1
|
Dolatabadi M, Ehrampoush MH, Pournamdari M, Ebrahimi AA, Fallahzadeh H, Ahmadzadeh S. Enhanced electrocatalytic elimination of fenitrothion, trifluralin, and chlorothalonil from groundwater and industrial wastewater using modified Cu-PbO2 electrode. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
2
|
Khongkliang P, Khemkhao M, Mahathanabodee S, O-Thong S, Kadier A, Phalakornkule C. Efficient removal of tannins from anaerobically-treated palm oil mill effluent using protein-tannin complexation in conjunction with electrocoagulation. CHEMOSPHERE 2023; 321:138086. [PMID: 36754310 DOI: 10.1016/j.chemosphere.2023.138086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/09/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Despite the significant removal of chemical oxygen demand (COD) by anaerobic digestion, anaerobically-treated palm oil mill effluent (POME) still contains tannins and other phenolic compounds, resulting in residual COD and a brownish color. In this study, we investigated the removal of tannins from anaerobically treated POME using protein-tannin complexation in conjunction with electrocoagulation. The amino acid composition of the protein, aqueous pH, and protein: tannin ratios were found to be important parameters affecting the tannin removal efficiency. Pig blood protein was superior to casein protein in removing tannins, possibly because it had aspartic acid as the major amino acid component. At an optimal condition with a pig blood protein: tannin ratio of 0.33 (w/w), a current density of 30 mA/cm2, pH 5, and an electrolysis time of 10 min, the removals of tannins, COD, and color were 93%, 96%, and 97%, respectively.
Collapse
Affiliation(s)
- Peerawat Khongkliang
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand; Research Center for Circular Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Maneerat Khemkhao
- Rattanakosin College for Sustainable Energy and Environment, Rajamangala University of Technology Rattanakosin, Nakhon Pathom, 73170, Thailand; Microbial Informatics and Industrial Product of Microbe Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Sithipong Mahathanabodee
- Department of Production Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
| | - Sompong O-Thong
- International College, Thaksin University, Songkhla, 90000, Thailand
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences (CAS), Urumqi, 830011, Xinjiang, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chantaraporn Phalakornkule
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand; Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand; Research Center for Circular Products and Energy, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand.
| |
Collapse
|
3
|
Amalina F, Syukor Abd Razak A, Krishnan S, Sulaiman H, Zularisam A, Nasrullah M. Advanced techniques in the production of biochar from lignocellulosic biomass and environmental applications. CLEANER MATERIALS 2022; 6:100137. [DOI: 10.1016/j.clema.2022.100137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Amalina F, Razak ASA, Krishnan S, Zularisam A, Nasrullah M. Dyes removal from textile wastewater by agricultural waste as an absorbent – A review. CLEANER WASTE SYSTEMS 2022; 3:100051. [DOI: 10.1016/j.clwas.2022.100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Kamyab H, Yuzir MA, Riyadi FA, Ostadrahimi A, Khademi T, Ghfar AA, Kirpichnikova I. Electrochemical oxidation of palm oil mill effluent using platinum as anode: Optimization using response surface methodology. ENVIRONMENTAL RESEARCH 2022; 214:113993. [PMID: 35944623 DOI: 10.1016/j.envres.2022.113993] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
This work investigates the electrochemical oxidation of palm oil mill effluent (POME) treatment using platinum (Pt) as anode and graphite as a cathode. The response surface methodology was used to investigate the relationships between different factors conditions (voltage, electrolysis time and chemical support) and responses of the treatment (chemical oxygen demand reduction, colour removal, and total oil removal). A quadratic mathematical model was chosen for all responses using Box-Behnken Design (BBD) with R2 0.9853 for COD reduction, R2 0.9478 for colour removal and R2 0.9185 for total oil removal. According to Derringer's function desirability, under the optimum condition (Voltage 15, electrolysis time 2 h, and 19.95 mg/L NaCl) of POME treatment, 84% of COD reduction, 98% of colour removal and 99% total oil of removal could be achieved. These results indicate that platinum as an anode material is effective for the electrochemical oxidation treatment of POME.
Collapse
Affiliation(s)
- Hesam Kamyab
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Electric Power Station, Network, and Supply System, South Ural State University (National Research University), 76 Prospekt Lenina, 454080, Chelyabinsk, Russian Federation.
| | - Muhammad Ali Yuzir
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Fatimah Azizah Riyadi
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | | | - Tayebeh Khademi
- Azman Hashim International Business School (AHIBS), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Irina Kirpichnikova
- Electric Power Station, Network, and Supply System, South Ural State University (National Research University), 76 Prospekt Lenina, 454080, Chelyabinsk, Russian Federation
| |
Collapse
|
6
|
Nasrullah M, Ansar S, Krishnan S, Singh L, Peera SG, Zularisam AW. Electrocoagulation treatment of raw palm oil mill effluent: Optimization process using high current application. CHEMOSPHERE 2022; 299:134387. [PMID: 35339529 DOI: 10.1016/j.chemosphere.2022.134387] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
In the electrocoagulation wastewater treatment process, extremely polluted water treatment requires an effective technique, and using high current is one of those. This study aims to optimize electrocoagulation parameters such as operation time, electrodes gap and the initial pH by applying high current intensity to treat palm oil mill effluent (POME) via Box-Behnken design (BBD) method. Chemical oxygen demand (COD), biological oxygen demand (BOD), and suspended solids (SS) were used as the response variables in the quadratic polynomial model. Most of the selected models in the analysis of variance (ANOVA) have shown significant results. A high connection between the parameters and dependent variables was surprisingly discovered in this study which the obtained value of R2 for removal percentage of COD, BOD and SS were 0.9975, 0.9984 and 0.9979 respectively. Optimal removal was achieved at 19.07 A of current intensity (equivalent to 542 mA/cm2 of current density), 44.97 min of treatment time, 8.60 mm of inter-electrode distance and 4.37 of pH value, resulted in 97.21%, 99.26% and 99.00% of COD, BOD and SS removal respectively. This optimized scheme of operating parameters combination offers an alternate choice for enhancing the treatment efficiency of POME and also can be a benchmark for other researchers to treat highly polluted wastewater.
Collapse
Affiliation(s)
- Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Santhana Krishnan
- PSU Energy Systems Research Institute, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Lakhveer Singh
- Energy Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Energy Acres, Via Premnager, Dehradun 248007, India; Department of Civil Engineering, Centre for Research & Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Shaik Gouse Peera
- Department of Environmental Science and Engineering, Keimyung University, Daegu, 42602, Republic of Korea
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300, Gambang, Kuantan, Pahang, Malaysia.
| |
Collapse
|