1
|
You Y, Ma Y, Zeng X, Wang Y, Du J, Qian Y, Yang G, Su Y, Lei W, Zhao S, Qing Y, Wu Y, Li J. Tailoring Robust 2D Nanochannels by Radical Polymerization for Efficient Molecular Sieving. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409556. [PMID: 39737840 PMCID: PMC11848538 DOI: 10.1002/advs.202409556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/07/2024] [Indexed: 01/01/2025]
Abstract
Two-dimensional (2D) nanochannels have demonstrated outstanding performance for sieving specific molecules or ions, owing to their uniform molecular channel sizes and interlayer physical/chemical properties. However, controllably tuning nanochannel spaces with specific sizes and simultaneously achieving high mechanical strength remain the main challenges. In this work, the inter-sheet gallery d-spacing of graphene oxide (GO) membrane is successfully tailored with high mechanical strength via a general radical-induced polymerization strategy. The introduced amide groups from N-Vinylformamide significantly reinforce the 2D nanochannels within the freestanding membranes, resulting in an ultrahigh tensile strength of up to 105 MPa. The d-spacing of the membrane is controllably tuned within a range of 0.799-1.410 nm, resulting in a variable water permeance of up to 218 L m-2 h-1 bar-1 (1304% higher than that of the pristine GO membranes). In particular, the tailored membranes demonstrate excellent water permeance stability (140 L m-2 h-1 bar-1) in a 200-h long-term operation and high selectivity of solutes under harsh conditions, including a wide range of pH from 4.0 to 10.0, up to a loading pressure of 12 bar and an external temperature of 40 °C. This approach comprehensively achieves a balance between sieving performance and mechanical strength, satisfying the requirements for the next-generation molecular sieving membranes.
Collapse
Affiliation(s)
- Yue You
- Institute for Frontier MaterialsDeakin UniversityGeelongVictoria3220Australia
| | - Yuxi Ma
- Department of Applied Chemistry and Environmental ScienceSchool of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Xianghui Zeng
- Faculty of MaterialsWuhan University of Science & TechnologyWuhan430081China
| | - Yichao Wang
- Department of Applied Chemistry and Environmental ScienceSchool of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Juan Du
- Institute for Frontier MaterialsDeakin UniversityGeelongVictoria3220Australia
| | - Yijun Qian
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical IndustryCollege of EnergySoochow UniversitySuzhou215006China
| | - Guoliang Yang
- Department of Applied Chemistry and Environmental ScienceSchool of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Yuyu Su
- Department of Chemical and Environmental Engineering, School of EngineeringRMIT UniversityMelbourneVictoria3000Australia
| | - Weiwei Lei
- Department of Applied Chemistry and Environmental ScienceSchool of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Shuaifei Zhao
- Institute for Frontier MaterialsDeakin UniversityGeelongVictoria3220Australia
| | - Yan Qing
- College of Materials Science and EngineeringCentral South University of Forestry and TechnologyChangsha410004China
| | - Yiqiang Wu
- College of Materials Science and EngineeringCentral South University of Forestry and TechnologyChangsha410004China
| | - Jingliang Li
- Institute for Frontier MaterialsDeakin UniversityGeelongVictoria3220Australia
| |
Collapse
|
2
|
Zheng B, Jia S, Tian Y. Improvement of heavy metal separation performance by positively charged small-sized graphene oxide membrane. ENVIRONMENTAL TECHNOLOGY 2024; 45:2471-2485. [PMID: 36730831 DOI: 10.1080/09593330.2023.2176262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Multilayered graphene oxide (GO) membranes are promising to be widely applied to purify water effectively. However, the performance of most membranes prepared at present is not ideal, which may be related to the pore diameter of the substrate (determining the real loading amount of GO) and the size of the GO nanosheets (determining the number of channels on the unit area), which has not been fully studied. In this study, a rotating dip-coating reactor were firstly developed to ensure the uniform deposition of reactants on the surface of the substrate. Then, the preparation method for the membrane was improved. Microfiltration membranes were used as the supporting substrate, polydopamine was deposited as the adhesive layer, ethylenediamine was used to restrict the layer spacing to strengthen the size exclusion effect, and positively charged polyethyleneimine (PEI) was used to strengthen the Donnan effect. Finally, the effects of the pore size of the substrate and the size of the GO nanosheets on the membrane performance were investigated. Compared with the substrates with a pore size of 0.22 μm in most literatures, substrates of 0.1 μm can retain more small GO (SGO) nanosheets, thereby improving the performance. The performance of the SGO membrane was much better than that of the large-sized GO membrane. With a water permeability of no less than 7.9 L/(m2·h·bar), rejection rates for Pb2+ and Cd2+ of the SGO membrane could reach more than 97%. These findings are constructive to separate heavy metals from water effectively.
Collapse
Affiliation(s)
- Bo Zheng
- College of Urban and Rural Construction, Hebei Agricultural University, Baoding, People's Republic of China
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Shichao Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Yimei Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
3
|
Jatoi AH, Kim KH, Khan MA, Memon FH, Iqbal M, Janwery D, Phulpoto SN, Samantasinghar A, Choi KH, Thebo KH. Functionalized graphene oxide-based lamellar membranes for organic solvent nanofiltration applications. RSC Adv 2023; 13:12695-12702. [PMID: 37114023 PMCID: PMC10126819 DOI: 10.1039/d3ra00223c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, two-dimensional graphene oxide-based novel membranes were fabricated by modifying the surface of graphene oxide nanosheets with six-armed poly(ethylene glycol) (PEG) at room conditions. The as-modified PEGylated graphene oxide (PGO) membranes with unique layered structures and large interlayer spacing (∼1.12 nm) were utilized for organic solvent nanofiltration applications. The as-prepared 350 nm-thick PGO membrane offers a superior separation (>99%) against evans blue, methylene blue and rhodamine B dyes along with high methanol permeance ∼ 155 ± 10 L m-2 h-1, which is 10-100 times high compared to pristine GO membranes. Additionally, these membranes are stable for up to 20 days in organic solvent. Hence the results suggested that the as-synthesized PGO membranes with superior separation efficiency for dye molecules in organic solvent can be used in future for organic solvent nanofiltration application.
Collapse
Affiliation(s)
- Ashique Hussain Jatoi
- Department of Chemistry, Shaheed Benazir Bhutto University Shaheed Benazirabad 67480 Pakistan
| | | | - Muhammad Ali Khan
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Fida Hussain Memon
- Department of Mechatronics Engineering, Jeju National University Jeju 63243 Republic of Korea
- Department of Electrical Engineering, Sukkur IBA University Sukkur 65200 Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur KPK 22620 Pakistan
| | - Dahar Janwery
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro Pakistan
| | - Shah Nawaz Phulpoto
- Department of Molecular Biology & Genetics, Shaheed Benazir University Shaheed Benazirabad 67480 Pakistan
| | - Anupama Samantasinghar
- Department of Mechatronics Engineering, Jeju National University Jeju 63243 Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University Jeju 63243 Republic of Korea
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (CAS) Shenyang 110016 China
| |
Collapse
|
4
|
An YC, Gao XX, Jiang WL, Han JL, Ye Y, Chen TM, Ren RY, Zhang JH, Liang B, Li ZL, Wang AJ, Ren NQ. A critical review on graphene oxide membrane for industrial wastewater treatment. ENVIRONMENTAL RESEARCH 2023; 223:115409. [PMID: 36746203 DOI: 10.1016/j.envres.2023.115409] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
An important way to promote the environmental industry's goal of carbon reduction is to promote the recycling of resources. Membrane separation technology has unique advantages in resource recovery and advanced treatment of industrial wastewater. However, the great promise of traditional organic membrane is hampered by challenges associated with organic solvent tolerance, lack of oxidation resistance, and serious membrane fouling control. Moreover, the high concentrations of organic matter and inorganic salts in the membrane filtration concentrate also hinder the wider application of the membrane separation technology. The emerging cost-effective graphene oxide (GO)-based membrane with excellent resistance to organic solvents and oxidants, more hydrophilicity, lower membrane fouling, better separation performance has been expected to contribute more in industrial wastewater treatment. Herein, we provide comprehensive insights into the preparation and characteristic of GO membranes, as well as current research status and problems related to its future application in industrial wastewater treatment. Finally, concluding remarks and future perspectives have been deduced and recommended for the GO membrane separation technology application for industrial wastewater treatment, which leads to realizing sustainable wastewater recycling and a nearly "zero discharge" water treatment process.
Collapse
Affiliation(s)
- Ye-Chen An
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiao-Xu Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wen-Li Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Jing-Long Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| | - Yuan Ye
- Key Laboratory for Advanced Technology in Environment Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Tian-Ming Chen
- Key Laboratory for Advanced Technology in Environment Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Rui-Yun Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jia-Hui Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| |
Collapse
|
5
|
Gan F, Jiang S, Zhou J, Wang J, Wen J, Mo J, Han S, Fan L, Yi N, Wu Y. Architecting dual coordination interactions in polyimide for constructing structurally controllable high-performance nanofiltration membranes. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Mahdavi H, Zeinalipour N, Heidari AA. Fabrication of
PVDF
mixed matrix nanofiltration membranes incorporated with
TiO
2
nanoparticles and an amphiphilic
PVDF‐g‐PMMA
copolymer. J Appl Polym Sci 2022. [DOI: 10.1002/app.52740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hossein Mahdavi
- School of Chemistry, College of Science University of Tehran Tehran Iran
| | | | - Ali Akbar Heidari
- School of Chemistry, College of Science University of Tehran Tehran Iran
| |
Collapse
|
7
|
Lau HS, Lau SK, Soh LS, Hong SU, Gok XY, Yi S, Yong WF. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. MEMBRANES 2022; 12:539. [PMID: 35629866 PMCID: PMC9144028 DOI: 10.3390/membranes12050539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes.
Collapse
Affiliation(s)
- Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Siew Kei Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Leong Sing Soh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Seang Uyin Hong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Shouliang Yi
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA;
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Zhang B, Wang W, Zhu L, Li N, Chen X, Tian J, Zhang X. Simultaneously enhanced permeability and anti-fouling performance of polyethersulfone ultrafiltration membranes by structural control and mixed carbon quantum dots. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Liu ML, Li L, Tang MJ, Hong L, Sun SP, Xing W. Multi-component separation of small molecular/ionic pollutants with smart pH-gating membranes. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116854] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Recent advances in nanomaterial-incorporated nanocomposite membranes for organic solvent nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118657] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Shao DD, Wang L, Yan XY, Cao XL, Shi T, Sun SP. Amine–carbon quantum dots (CQDs–NH2) tailored polymeric loose nanofiltration membrane for precise molecular separation. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Chen BZ, Ju X, Liu N, Chu CH, Lu JP, Wang C, Sun SP. Pilot-scale fabrication of nanofiltration membranes and spiral-wound modules. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Thermo-responsive separation membrane with smart anti-fouling and self-cleaning properties. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Cross-flow deposited hydroxyethyl cellulose (HEC)/polypropylene (PP) thin-film composite membrane for aqueous and non-aqueous nanofiltration. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Aframehr WM, Molki B, Bagheri R, Heidarian P, Davodi SM. Characterization and enhancement of the gas separation properties of mixed matrix membranes: Polyimide with nickel oxide nanoparticles. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Mahalingam DK, Wang S, Nunes SP. Stable Graphene Oxide Cross-Linked Membranes for Organic Solvent Nanofiltration. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05169] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dinesh K. Mahalingam
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center, Thuwal 23955-6900, Saudi Arabia
| | - Shaofei Wang
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center, Thuwal 23955-6900, Saudi Arabia
| | - Suzana P. Nunes
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Advanced Membranes and Porous Materials Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
17
|
Modi A, Bellare J. Efficient separation of biological macromolecular proteins by polyethersulfone hollow fiber ultrafiltration membranes modified with Fe3O4 nanoparticles-decorated carboxylated graphene oxide nanosheets. Int J Biol Macromol 2019; 135:798-807. [DOI: 10.1016/j.ijbiomac.2019.05.200] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 02/01/2023]
|
18
|
Asadi Tashvigh A, Feng Y, Weber M, Maletzko C, Chung TS. 110th Anniversary: Selection of Cross-Linkers and Cross-Linking Procedures for the Fabrication of Solvent-Resistant Nanofiltration Membranes: A Review. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02408] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akbar Asadi Tashvigh
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Membrane Science and Technology Cluster, University of Twente, 7500 AE Enschede, The Netherlands
| | - Yingnan Feng
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Martin Weber
- Advanced Materials & Systems Research, BASF SE, RAP/OUB-B001, 67056 Ludwigshafen, Germany
| | - Christian Maletzko
- Performance Materials, BASF SE, G-PM/PU-D219, 67056 Ludwigshafen, Germany
| | - Tai-Shung Chung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|