1
|
Ding L, Han D, Zhang H, Yang S, Zhang Y. Polydopamine-modified carboxylated cellulose nanocrystrals as functional fillers for polyethersulfone (PES) membranes to achieve superior dye/salt separation. Int J Biol Macromol 2025; 308:142482. [PMID: 40169057 DOI: 10.1016/j.ijbiomac.2025.142482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/13/2025] [Accepted: 03/22/2025] [Indexed: 04/03/2025]
Abstract
This study presents the development of advanced tight polyethersulfone (PES) ultrafiltration membranes enhanced with polydopamine-coated carboxylated cellulose nanocrystrals (PDA@C-CNC) as functional fillers. The PDA@C-CNC fillers were synthesized via an in situ self-polymerization approach and employed as surface segregation agents during membrane preparation. Utilizing the non-solvent-induced phase separation (NIPS) technique, the highly hydrophilic PDA@C-CNC particles migrated to the interface between the polymer solution and the coagulation bath and tightly adhered to the polyethersulfone (PES) matrix through strong hydrogen bonding and π-π interactions, forming a dense, hydrophilic selective surface layer rich in polar functional groups (amino group (-NH2) and hydroxyl group(-OH)). Concurrently, the support layer developed a porous structure characterized by extended and widened cavities, facilitating enhanced mass transfer. The synergistic combination of a selective dense surface layer and an optimally structured support layer endowed the modified membranes with remarkable permeability and selectivity. Surprisingly, the water flux of the modified membrane with 0.2 % PDA@C-CNC (MPC0.2) achieved a remarkable 332 L·m-2·h-1·bar-1, which is 2.29 times higher than that of the unmodified membrane (M0). Additionally, MPC0.2 demonstrated exceptional dyes rejection rates (Congo red (CR) > 99.7 %, Eriochrome Black T (EBT) > 97.7 %) alongside minimal salt rejection (sodium chloride (NaCl): 0.2 %, sodium sulfate (Na2SO4): 1.7 %). These findings highlight the potential of PDA@C-CNC/PES composite membranes for efficient and selective removal of dyes and salts from textile wastewater.
Collapse
Affiliation(s)
- Lin Ding
- State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Deyi Han
- State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haichuan Zhang
- Department of Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Shujuan Yang
- State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yong Zhang
- State Key Laboratory of Bio-based Fiber Materials, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; Xiangshan Knitting Institute, Zhejiang Sci-Tech University, Xiangshan 315700, China.
| |
Collapse
|
2
|
Tahmasebi Sefiddashti F, Homayoonfal M. Nanostructure-manipulated filtration performance in nanocomposite membranes: A comprehensive investigation for water and wastewater treatment. Heliyon 2024; 10:e36874. [PMID: 39319140 PMCID: PMC11419920 DOI: 10.1016/j.heliyon.2024.e36874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
The main objective of this article is to examine one of the most important challenges facing researchers in the field of nanocomposite membranes: what is the most suitable arrangement (unmodified, functionalized, coated, or composite) and the most suitable loading site for the nanostructure? In the review articles published on nanocomposite membranes in recent years, the focus has been either on a specific application area (such as nanofiltration or desalination), or on a specific type of polymeric materials (such as polyamide), or on a specific feature of the membrane (such as antibacterial, antimicrobial, or antifouling). However, none of them have targeted the aforementioned objectives on the efficacy of improving filtration performance (IFP). Through IFP calculation, the results will be repeatable and generalizable in this field. The novelty of the current research lies in examining and assessing the impact of the loading site and the type of nanostructure modification on enhancing IFP. Based on the performed review results, for the researchers who tend to use nanocomposite membranes for treatment of organic, textile, brine and pharmaceutical wastewaters as well as membrane bioreactors, thePES NH 2 - PDA - Fe 3 O 4 M ,PAN Fe 3 O 4 / ZrO 2 M ,PVDF CMC - ZnO M ,AA AA - CuS PSf M andPVDF OCMCS / Fe 3 O 4 M with IFP equal to 132.27, 15, 423.6, 16.025 and 5, were proposed, respectively.
Collapse
Affiliation(s)
- Fateme Tahmasebi Sefiddashti
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| |
Collapse
|
3
|
Erragued R, Sharma M, Gando-Ferreira L, Bouaziz M. Recovery of Oleuropein from Olive Leaf Extract Using Zinc Oxide Coated by Polyaniline Nanoparticle Mixed Matrix Membranes. ACS OMEGA 2024; 9:4762-4774. [PMID: 38313486 PMCID: PMC10831993 DOI: 10.1021/acsomega.3c08225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
This study explores the integration of zinc oxide coated with polyaniline (ZnO-PANI) nanoparticles into a poly(ether sulfone) (PES) matrix to concurrently enhance permeate flux and oleuropein (OLP) rejection during the filtration of olive leaf extract (OLE). The effect of ZnO-PANI content on porosity, pore size, surface hydrophilicity, and pure water flux (PWF) was studied. The results indicate that an increase in ZnO-PANI content (0-0.2%) leads to a 3-fold increase in mean pore size, permeability (1.29-7.18 L/m2 h bar), porosity (72.2-77.8%), and improved surface hydrophilicity of the prepared membranes. Membrane performance was tested for OLE permeate flux of the OLE and total phenolic compounds (TPC) rejection at various pressures (10-30 bar), the performance of the OLP rejection at 30 bar, and fouling resistance. The 0.2 wt % ZnO-PANI membrane exhibits the highest permeate flux, while the 0.4 wt % ZnO-PANI membrane offers the highest rejection values (90-97% for TPC and 100% for OLP). Bare PES demonstrated the best fouling resistance. Strategic ZnO-PANI incorporation achieves a balance, enhancing both the flux and rejection efficiency. The 0.2 wt % ZnO-PANI membrane emerges as particularly favorable, striking a beneficial equilibrium between permeate flux and OLP rejection. Intriguingly, the use of these membranes for OLE filtration, postpretreatment with ultrafiltration (UF), results in a remarkable 100% rejection of OLP. This discovery underscores the significant and specific separation of OLP from OLE facilitated by a ZnO-PANI-based mixed matrix membrane (MMM). The study contributes valuable insights into the development of advanced membranes with enhanced filtration capabilities for high-added value phenolic compound separation.
Collapse
Affiliation(s)
- Rim Erragued
- Laboratory
of Electrochemistry and Environment, National School of Engineers
of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia
- Department
of Chemical Engineering, University of Coimbra,
CIEPQPF, Rua Sílvio
Lima, Pólo II-Pinhal de Marrocos, Coimbra 3030-790, Portugal
| | - Manorma Sharma
- Department
of Chemical Engineering, University of Coimbra,
CIEPQPF, Rua Sílvio
Lima, Pólo II-Pinhal de Marrocos, Coimbra 3030-790, Portugal
| | - Licínio
M. Gando-Ferreira
- Department
of Chemical Engineering, University of Coimbra,
CIEPQPF, Rua Sílvio
Lima, Pólo II-Pinhal de Marrocos, Coimbra 3030-790, Portugal
| | - Mohamed Bouaziz
- Laboratory
of Electrochemistry and Environment, National School of Engineers
of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia
| |
Collapse
|
4
|
Daraei P, Rostami E, Nasirmanesh F, Nobakht V. Preparation of pH-sensitive composite polyethersulfone membranes embedded by Ag(I) coordination polymer for the removal of cationic and anionic dyes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119083. [PMID: 37757684 DOI: 10.1016/j.jenvman.2023.119083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
A pH-sensitive polyethersulfone (PES) membrane was prepared with the aid of newly synthesized Ag(I) coordination polymer (Ag(I)-CP) particles. Indicating obvious adsorptive property toward dyes, the Ag(I)-based metalorganic framework (MOF) was selected to be used as an additive to improve the dye selectivity of PES membranes for both cationic and anionic dyes. The performance examination and characterization of prepared membranes indicated the influence of Ag(I)-CP in PES membrane improvement. The effect of feed pH approved the membrane response to pH changes in dye removal results. By adjusting feed pH based on pHpzc of Ag(I)-CP, it is possible to remove both anionic and cationic dyes (97% of acid orange 7 (AO) & and 100% of methylene blue (MB)) from the effluent along with an enhanced permeated flux. The results offered a synergism in embedding Ag(I)-CP in PES membrane in dye removal efficiency. The additive particles can be applied with their natural size (200-300 nm) without severe influence on the uniformity of the membrane morphology if the optimum Ag(I)-CP content is considered.
Collapse
Affiliation(s)
- Parisa Daraei
- Department of Chemical Engineering, Kermanshah University of Technology, 67156, Kermanshah, Iran.
| | - Elham Rostami
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Farzad Nasirmanesh
- Department of Chemical Engineering, Kermanshah University of Technology, 67156, Kermanshah, Iran
| | - Valiollah Nobakht
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
5
|
Moghadassi A, Ghohyei S, Bandehali S, Habibi M, Eskandari M. Cuprous oxide (Cu2O) nanoparticles in nanofiltration membrane with enhanced separation performance and anti-fouling properties. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
6
|
Geleta TA, Maggay IV, Chang Y, Venault A. Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method. MEMBRANES 2023; 13:58. [PMID: 36676865 PMCID: PMC9864519 DOI: 10.3390/membranes13010058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 05/31/2023]
Abstract
Membrane technology is an essential tool for water treatment and biomedical applications. Despite their extensive use in these fields, polymeric-based membranes still face several challenges, including instability, low mechanical strength, and propensity to fouling. The latter point has attracted the attention of numerous teams worldwide developing antifouling materials for membranes and interfaces. A convenient method to prepare antifouling membranes is via physical blending (or simply blending), which is a one-step method that consists of mixing the main matrix polymer and the antifouling material prior to casting and film formation by a phase inversion process. This review focuses on the recent development (past 10 years) of antifouling membranes via this method and uses different phase-inversion processes including liquid-induced phase separation, vapor induced phase separation, and thermally induced phase separation. Antifouling materials used in these recent studies including polymers, metals, ceramics, and carbon-based and porous nanomaterials are also surveyed. Furthermore, the assessment of antifouling properties and performances are extensively summarized. Finally, we conclude this review with a list of technical and scientific challenges that still need to be overcome to improve the functional properties and widen the range of applications of antifouling membranes prepared by blending modification.
Collapse
Affiliation(s)
| | | | - Yung Chang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Antoine Venault
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
7
|
Farahani SK, Hosseini SM. A highly promoted nanofiltration membrane by incorporating of aminated Zr-based MOF for efficient salts and dyes removal with excellent antifouling properties. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Zhang Y, Song G, Luo T, Yang X, Ren H, Wang X, Zhang Z. Acid-triggered polyether sulfone - Polyvinyl pyrrolidone blend anion exchange membranes for the recovery of titania waste acid via diffusion dialysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Vatanpour V, Mousavi Khadem SS, Dehqan A, Paziresh S, Ganjali MR, Mehrpooya M, Pourbasheer E, Badiei A, Esmaeili A, Koyuncu I, Naderi G, Rabiee N, Abida O, Habibzadeh S, Saeb MR. Application of g-C3N4/ZnO nanocomposites for fabrication of anti-fouling polymer membranes with dye and protein rejection superiority. J Memb Sci 2022; 660:120893. [DOI: 10.1016/j.memsci.2022.120893] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Paun G, Neagu E, Parvulescu V, Anastasescu M, Petrescu S, Albu C, Nechifor G, Radu GL. New Hybrid Nanofiltration Membranes with Enhanced Flux and Separation Performances Based on Polyphenylene Ether-Ether-Sulfone/Polyacrylonitrile/SBA-15. MEMBRANES 2022; 12:membranes12070689. [PMID: 35877893 PMCID: PMC9316977 DOI: 10.3390/membranes12070689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/23/2022]
Abstract
This study presents the preparation of hybrid nanofiltration membranes based on poly(1,4-phenylene ether ether sulfone), polyacrylonitrile, poly(vinyl pyrrolidone), and SBA-15 mesoporous silica. Laser treatment of polymeric solutions to enhance the hydrophilicity and performance of membranes was investigated. The membranes’ structure was characterized using scanning electron (SEM) and atomic force (AFM) microscopy and contact angle measurements. The addition of PAN in the casting solution produced significant changes in the membrane structure, from finger-like porous structures to sponge-like porous structures. Increased PAN concentration in the membrane composition enhanced the hydrophilicity of the membrane surface, which also accounted for the improvement in the antifouling capabilities. The permeation of apple pomace extract and the content of polyphenols and flavonoids were used to evaluate the efficacy of the hybrid membranes created. The results showed that the hybrid nanofiltration membranes based on PPEES/PAN/PVP/SBA-15: 15/5/1/1 and 17/3/1/1 exposed to laser for 5 min present a higher rejection coefficient to total polyphenols (78.6 ± 0.7% and 97.8 ± 0.9%, respectively) and flavonoids (28.7 ± 0.2% and 50.3 ± 0.4%, respectively) and are substantially better than a commercial membrane with MWCO 1000 Da or PPEES-PVP-based membrane.
Collapse
Affiliation(s)
- Gabriela Paun
- National Institute for Research-Development of Biological Sciences, 060031 Bucharest, Romania; (G.P.); (E.N.); (C.A.)
| | - Elena Neagu
- National Institute for Research-Development of Biological Sciences, 060031 Bucharest, Romania; (G.P.); (E.N.); (C.A.)
| | - Viorica Parvulescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania; (V.P.); (M.A.); (S.P.)
| | - Mihai Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania; (V.P.); (M.A.); (S.P.)
| | - Simona Petrescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania; (V.P.); (M.A.); (S.P.)
| | - Camelia Albu
- National Institute for Research-Development of Biological Sciences, 060031 Bucharest, Romania; (G.P.); (E.N.); (C.A.)
| | - Gheorghe Nechifor
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica from Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Gabriel Lucian Radu
- National Institute for Research-Development of Biological Sciences, 060031 Bucharest, Romania; (G.P.); (E.N.); (C.A.)
- Correspondence: ; Tel.: +40-0212200900
| |
Collapse
|
11
|
Enhancing antifouling and separation characteristics of carbon nanofiber embedded poly ether sulfone nanofiltration membrane. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Khosravi MJ, Hosseini SM, Vatanpour V. Performance improvement of PES membrane decorated by Mil-125(Ti)/chitosan nanocomposite for removal of organic pollutants and heavy metal. CHEMOSPHERE 2022; 290:133335. [PMID: 34922974 DOI: 10.1016/j.chemosphere.2021.133335] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 05/26/2023]
Abstract
The Mil-125(Ti)-CS nanocomposite was successfully synthesized and characterized by using scanning electron microscopy (SEM) images, Fourier-transform infrared (FTIR) analysis and X-ray diffraction (XRD). Then, to improve the membrane performance, the synthesized Mil-125(Ti)-CS nanocomposite was embedded into the polyethersulfone (PES) membrane matrix. The nanofiltration membranes were fabricated via phase inversion method. Presence of chitosan in the structure of Mil-125(Ti) has increased the compatibility of nanoparticles with the polymer and also improved the hydrophilicity of the resulted membranes. The water contact angle of bare membrane (58°) was reduced to 40° by blending of 1 wt% nanocomposite led to increasing the pure water flux. However, the incorporation of more than 1 wt% of the nanocomposite caused the accumulation of nanocomposites and this was reduced the pore radius and permeability. The membrane containing 1 wt% nanocomposite was displayed the highest flux recovery ratio (FRR) ∼ 98% in bovine serum albumin (BSA) filtration. The membranes containing Mil-125(Ti)-CS also showed good performance against fouling. The performance of membranes was evaluated by treatment of six reactive dyes, antibiotic (cefixime), heavy metal, NaCl and Na2SO4 solutions. Addition of Mil-125(Ti)-CS NPs at low concentrations resulted in membranes with high pure water flux, higher separation efficiency, and remarkable anti-fouling behavior.
Collapse
Affiliation(s)
- Mohammad Javad Khosravi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Sayed Mohsen Hosseini
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran.
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran; Research Institute of Green Chemistry, Kharazmi University, Tehran, Iran.
| |
Collapse
|
13
|
Arumugham T, Ouda M, Krishnamoorthy R, Hai A, Gnanasundaram N, Hasan SW, Banat F. Surface-engineered polyethersulfone membranes with inherent Fe-Mn bimetallic oxides for improved permeability and antifouling capability. ENVIRONMENTAL RESEARCH 2022; 204:112390. [PMID: 34838760 DOI: 10.1016/j.envres.2021.112390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
In recent years, bimetallic oxide nanoparticles have garnered significant attention owing to their salient advantages over monometallic nanoparticles. In this study, Fe2O3-Mn2O3 nanoparticles were synthesized and used as nanomodifiers for polyethersulfone (PES) ultrafiltration membranes. A NIPS was used to fabricate asymmetric membranes. The effect of nanoparticle concentration (0-1 wt.%) on the morphology, roughness, wettability, porosity, permeability, and protein filtration performance of the membranes was investigated. The membrane containing 0.25 wt% nanoparticles exhibited the lowest water contact angle (67°) and surface roughness (10.4 ± 2.8 nm) compared to the other membranes. Moreover, this membrane exhibited the highest porosity (74%) and the highest pure water flux (398 L/m2 h), which was 16% and 1.9 times higher than that of the pristine PES membrane. The modified PES membranes showed an improved antifouling ability, especially against irreversible fouling. Bovine serum albumin protein-based dynamic five-cycle filtration tests showed a maximum flux recovery ratio of 77% (cycle-1), 67% (cycle-2), and 65.8% (cycle-5) for the PES membrane containing 0.25 wt% nanoparticles. Overall, the biphasic Fe2O3-Mn2O3 nanoparticles were found to be an effective nanomodifier for improving the permeability and antifouling ability of PES membranes in protein separation and water treatment applications.
Collapse
Affiliation(s)
- Thanigaivelan Arumugham
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Mariam Ouda
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Rambabu Krishnamoorthy
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Nirmala Gnanasundaram
- Mass Transfer Lab, School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632014, India
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
14
|
Xiong Z, Liu J, Yang Y, Lai Q, Wu X, Yang J, Zeng Q, Zhang G, Zhao S. Reinforcing hydration layer on membrane surface via nano-capturing and hydrothermal crosslinking for fouling reduction. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
High Flux and Antifouling Nanofiltration Membrane Modified by Ag@UiO-66-NH2 and Its Application for Biphenol A Removal. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/4197365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Owing to the specific porous structure which could provide additional passage channel for some molecules, metal organic frameworks are attractive candidates for enhancing permeability and selectivity of membranes in pervaporation, reverse osmosis, and gas separation. In this experiment, Ag@UiO-66-NH2 was introduced into polyamide separation layer by interfacial polymerization of triethylenetetramine and 1,3,5-benzenetricarboxylic acid chloride for nanofiltration. The results indicated that Ag@UiO-66-NH2 nanoparticles did endow the membranes with rapid diffusion pathways for water molecules. When the content of Ag@UiO-66-NH2 was 0.03 g, the prepared membrane (NF-Ag-3) showed high flux about 47.3 L·m-2·h-1 at 0.6 MPa, which is about 2-fold higher than that of polyamide membrane without Ag@UiO-66-NH2, while the MgSO4 rejection rate remained about 87.4%. The membrane also showed excellent antifouling properties, and the water flux recovery ratio was 95.6% after filtration BSA solution. When it was applied for 50 mg/L bisphenol A removal, the rejection rate reached 94.6%, and the flux is about 49.1 L·m-2·h-1. Moreover, Ag particles on UiO-66-NH2 rendered the membrane with good inhibition for Escherichia coli. The antibacterial rate of the membranes is above 95% when the loading of Ag@UiO-66-NH2 is more than 0.03 g.
Collapse
|
16
|
Bandehali S, Ebadi Amooghin A, Sanaeepur H, Ahmadi R, Fuoco A, Jansen JC, Shirazian S. Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Bandehali S, Parvizian F, Hosseini SM, Matsuura T, Drioli E, Shen J, Moghadassi A, Adeleye AS. Planning of smart gating membranes for water treatment. CHEMOSPHERE 2021; 283:131207. [PMID: 34157628 DOI: 10.1016/j.chemosphere.2021.131207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
The use of membranes in desalination and water treatment has been intensively studied in recent years. The conventional membranes however have various problems such as uncontrollable pore size and membrane properties, which prevents membranes from quickly responding to alteration of operating and environmental conditions. As a result the membranes are fouled, and their separation performance is lowered. The preparation of smart gating membranes inspired by cell membranes is a new method to face these challenges. Introducing stimuli-responsive functional materials into traditional porous membranes and use of hydrogels and microgels can change surface properties and membrane pore sizes under different conditions. This review shows potential of smart gating membranes in water treatment. Various types of stimuli-response such as those of thermo-, pH-, ion-, molecule-, UV light-, magnetic-, redox- and electro-responsive gating membranes along with various gel types such as those of polyelectrolyte, PNIPAM-based, self-healing hydrogels and microgel based-smart gating membranes are discussed. Design strategies, separation mechanisms and challenges in fabrication of smart gating membranes in water treatment are also presented. It is demonstrated that experimental and modeling and simulation results have to be utilized effectively to produce smart gating membranes.
Collapse
Affiliation(s)
- Samaneh Bandehali
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Fahime Parvizian
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Sayed Mohsen Hosseini
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran.
| | - Takeshi Matsuura
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| | - Enrico Drioli
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, Rende, CS, 87036, Italy; Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci 45A, 87036, Rende, CS, Italy.
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Abdolreza Moghadassi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92697-2175, USA
| |
Collapse
|
18
|
Bandehali S, Parvizian F, Ruan H, Moghadassi A, Shen J, Figoli A, Adeleye AS, Hilal N, Matsuura T, Drioli E, Hosseini SM. A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Zareei F, Bandehali S, Hosseini SM. Enhancing the separation and antifouling properties of PES nanofiltration membrane by use of chitosan functionalized magnetic nanoparticles. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0765-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Promoting the separation and antifouling properties of polyethersulfone-based nanofiltration membrane by incorporating of cobalt ferrite/activated carbon composite nanoparticles. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Nanofiltration Composite Membranes Based on KIT-6 and Functionalized KIT-6 Nanoparticles in a Polymeric Matrix with Enhanced Performances. MEMBRANES 2021; 11:membranes11050300. [PMID: 33918993 PMCID: PMC8143004 DOI: 10.3390/membranes11050300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 01/04/2023]
Abstract
The nanofiltration composite membranes were obtained by incorporation of KIT-6 ordered mesoporous silica, before and after its functionalization with amine groups, into polyphenylene-ether-ether-sulfone (PPEES) matrix. The incorporation of silica nanoparticles into PPEES polymer matrix was evidenced by FTIR and UV–VIS spectroscopy. SEM images of the membranes cross-section and their surface topology, evidenced by AFM, showed a low effect of KIT-6 silica nanoparticles loading and functionalization. The performances of the obtained membranes were appraised in permeation of Chaenomeles japonica fruit extracts and the selective separation of phenolic acids and flavonoids. The obtained results proved that the PPEES with functionalized KIT-6 nanofiltration membrane, we have prepared, is suitable for the polyphenolic compound’s concentration from the natural extracts.
Collapse
|
22
|
Solano R, Patiño-Ruiz D, Tejeda-Benitez L, Herrera A. Metal- and metal/oxide-based engineered nanoparticles and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16962-16981. [PMID: 33638785 DOI: 10.1007/s11356-021-12996-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The production and demand of nanoparticles in the manufacturing sector and personal care products, release a large number of engineered nanoparticles (ENPs) into the atmosphere, aquatic ecosystems, and terrestrial environments. The intentional or involuntary incorporation of ENPs into the environment is carried out through different processes. The ENPs are combined with other compounds and release into the atmosphere, settling on the ground due to the water cycle or other atmospheric phenomena. In the case of aquatic ecosystems, the ENPs undergo hetero-aggregation and sedimentation, reaching different living organisms and flora, as well as groundwater. Accordingly, the high mobility of ENPs in diverse ecosystems is strongly related to physical, chemical, and biological processes. Recent studies have been focused on the toxicological effects of a wide variety of ENPs using different validated biological models. This literature review emphasizes the study of toxicological effects related to using the most common ENPs, specifically metal and metal/oxides-based nanoparticles, addressing different synthesis methodologies, applications, and toxicological evaluations. The results suggest negative impacts on biological models, such as oxidative stress, metabolic and locomotive toxicity, DNA replication dysfunction, and bioaccumulation. Finally, it was consulted the protocols for the control of risks, following the assessment and management process, as well as the classification system for technological alternatives and risk management measures of ENPs, which are useful for the transfer of technology and nanoparticles commercialization.
Collapse
Affiliation(s)
- Ricardo Solano
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - David Patiño-Ruiz
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - Lesly Tejeda-Benitez
- Chemical Engineering Program, Process Design and Biomass Utilization Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - Adriana Herrera
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia.
- Chemical Engineering Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia.
| |
Collapse
|
23
|
Infusion of Silver-Polydopamine Particles into Polyethersulfone Matrix to Improve the Membrane's Dye Desalination Performance and Antibacterial Property. MEMBRANES 2021; 11:membranes11030216. [PMID: 33808528 PMCID: PMC8003254 DOI: 10.3390/membranes11030216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
The advancement in membrane science and technology, particularly in nanofiltration applications, involves the blending of functional nanocomposites into the membranes to improve the membrane property. In this study, Ag-polydopamine (Ag-PDA) particles were synthesized through in situ PDA-mediated reduction of AgNO3 to silver. Infusing Ag-PDA particles into polyethersulfone (PES) matrix affects the membrane property and performance. X-ray photoelectron spectroscopy (XPS) analyses confirmed the presence of Ag-PDA particles on the membrane surface. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) describe the morphology of the membranes. At an optimum concentration of Ag-PDA particles (0.3 wt % based on the concentration of PES), the modified membrane exhibited high water flux 13.33 L∙m−2∙h−1 at 4 bar with high rejection for various dyes of >99%. The PESAg-PDA0.3 membrane had a pure water flux more than 5.4 times higher than that of a pristine membrane. Furthermore, in bacterial attachment using Escherichia coli, the modified membrane displayed less bacterial attachment compared with the pristine membrane. Therefore, immobilizing Ag-PDA particles into the PES matrix enhanced the membrane performance and antibacterial property.
Collapse
|
24
|
Ansari S, Moghadassi A, Hosseini SM. A new approach to tailoring the separation characteristics of polyethersulfone nanofiltration membranes by 8-hydroxyquinoline functionalized Fe3O4 nanoparticles. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0618-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Fabrication of antifouling mixed matrix NF membranes by embedding sodium citrate surfactant modified-iron oxide nanoparticles. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0599-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
Zhu J, Zhou S, Li M, Xue A, Zhao Y, Peng W, Xing W. PVDF mixed matrix ultrafiltration membrane incorporated with deformed rebar-like Fe3O4–palygorskite nanocomposites to enhance strength and antifouling properties. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118467] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Lukka Thuyavan Y, Arthanareeswaran G, Ismail AF, Goh PS, Shankar MV, Ng BC, Sathish Kumar R, Venkatesh K. Binary metal oxides incorporated polyethersulfone ultrafiltration mixed matrix membranes for the pretreatment of seawater desalination. J Appl Polym Sci 2020. [DOI: 10.1002/app.49883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Y. Lukka Thuyavan
- Membrane Research Laboratory, Department of Chemical Engineering National Institute of Technology Tiruchirappalli Tamil Nadu India
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia Skudai Malaysia
| | - G. Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering National Institute of Technology Tiruchirappalli Tamil Nadu India
| | - A. F. Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia Skudai Malaysia
| | - P. S. Goh
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia Skudai Malaysia
| | - M. V. Shankar
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science and Nanotechnology Yogi Vemana University Kadapa Andhra Pradesh India
| | - B. C. Ng
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia Skudai Malaysia
| | - R. Sathish Kumar
- Membrane Research Laboratory, Department of Chemical Engineering National Institute of Technology Tiruchirappalli Tamil Nadu India
| | - K. Venkatesh
- Membrane Research Laboratory, Department of Chemical Engineering National Institute of Technology Tiruchirappalli Tamil Nadu India
| |
Collapse
|
28
|
Development of Polyethersulfone/α-Zirconium phosphate (PES/α-ZrP) flat-sheet nanocomposite ultrafiltration membranes. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Qadir D, Nasir R, Mukhtar HB, Keong LK. Synthesis, characterization, and performance analysis of carbon molecular sieve-embedded polyethersulfone mixed-matrix membranes for the removal of dissolved ions. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1306-1324. [PMID: 32170974 DOI: 10.1002/wer.1326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
The asymmetric polyethersulfone (PES-15 wt.%) mixed-matrix membranes were prepared by incorporation of carbon molecular sieve (CMS) with varying concentrations (1, 3, and 5 wt.%). Physicochemical characterization of synthesized membranes was carried out using field emission scanning electron microscope, atomic force microscopy, contact angle, thermogravimetric analysis, zeta potential analyzer, porosity, and mean pore sizes. Performance analysis of synthesized mixed-matrix membranes was carried out by varying the operating parameters such as pressure (2-10 bar), feed concentration (100-1,000 mg/L), and cations type (Na+ , Ca2+ , Mg2+ , and Sn2+ ). Effect of operating parameters and CMS concentration was investigated on pure water flux (PWF), permeate flux, and rejection of membranes. It was found that mixed-matrix membrane containing 15 wt.% PES with 1 wt.% CMS displayed the superior physicochemical characteristics in terms of hydrophilicity (37.9°), surface charge (-13.8 mV), mean pore diameter (6.04 nm), and thermal properties (Tg = 218.5°C), and overall performance. E5C1 membrane showed 1.5 times higher PWF (75.5 L m-2 hr-1 ) and incremented in rejection for all salts than the nascent membrane. PRACTITIONER POINTS: Carbon molecular sieve-embedded mixed-matrix membranes were synthesized by phase inversion method. The resultant membranes experienced improved hydrophilicity, roughness, surface charge, porosity, and mean pore diameter with 1 wt.% CMS loading. The pure water flux was improved from 55.77 to 75.05 L m-2 hr-1 when 1 wt.% CMS was added in pure PES. The observed rejection of a mixed-matrix membrane with 1 wt.% CMS was the maximum for all salts.
Collapse
Affiliation(s)
- Danial Qadir
- School of Chemical Engineering, The University of Faisalabad, Faisalabad, Pakistan
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Rizwan Nasir
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Hilmi B Mukhtar
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Lau K Keong
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| |
Collapse
|
30
|
Bandehali S, Moghadassi A, Parvizian F, Zhang Y, Hosseini SM, Shen J. New mixed matrix PEI nanofiltration membrane decorated by glycidyl-POSS functionalized graphene oxide nanoplates with enhanced separation and antifouling behaviour: Heavy metal ions removal. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116745] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Lukka Thuyavan Y, Arthanareeswaran G, Ismail A, Goh P, Shankar M, Lakshmana Reddy N. Treatment of synthetic textile dye effluent using hybrid adsorptive ultrafiltration mixed matrix membranes. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Improvement in separation performance of PEI-based nanofiltration membranes by using L-cysteine functionalized POSS-TiO2 composite nanoparticles for removal of heavy metal ion. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0535-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Development of nanofiltration PES membranes incorporated with hydrophilic para hydroxybenzoate alumoxane filler for high flux and antifouling property. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Hosseini SM, Karami F, Farahani SK, Bandehali S, Shen J, Bagheripour E, Seidypoor A. Tailoring the separation performance and antifouling property of polyethersulfone based NF membrane by incorporating hydrophilic CuO nanoparticles. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0497-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Bandehali S, Parvizian F, Moghadassi A, Hosseini SM. High water permeable PEI nanofiltration membrane modified by L-cysteine functionalized POSS nanoparticles with promoted antifouling/separation performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116361] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Parvizian F, Ansari F, Bandehali S. Oleic acid-functionalized TiO2 nanoparticles for fabrication of PES-based nanofiltration membranes. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.02.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Vatanpour V, Rabiee H, Davood Abadi Farahani MH, Masteri-Farahani M, Niakan M. Preparation and characterization of novel nanoporous SBA-16-COOH embedded polysulfone ultrafiltration membrane for protein separation. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Bandehali S, Parvizian F, Moghadassi AR, Hosseini SM, Shen JN. Fabrication of thin film-PEI nanofiltration membrane with promoted separation performances: Cr, Pb and Cu ions removal from water. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02056-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Glycidyl POSS-functionalized ZnO nanoparticles incorporated polyether-imide based nanofiltration membranes for heavy metal ions removal from water. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-019-0441-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
A new type of [PEI-glycidyl POSS] nanofiltration membrane with enhanced separation and antifouling performance. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0359-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|