1
|
Munu I, Nicusan AL, Crooks J, Pitt K, Windows-Yule C, Ingram A. Predicting tablet properties using In-Line measurements and evolutionary equation Discovery: A high shear wet granulation study. Int J Pharm 2024; 661:124405. [PMID: 38950660 DOI: 10.1016/j.ijpharm.2024.124405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
High shear wet granulation (HSWG) is widely used in tablet manufacturing mainly because of its advantages in improving flowability, powder handling, process run time, size distribution, and preventing segregation. In line process analytical technology measurements are essential in capturing detailed particle dynamics and presenting real-time data to uncover the complexity of the HSWG process and ultimately for process control. This study presents an opportunity to predict the properties of the granules and tablets through torque measurement of the granulation bowl and the force exerted on a novel force probe within the powder bed. Inline force measurements are found to be more sensitive than torque measurements to the granulation process. The characteristic force profiles present the overall fingerprint of the high shear wet granulation, in which the evolution of the granule formation can improve our understanding of the granulation process. This provides rich information relating to the properties of the granules, identification of the even distribution of the binder liquid, and potential granulation end point. Data were obtained from an experimental high shear mixer across a range of key process parameters using a face-centred surface response design of experiment (DoE). A closed-form analytical model was developed from the DOE matrix using the discovery of evolutionary equations. The model is able to provide a strong predictive indication of the expected tablet tensile strength based only on the data in-line. The use of a closed form mathematical equation carries notable advantages over other AI methodologies such as artificial neural networks, notably improved interpretability/interrogability, and minimal inference costs, thus allowing the model to be used for real-time decision making and process control. The capability of accurately predicting, in real time, the required compaction force required to achieve the desired tablet tensile strength from upstream data carries the potential to ensure compression machine settings rapidly reach and are maintained at optimal values, thus maximising efficiency and minimising waste.
Collapse
Affiliation(s)
- Issa Munu
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; GSK Global Supply Chain, Priory St, Ware SG12 0DJ, UK.
| | - Andrei L Nicusan
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jason Crooks
- GSK Product Development, Park Rd, Ware SG12 0DP, UK
| | - Kendal Pitt
- GSK Global Supply Chain, Priory St, Ware SG12 0DJ, UK
| | - Christopher Windows-Yule
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew Ingram
- School of Chemical Engineering, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Li Z, Peng WH, Liu WJ, Yang LY, Naeem A, Feng Y, Ming LS, Zhu WF. Advances in numerical simulation of unit operations for tablet preparation. Int J Pharm 2023; 634:122638. [PMID: 36702386 DOI: 10.1016/j.ijpharm.2023.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Recently, there has been an increase in the use of numerical simulation technology in pharmaceutical preparation processes. Numerical simulation can contribute to a better understanding of processes, reduce experimental costs, optimize preparation processes, and improve product quality. The intermediate material of most dosage forms is powder or granules, especially in the case of solid preparations. The macroscopic behavior of particle materials is controlled by the interactions of individual particles with each other and surrounding fluids. Therefore, it is very important to analyze and control the microscopic details of the preparation process for solid preparations. Since tablets are one of the most widely used oral solid preparations, and the preparation process is relatively complex and involves numerous units of operation, it is especially important to analyze and control the tablet production process. The present paper discusses recent advances in numerical simulation technology for the preparation of tablets, including drying, mixing, granulation, tableting, and coating. It covers computational fluid dynamics (CFD), discrete element method (DEM), population balance model (PBM), finite element method (FEM), Lattice-Boltzmann model (LBM), and Monte Carlo model (MC). The application and deficiencies of these models in tablet preparation unit operations are discussed. Furthermore, the paper provides a systematic reference for the control and analysis of the tablet preparation process and provides insight into the future direction of numerical simulation technology in the pharmaceutical industry.
Collapse
Affiliation(s)
- Zhe Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Wang-Hai Peng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Wen-Jun Liu
- Jiangzhong Pharmaceutical Co. Ltd., Nanchang 330049, PR China
| | - Ling-Yu Yang
- Jiangzhong Pharmaceutical Co. Ltd., Nanchang 330049, PR China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Yi Feng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Liang-Shan Ming
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, PR China.
| | - Wei-Feng Zhu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, PR China.
| |
Collapse
|
3
|
Wu G, Chen S. Simulating spray coating processes by a three-dimensional lattice Boltzmann method-immersed boundary method approach. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Feng D, Li H, Zhu M, Han L, Zhou Y. Insight into the interaction mechanism between liquid action and cone structure in liquid-containing gas-solid spouted fluidized bed reactors. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Singh M, Shirazian S, Ranade V, Walker GM, Kumar A. Challenges and opportunities in modelling wet granulation in pharmaceutical industry – A critical review. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Morrissey JP, Hanley KJ, Ooi JY. Conceptualisation of an Efficient Particle-Based Simulation of a Twin-Screw Granulator. Pharmaceutics 2021; 13:pharmaceutics13122136. [PMID: 34959417 PMCID: PMC8704810 DOI: 10.3390/pharmaceutics13122136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Discrete Element Method (DEM) simulations have the potential to provide particle-scale understanding of twin-screw granulators. This is difficult to obtain experimentally because of the closed, tightly confined geometry. An essential prerequisite for successful DEM modelling of a twin-screw granulator is making the simulations tractable, i.e., reducing the significant computational cost while retaining the key physics. Four methods are evaluated in this paper to achieve this goal: (i) develop reduced-scale periodic simulations to reduce the number of particles; (ii) further reduce this number by scaling particle sizes appropriately; (iii) adopt an adhesive, elasto-plastic contact model to capture the effect of the liquid binder rather than fluid coupling; (iv) identify the subset of model parameters that are influential for calibration. All DEM simulations considered a GEA ConsiGma™ 1 twin-screw granulator with a 60° rearward configuration for kneading elements. Periodic simulations yielded similar results to a full-scale simulation at significantly reduced computational cost. If the level of cohesion in the contact model is calibrated using laboratory testing, valid results can be obtained without fluid coupling. Friction between granules and the internal surfaces of the granulator is a very influential parameter because the response of this system is dominated by interactions with the geometry.
Collapse
|
7
|
Liu B, Wang J, Zhou Q, Zhao L, Wang Y, Shen L, Feng Y, Du R. High shear wet granulation: Improved understanding of the effects of process variables on granule and tablet properties of a high-dose, high-hydrophobicity API based on quality by design and multivariate analysis approaches. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
8
|
Investigation the iron ore fine granulation effects and particle adhesion behavior in a horizontal high-shear granulator. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.08.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Kumar A, Radl S, Gernaey KV, De Beer T, Nopens I. Particle-Scale Modeling to Understand Liquid Distribution in Twin-Screw Wet Granulation. Pharmaceutics 2021; 13:pharmaceutics13070928. [PMID: 34206609 PMCID: PMC8308998 DOI: 10.3390/pharmaceutics13070928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
Experimental characterization of solid-liquid mixing for a high shear wet granulation process in a twin-screw granulator (TSG) is very challenging. This is due to the opacity of the multiphase system and high-speed processing. In this study, discrete element method (DEM) based simulations are performed for a short quasi-two-dimensional simulation domain, incorporating models for liquid bridge formation, rupture, and the effect of the bridges on inter-particular forces. Based on the knowledge gained from these simulations, the kneading section of a twin-screw wet granulation process was simulated. The time evolution of particle flow and liquid distribution between particles, leading to the formation of agglomerates, was analyzed. The study showed that agglomeration is a rather delayed process that takes place once the free liquid on the particle surface is well distributed.
Collapse
Affiliation(s)
- Ashish Kumar
- Pharmaceutical Engineering Research Group (PharmaEng), Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg, B-9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-(0)-9-264-80-91
| | - Stefan Radl
- Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/3, 8010 Graz, Austria;
| | - Krist V. Gernaey
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg, B-9000 Ghent, Belgium;
| | - Ingmar Nopens
- BIOMATH, Department of Mathematical Modelling, Statistics and Bioinformatics, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| |
Collapse
|
10
|
Kim EJ, Kim JH, Kim MS, Jeong SH, Choi DH. Process Analytical Technology Tools for Monitoring Pharmaceutical Unit Operations: A Control Strategy for Continuous Process Verification. Pharmaceutics 2021; 13:919. [PMID: 34205797 PMCID: PMC8234957 DOI: 10.3390/pharmaceutics13060919] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Various frameworks and methods, such as quality by design (QbD), real time release test (RTRT), and continuous process verification (CPV), have been introduced to improve drug product quality in the pharmaceutical industry. The methods recognize that an appropriate combination of process controls and predefined material attributes and intermediate quality attributes (IQAs) during processing may provide greater assurance of product quality than end-product testing. The efficient analysis method to monitor the relationship between process and quality should be used. Process analytical technology (PAT) was introduced to analyze IQAs during the process of establishing regulatory specifications and facilitating continuous manufacturing improvement. Although PAT was introduced in the pharmaceutical industry in the early 21st century, new PAT tools have been introduced during the last 20 years. In this review, we present the recent pharmaceutical PAT tools and their application in pharmaceutical unit operations. Based on unit operations, the significant IQAs monitored by PAT are presented to establish a control strategy for CPV and real time release testing (RTRT). In addition, the equipment type used in unit operation, PAT tools, multivariate statistical tools, and mathematical preprocessing are introduced, along with relevant literature. This review suggests that various PAT tools are rapidly advancing, and various IQAs are efficiently and precisely monitored in the pharmaceutical industry. Therefore, PAT could be a fundamental tool for the present QbD and CPV to improve drug product quality.
Collapse
Affiliation(s)
- Eun Ji Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| | - Ji Hyeon Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 heon-gil, Geumjeong-gu, Busan 46241, Korea;
| | - Seong Hoon Jeong
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Korea;
| | - Du Hyung Choi
- Department of Pharmaceutical Engineering, Inje University, Gimhae-si, Gyeongnam 621-749, Korea; (E.J.K.); (J.H.K.)
| |
Collapse
|
11
|
Muthancheri I, Chaturbedi A, Bétard A, Ramachandran R. A compartment based population balance model for the prediction of steady and induction granule growth behavior in high shear wet granulation. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Liu B, Wang J, Zeng J, Zhao L, Wang Y, Feng Y, Du R. A review of high shear wet granulation for better process understanding, control and product development. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.11.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Development of high-performance hybrid ANN-finite volume scheme (ANN-FVS) for simulation of pharmaceutical continuous granulation. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Zhong L, Gao L, Li L, Zang H. Trends-process analytical technology in solid oral dosage manufacturing. Eur J Pharm Biopharm 2020; 153:187-199. [DOI: 10.1016/j.ejpb.2020.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 10/24/2022]
|
15
|
Yeom SB, Ha ES, Kim MS, Jeong SH, Hwang SJ, Choi DH. Application of the Discrete Element Method for Manufacturing Process Simulation in the Pharmaceutical Industry. Pharmaceutics 2019; 11:E414. [PMID: 31443327 PMCID: PMC6723742 DOI: 10.3390/pharmaceutics11080414] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
Process simulation using mathematical modeling tools is becoming more common in the pharmaceutical industry. A mechanistic model is a mathematical modeling tool that can enhance process understanding, reduce experimentation cost and improve product quality. A commonly used mechanistic modeling approach for powder is the discrete element method (DEM). Most pharmaceutical materials have powder or granular material. Therefore, DEM might be widely applied in the pharmaceutical industry. This review focused on the basic elements of DEM and its implementations in pharmaceutical manufacturing simulation. Contact models and input parameters are essential elements in DEM simulation. Contact models computed contact forces acting on the particle-particle and particle-geometry interactions. Input parameters were divided into two types-material properties and interaction parameters. Various calibration methods were presented to define the interaction parameters of pharmaceutical materials. Several applications of DEM simulation in pharmaceutical manufacturing processes, such as milling, blending, granulation and coating, were categorized and summarized. Based on this review, DEM simulation might provide a systematic process understanding and process control to ensure the quality of a drug product.
Collapse
Affiliation(s)
- Su Bin Yeom
- Department of Pharmaceutical Engineering, Inje University, Gyeongnam 621-749, Korea
| | - Eun-Sol Ha
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea.
| | | | - Sung-Joo Hwang
- College of Pharmacy, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
| | - Du Hyung Choi
- Department of Pharmaceutical Engineering, Inje University, Gyeongnam 621-749, Korea.
| |
Collapse
|