1
|
Sayago UFC, Ballesteros VB, Lozano AM. Development of a Treatment System of Water with Cr (VI) Through Models Using E. crassipes Biomass with Iron Chloride. TOXICS 2025; 13:230. [PMID: 40137557 PMCID: PMC11945796 DOI: 10.3390/toxics13030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
In the context of critical water quality issues, there is a pressing need for more pragmatic approaches to water research. Adsorbent biomass, derived from abundant and effective natural sources, holds considerable promise as a solution. E. crassipes, a type of plant biomass, has emerged as a particularly promising material due to its high adsorption capacity. When combined with iron chloride, this capacity is significantly enhanced, and the addition of EDTA is essential for the reuse of treated water. The economic viability of this material in water treatment has been thoroughly evaluated, and the project was developed with the aim of building treatment systems using E. crassipes biomass in conjunction with iron chloride. The development process involved the creation of a special material composed of 85% dried and ground E. crassipes and 15% iron chloride. The process was scaled up with the most effective biomass for treatment and subsequent elutions with EDTA. The outlet conditions, the quantity of pollutant removed, and the treated volume were established, and subsequently the extraparticle diffusion constant Kf, the intraparticle diffusion constant, and the characteristic isotherm were determined. The identification of the intraparticle diffusion model, Ks, was made possible by the results of the model, which indicated the specific route for the construction of a pilot-scale treatment system. The pilot-scale prototype was constructed using 1000 g of EC (2) of biomass (850 g of E. crassipes and 150 g of chloride of iron). The prototype developed in the present investigation could be used to treat effluents contaminated with heavy metals, especially chromium, and is an advanced environmental research project that contributes to the improvement of water quality.
Collapse
Affiliation(s)
- Uriel Fernando Carreño Sayago
- Faculty of Engineering and Basic Sciences, Fundación Universitaria los Libertadores, Bogotá 111221, Colombia; (V.B.B.); (A.M.L.)
| | | | | |
Collapse
|
2
|
Duan Y, Meng F, Manickam S, Zhu X, Yang J, Han Y, Tao Y. Four distinct pathways involved in a "tug-of-war" lead to the non-linear nature of phenolic chemistry during lactic acid fermentation of fruits and vegetables. J Adv Res 2025:S2090-1232(25)00131-6. [PMID: 40023251 DOI: 10.1016/j.jare.2025.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
Introduction Lactic acid fermentation of fruits and vegetables (F&V) is endowed with new nutrients and flavors. "Phenolics" is a hot spot in this area, which evolve irregularly during fermentation. However, the mechanism about this non-linear phenomenon has been poorly understood.Objectives This paper was aimed at decoding the mechanism about the non-linear nature of phenolic chemistry during lactic acid fermentation of F&V.Methods Mango and cress slurries were fermented by Lactiplantibacillus plantarum. Different fractions of the slurry samples were analyzed comprehensively. Four pathways relating to phenolic changes were extracted, including adsorption of free phenolics by F&V cell wall materials, microbial adsorption and biotransformation of free phenolics, destabilization of covalent bond between bound phenolics and F&V cell walls. The in-depth features of each pathway during fermentation were explored by multidisciplinary methodologies.Results Throughout both fermentation of mango and cress slurries, free phenolics and the F&V cell wall components undergo dynamic changes. Due to the reduction of pectin fraction in the F&V cell walls during fermentation, the adsorption of free phenolics by F&V cell wall materials through surface diffusion was improved. Also, microbial cells, especially in the latter stages of fermentation, were capable of adsorbing free phenolics through surface diffusion. Moreover, the padC and bglB genes encoding phenolic acid decarboxylase and β-glucosidase were expressed during fermentation, contributing to the conversion of free phenolics. Besides, bound phenolics were not released during fermentation, although its covalent was weakened. The features of the above pathways vary with the fermentation stages and the composition of F&V components, resulting in non-linear changes of free phenolics during F&V fermentation. Conclusion F&V cell wall adsorption, microbial adsorption, microbial biotransformation, and destabilization of the covalent bond of bound phenolics compete in a dynamic "tug-of-war", leading to non-linear nature of phenolic chemistry during F&V fermentation.
Collapse
Affiliation(s)
- Yuqing Duan
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Fanqiang Meng
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Sivakumar Manickam
- Department of Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam, China
| | - Xinyao Zhu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Jie Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yongbin Han
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Yang Tao
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China.
| |
Collapse
|
3
|
Yang T, Liu Y, Chen J, Liu J, Jiang S, Zhang X, Ji C. Synthesis of ultrathin hybrid membranes via the co-polymerization of acrylic acid, styrene and molybdenum disulfide and their high adsorption selectivity for lead(II) in the mixture of metal ions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124019. [PMID: 38663506 DOI: 10.1016/j.envpol.2024.124019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Lead(II) is a potential carcinogen of heavy-metal ions (HIs). With the wide application of Pb-bearing products including lead alloy products, and new-energy lead-ion batteries, lead pollution has become a tricky problem. To solve such a difficulty, novel ultrathin MoS2-vinyl hybrid membranes (MVHMs) with a "spring" effect were synthesized via co-polymerization of acrylic acid, styrene and molybdenum disulfide (MoS2) and their adsorptions for HIs were explored. The "spring" effect derived from the interaction between the tendency of the short polyacrylic acid (PAA) chain connected with MoS2 to spread outward and the coulomb force between layers from MoS2 (s-MoS2), which enlarge the spacing of MoS2 layers without changing the number of layers after membrane formation, which changes the swelling membrane to a dense membrane and reduces the original thickness from 0.5 cm to 0.011 mm in the thickness direction. The adsorption experiment revealed that these MVHMs had super adsorption performance and high selectivity for Pb2+ by comparison with other five metal ions: Cu2+, Cd2+, Ni2+, Cr3+ and Zn2+. Especially, the adsorption quantity of MVHMs for Pb2+ could approach 2468 mg/g and the maximum adsorption ratio of qe[Pb2+]/qe[Cu2+] can reach 10.909. These values were much larger than the data obtained with the adsorbents reported in the last decade. A variety of models are applied to evaluate the effect of ionic groups. It was confirmed that -COOH plays a key role in adsorption of HIs and s-MoS2 also has a certain contribution. Conversely, ion exchange plays only a minor role during the period of adsorption process. Effective diffusion coefficient (Deff) of Pb(II) had the largest values among these metal ions. Hence, these hybrid membranes are promising adsorbents for the removal of Pb2+ from water containing various ions.
Collapse
Affiliation(s)
- Tianrui Yang
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Road, Hefei, 230601, China
| | - Yu Liu
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Road, Hefei, 230601, China
| | - Jingyi Chen
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Road, Hefei, 230601, China
| | - Junsheng Liu
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Road, Hefei, 230601, China.
| | - Shan Jiang
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Road, Hefei, 230601, China
| | - Xiaoxue Zhang
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Road, Hefei, 230601, China
| | - Chunyu Ji
- School of Energy, Materials and Chemical Engineering, Hefei University, 99 Jinxiu Road, Hefei, 230601, China
| |
Collapse
|
4
|
Boussouga YA, Joseph J, Stryhanyuk H, Richnow HH, Schäfer AI. Adsorption of uranium (VI) complexes with polymer-based spherical activated carbon. WATER RESEARCH 2024; 249:120825. [PMID: 38118222 DOI: 10.1016/j.watres.2023.120825] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 12/22/2023]
Abstract
Adsorption processes with carbon-based adsorbents have received substantial attention as a solution to remove uranium from drinking water. This study investigated uranium adsorption by a polymer-based spherical activated carbon (PBSAC) characterised by a uniformly smooth exterior and an extended surface of internal cavities accessible via mesopores. The static adsorption of uranium was investigated applying varying PBSAC properties and relevant solution chemistry. Spatial time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed to visualise the distribution of the different uranium species in the PBSAC. The isotherms and thermodynamics calculations revealed monolayer adsorption capacities of 28-667 mg/g and physical adsorption energies of 13-21 kJ/mol. Increasing the surface oxygen content of the PBSAC to 10 % enhanced the adsorption and reduced the equilibrium time to 2 h, while the WHO drinking water guideline of 30 µgU/L could be achieved for an initial concentration of 250 µgU/L. Uranium adsorption with PBSAC was favourable at the pH 6-8. At this pH range, uranyl carbonate complexes (UO2CO3(aq), UO2(CO3)22-, (UO2)2CO3(OH)3-) predominated in the solution, and the ToF-SIMS analysis revealed that the adsorption of these complexes occurred on the surface and inside the PBSAC due to intra-particle diffusion. For the uranyl cations (UO22+, UO2OH+) at pH 2-4, only shallow adsorption in the outermost PBSAC layers was observed. The work demonstrated the effective removal of uranium from contaminated natural water (67 µgU/L) and meeting both German (10 µgU/L) and WHO guideline concentrations. These findings also open opportunities to consider PBSAC in hybrid treatment technologies for uranium removal, for instance, from high-level radioactive waste.
Collapse
Affiliation(s)
- Youssef-Amine Boussouga
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
| | - James Joseph
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, ProVIS-Centre for Chemical Microscopy, Helmholtz, Center for Environmental Research (UFZ), Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, ProVIS-Centre for Chemical Microscopy, Helmholtz, Center for Environmental Research (UFZ), Leipzig, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
5
|
Von-Kiti E, Oduro WO, Animpong MA, Ampomah-Benefo K, Boafo-Mensah G, Kwakye-Awuah B, Williams CD. Evidence of electronic influence in the adsorption of cationic and zwitterionic dyes on zeolites. Heliyon 2023; 9:e20049. [PMID: 37809913 PMCID: PMC10559769 DOI: 10.1016/j.heliyon.2023.e20049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 10/10/2023] Open
Abstract
The adsorption of a cationic dye, Methylene blue (MB), and a zwitterionic dye, 8-Hydroxyquinoline (8-HQ), onto zeolites synthesized from different clays has been investigated. The presence of certain metals and the Si/Al ratio of the parent clay has an overall effect on the type of zeolites produced. Zeolites LTA and FAU Y were obtained using the hydrothermal method. X-ray diffraction and Fourier transform infrared spectroscopy (FTIR) spectral analysis was used to study the adsorption phenomena of the adsorbates on the adsorbents. The adsorption profile of MB (Topological Polar Surface Area (TPSA) 43.9 Å2 and 8-HQ (TPSA 33.1 Å2) compared favourably with a Freundlich isotherm with R2 > 0.9 for all the zeolitic materials synthesized. Adsorption capacities of zeolite FAU was significantly different from zeolite LTA for MB removal. The higher adsorption capacity of zeolite FAU was attributed to geometric effects resulting in greater shrinkage in the inter lattice spacing of zeolite LTA leading to a reduction in surface area. Adsorption of the relatively smaller 8-HQ however, did not show significant difference in the two zeolite types. Surface and structural characterization showed that adsorbates/adsorbents interactions were driven by both geometric (inter lattice spacing which imparts higher surface area of the adsorbent) and electronic (electrostatic repulsions through electron back donation from metals in the zeolitic structure) considerations.
Collapse
Affiliation(s)
- Elizabeth Von-Kiti
- Materials and Manufacturing Division, Council for Scientific and Industrial Research –Institute of Industrial Research (CSIR-IIR), Accra, Ghana
| | - William Owusu Oduro
- Materials and Manufacturing Division, Council for Scientific and Industrial Research –Institute of Industrial Research (CSIR-IIR), Accra, Ghana
| | - Maame Adwoa Animpong
- Materials and Manufacturing Division, Council for Scientific and Industrial Research –Institute of Industrial Research (CSIR-IIR), Accra, Ghana
| | - Kofi Ampomah-Benefo
- Materials and Manufacturing Division, Council for Scientific and Industrial Research –Institute of Industrial Research (CSIR-IIR), Accra, Ghana
| | - Gloria Boafo-Mensah
- Materials and Manufacturing Division, Council for Scientific and Industrial Research –Institute of Industrial Research (CSIR-IIR), Accra, Ghana
| | - Bright Kwakye-Awuah
- Department of Physics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | |
Collapse
|
6
|
Georgin J, Franco DS, Netto MS, Gama BM, Fernandes DP, Sepulveda P, Silva LF, Meili L. Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Carvalho VV, Pinto D, Salau NP, Pinto LA, Cadaval Jr. TR, Silva LF, Lopes TJ, Dotto GL. Modeling of anthocyanins adsorption onto chitosan films: An approach using the pore volume and surface diffusion model. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Ag nanoparticles immobilized sulfonated polyethersulfone/polyethersulfone electrospun nanofiber membrane for the removal of heavy metals. Sci Rep 2022; 12:5814. [PMID: 35388115 PMCID: PMC8986829 DOI: 10.1038/s41598-022-09802-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/22/2022] [Indexed: 12/19/2022] Open
Abstract
In this work, Eucommia ulmoides leaf extract (EUOLstabilized silver nanoparticles (EUOL@AgNPs) incorporated sulfonated polyether sulfone (SPES)/polyethersulfone (PES) electrospun nanofiber membranes (SP ENMs) were prepared by electrospinning, and they were studied for the removal of lead (Pb(II)) and cadmium (Cd(II)) ions from aqueous solutions. The SP ENMs with various EUOL@AgNPs loadings were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscope, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and contact angle (CA) measurements. The adsorption studies showed that the adsorption of Cd(II) and Pb(II) was rapid, achieved equilibrium within 40 min and 60 min, respectively and fitted with non-linear pseudo-second-order (PSO) kinetics model. For Cd(II) and Pb(II), the Freundlich model described the adsorption isotherm better than the Langmuir isotherm model. The maximum adsorption capacity for Cd(II) and Pb(II) was 625 and 370.37 mg g−1 respectively at neutral pH. Coexisting anions of fluoride, chloride, and nitrate had a negligible influence on Cd(II) removal than the Pb(II). On the other hand, the presence of silicate and phosphate considerably affected Cd(II) and Pb(II) adsorption. The recyclability, regeneration, and reusability of the fabricated EUOL@AgNPs-SP ENMs were studied and they retained their high adsorption capacity up to five cycles. The DFT measurements revealed that SP-5 ENMs exhibited the highest adsorption selectivity for Cd(II) and the measured binding energies for Cd(II), Pb(II), are 219.35 and 206.26 kcal mol−1, respectively. The developed ENM adsorbent may find application for the removal of heavy metals from water.
Collapse
|
9
|
Wu J, Wang T, Shi N, Pan WP. Insight into mass transfer mechanism and equilibrium modeling of heavy metals adsorption on hierarchically porous biochar. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Importance of spectroscopic and static gravimetric studies for exploring adsorption behavior of propan-2-ol vapor in a fixed-bed column. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Pauletto PS, Moreno-Pérez J, Hernández-Hernández LE, Bonilla-Petriciolet A, Dotto GL, Salau NPG. Novel biochar and hydrochar for the adsorption of 2-nitrophenol from aqueous solutions: An approach using the PVSDM model. CHEMOSPHERE 2021; 269:128748. [PMID: 33139043 DOI: 10.1016/j.chemosphere.2020.128748] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Two new adsorbents, namely avocado-based hydrochar and LDH/bone-based biochar, were developed, characterized, and applied for adsorbing 2-nitrophenol. The pore volume and surface diffusion model (PVSDM) was numerically solved for different geometries and applied to interpret the adsorption decay curves. Both adsorbents presented interesting textural and physicochemical characteristics, which achieved maximum adsorption capacities of 761 mg/g for biochar and 562 mg/g for hydrochar. The adsorption equilibrium data were well fitted by Henry isotherm. Besides, thermodynamic investigation revealed endothermic adsorption with the occurrence of electrostatic interactions. PVSDM predicted the adsorption decay curves for different adsorbent geometries at different initial concentrations of 2-nitrophenol. The surface diffusion was the main intraparticle mass transport mechanism. Furthermore, the external mass transfer and surface diffusion coefficients increased with the increase of 2-nitrophenol concentration.
Collapse
Affiliation(s)
- P S Pauletto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, 97105-900, Santa Maria, RS, Brazil.
| | - J Moreno-Pérez
- Instituto Tecnológico de Aguascalientes, Aguascalientes, 20256, Mexico.
| | | | | | - G L Dotto
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, 97105-900, Santa Maria, RS, Brazil.
| | - N P G Salau
- Chemical Engineering Department, Federal University of Santa Maria-UFSM, 1000, Roraima Avenue, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
12
|
Shahriyari Far H, Hasanzadeh M, Najafi M, Masale Nezhad TR, Rabbani M. Efficient Removal of Pb(II) and Co(II) Ions from Aqueous Solution with a Chromium-Based Metal–Organic Framework/Activated Carbon Composites. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06199] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hossein Shahriyari Far
- Department of Chemistry, Iran University of Science and Technology, Narmak, P.O.
Box 16846-13114, Tehran, Iran
| | - Mahdi Hasanzadeh
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd, Iran
| | - Mina Najafi
- Department of Chemistry, Iran University of Science and Technology, Narmak, P.O.
Box 16846-13114, Tehran, Iran
| | - Targol Rahimi Masale Nezhad
- Department of Chemistry, Iran University of Science and Technology, Narmak, P.O.
Box 16846-13114, Tehran, Iran
| | - Mahboubeh Rabbani
- Department of Chemistry, Iran University of Science and Technology, Narmak, P.O.
Box 16846-13114, Tehran, Iran
| |
Collapse
|
13
|
Pandey LM. Surface engineering of nano-sorbents for the removal of heavy metals: Interfacial aspects. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:104586. [DOI: 10.1016/j.jece.2020.104586] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|