroleum Engineering, Shiraz University, Mollasadra Ave., Shiraz, 71345, Iran
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran
| |
Collapse
|