1
|
Raju Karimadom B, Kornweitz H. The Effectiveness of Silver and Gold in Catalytic Homogenous and Heterogenous Borohydride Hydrolysis - a DFT Study. Chemphyschem 2024; 25:e202400253. [PMID: 38642388 DOI: 10.1002/cphc.202400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Energy demands, and environmental aspects raised the need to study hydrogen-carrying material such as borohydride for the practical usage of hydrogen as a cleaner and more efficient fuel. A proper understanding of the hydrogen generation mechanism is a key requirement for the designing of efficient catalysts, as the non-catalytic hydrolysis of borohydride in non-acidic media is a slow process. The hydrolysis mechanism of borohydride varies considerably using homogeneous and heterogeneous catalysts. A comparison of the hydrolysis mechanism of borohydride using gold and silver as homogenous and heterogeneous catalysts is given in this review. Unexpectedly, with gold catalyst, Au+ or Au(111), only two steps of hydrolysis occur and BH(OH)2 is produced, while with silver catalyst, Ag+ or Ag(111), the hydrolysis can proceed to completion.
Collapse
Affiliation(s)
- Basil Raju Karimadom
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Chemical Science Department, Ariel University, Ariel, Israel
| | - Haya Kornweitz
- Chemical Science Department, Ariel University, Ariel, Israel
| |
Collapse
|
2
|
Bousada GM, Nogueira da Silva V, Fernandes de Souza B, de Oliveira RS, Machado Junior I, da Cunha CHF, Astruc D, Teixeira RR, Lopes Moreira RP. Niobic acid as a support for microheterogeneous nanocatalysis of sodium borohydride hydrolysis under mild conditions. RSC Adv 2024; 14:19459-19471. [PMID: 38887643 PMCID: PMC11182415 DOI: 10.1039/d4ra01879f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
This study explores the stabilization by niobic acid, of Pt, Ni, Pd, and Au nanoparticles (NPs) for the efficient microheterogeneous catalysis of NaBH4 hydrolysis for hydrogen production. Niobic acid is the most widely studied Nb2O5 polymorph, and it is employed here for the first time for this key reaction relevant to green energy. Structural insights from XRD, Raman, and FTIR spectroscopies, combined with hydrogen production data, reveal the role of niobic acid's Brønsted acidity in its catalytic activity. The supported NPs showed significantly higher efficiency than the non-supported counterparts regarding turnover frequency, average hydrogen production rate, and cost. Among the tested NPs, PtNPs and NiNPs demonstrate the most favorable results. The data imply mechanism changes during the reaction, and the kinetic isotope assay indicates a primary isotope effect. Reusability assays demonstrate consistent yields over five cycles for PtNPs, although catalytic efficiency decreases, likely due to the formation of reaction byproducts.
Collapse
Affiliation(s)
- Guilherme Mateus Bousada
- Department of Chemistry, Universidade Federal de Viçosa Viçosa Minas Gerais 36570-000 Brazil
- Institut des Sciences Moléculaires, Université de Bordeaux, UMR CNRS 5255 Talence 33405 Cedex France
| | | | | | | | | | | | - Didier Astruc
- Institut des Sciences Moléculaires, Université de Bordeaux, UMR CNRS 5255 Talence 33405 Cedex France
| | - Robson Ricardo Teixeira
- Department of Chemistry, Universidade Federal de Viçosa Viçosa Minas Gerais 36570-000 Brazil
| | | |
Collapse
|
3
|
Li M, Fu L, Deng L, Hu Y, Yuan Y, Wu C. A tailored and rapid approach for ozonation catalyst design. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 15:100244. [PMID: 36820151 PMCID: PMC9938169 DOI: 10.1016/j.ese.2023.100244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Catalytic ozonation is widely employed in advanced wastewater treatment owing to its high mineralization of refractory organics. The key to high mineralization is the compatibility between catalyst formulation and wastewater quality. Machine learning can greatly improve experimental efficiency, while fluorescence data can provide additional wastewater quality information on the composition and concentration of organics, which is conducive to optimizing catalyst formulation. In this study, machine learning combined with fluorescence spectroscopy was applied to develop ozonation catalysts (Mn/γ-Al2O3 catalyst was used as an example). Based on the data collected from 52 different catalysts, a machine-learning model was established to predict catalyst performance. The correlation coefficient between the experimental and model-predicted values was 0.9659, demonstrating the robustness and good generalization ability of the model. The range of the catalyst formulations was preliminarily screened by fluorescence spectroscopy. When the wastewater was dominated by tryptophan-like and soluble microbial products, the impregnation concentration and time of Mn(NO3)2 were less than 0.3 mol L-1 and 10 h, respectively. Furthermore, the optimized Mn/γ-Al2O3 formulation obtained by the model was impregnation with 0.155 mol L-1 Mn(NO3)2 solution for 8.5 h and calcination at 600 °C for 3.5 h. The model-predicted and experimental values for total organic carbon removal were 54.48% and 53.96%, respectively. Finally, the improved catalytic performance was attributed to the synergistic effect of oxidation (•OH and 1O2) and the Mn/γ-Al2O3 catalyst. This study provides a rapid approach to catalyst design based on the characteristics of wastewater quality using machine learning combined with fluorescence spectroscopy.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Liya Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Liyan Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Yingming Hu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
- College of Urban and Environment Science, Northwest University, Xi'an, 710127, China
| | - Yue Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Changyong Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
- Research Center of Water Pollution Control Technology, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| |
Collapse
|
4
|
Umejuru EC, Mashifana T, Kandjou V, Amani-Beni M, Sadeghifar H, Fayazi M, Karimi-Maleh H, Sithole T. Application of zeolite based nanocomposites for wastewater remediation: Evaluating newer and environmentally benign approaches. ENVIRONMENTAL RESEARCH 2023; 231:116073. [PMID: 37164282 DOI: 10.1016/j.envres.2023.116073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
The presence of heavy metal ions and emerging pollutants in water poses a great risk to various biological ecosystems as a result of their high toxicity. Consequently, devising efficient and environmentally friendly methods to decontaminate these waters is of high interest to many researchers around the world. Among the varied water treatment and desalination means, adsorption and photocatalysis have been widely employed. However, the discussion and analysis of the use of zeolite-based composites as adsorbents are somehow minimal. The porous aluminosilicates (zeolites) are excellent candidates in wastewater treatment owing to various mechanisms of pollutants removal that they possess. The purpose of this review is thus to provide a synopsis of the current developments in the fabrication and application of nanocomposites based on zeolite as adsorbents and photocatalysts for the extraction of heavy metals, dyes and emerging pollutants from wastewaters. The review goes on to look into the effect of weight ratio on photocatalyst, photodegradation pathways, and various factors that influence photocatalysis and adsorption.
Collapse
Affiliation(s)
- Emmanuel Christopher Umejuru
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa
| | - Tebogo Mashifana
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa
| | - Vepika Kandjou
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa; Department of Chemical Materials and Metallurgical Engineering (CMME), Faculty of Engineering and Technology (FET), Botswana International University of Science and Technology (BIUST), P/Bag 16, Palapye, Botswana
| | - Majid Amani-Beni
- School of Architecture, Southwest Jiaotong University, 611756, Chengdu, China
| | - Hasan Sadeghifar
- R&D Laboratory, Hollingsworth & Vose (H&V) Company, West Groton, MA, 01452, USA
| | - Mahsa Fayazi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Thandiwe Sithole
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein, 2088, South Africa.
| |
Collapse
|
5
|
Wang M, Feng L. A carbon based-screen-printed electrode amplified with two-dimensional reduced graphene/Fe 3O 4 nanocomposite as electroanalytical sensor for monitoring 4-aminophenol in environmental fluids. CHEMOSPHERE 2023; 323:138238. [PMID: 36868416 DOI: 10.1016/j.chemosphere.2023.138238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The analysis water pollutants are so important strategy for investigation of water quality. On the other hand, 4-aminophenol is known as a hazardous and high-risk compound for humans, and its detection and measurement is very important for investigating the quality of surface and groundwater. In this study, graphene/Fe3O4 nanocomposite was synthesized by a simple chemical method and characterized by EDS and TEM methods and results showed Nano spherical shape of Fe3O4 nanoparticle with diameter about 20 nM decorated at surface of 2D reduce graphene nanosheet (2D-rG-Fe3O4). The 2D-rG-Fe3O4 was used as excellent catalyst at surface of carbon-based screen-printed electrode (CSPE) and used as electroanalytical sensor in monitoring and determination of 4-aminophenol in waste water sample. The results confirmed improving ∼4.0 times in oxidation signal and reducing 120 mV in oxidation potential of 4-aminophenol at surface of 2D-rG-Fe3O4/CSPE compare to CSPE, respectively. The electrochemical investigation showed pH dependence behavior with equal value of electron and proton for -aminophenol at surface of 2D-rG-Fe3O4/CSPE. Using square wave voltammetry method (SWV), the 2D-rG-Fe3O4/CSPE successfully monitored 4-aminophenol in the concentration range 1.0 nM-200 μM. Finally, 2D-rG-Fe3O4/CSPE monitored 4-aminophenol in the different environmental fluids such as urban waste water, industrial waste water and river samples with recovery range 97.2%-104.3% that confirm powerful ability of 2D-rG-Fe3O4/CSPE as analytical tool.
Collapse
Affiliation(s)
- Moxi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
6
|
Wang X, Karaman C, Zhang Y, Xia C. Graphene oxide/cellulose nanofibril composite: A high-performance catalyst for the fabrication of an electrochemical sensor for quantification of p-nitrophenol, a hazardous water pollutant. CHEMOSPHERE 2023; 331:138813. [PMID: 37127202 DOI: 10.1016/j.chemosphere.2023.138813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
The detection and quantification of p-Nitrophenol (p-NP) in environmental samples are important for understanding the extent and impact of environmental pollution, protecting human health, ensuring regulatory compliance, and guiding remediation efforts. The main objective of this work was to investigate the electrochemical performance of a graphene oxide/cellulose nanofibril composite (GO/CNF) modified carbon paste electrode (GO/CNF/CPE) for the sensitive and reliable detection of p-nitrophenol in water samples. The transmission electron microscopy (TEM) technique was employed to enlighten the structure of nanocomposites. The electrochemical behavior of the fabricated electrochemical sensor was characterized via differential pulse voltammetry (DPV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). Under optimized analytical conditions, the peak current of the analyte showed a wide linear relationship with its concentration in a range of 3.0 nM-210 μM with a low amount of the limit of detection (LOD) value of 0.8 nM determined by the DPV method. The proposed electrochemical sensor demonstrated excellent sensitivity, selectivity, and accuracy metrics in real sample analysis of p-nitrophenol.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Yaoli Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
7
|
Genç AE, Akça A, Karaman C, Camarada MB, Dragoi EN. Ammonia free catalytic reduction of nitric oxide on Ni-embedded graphene nanostructure: A density functional theory investigation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
8
|
Eshghi F, Mehrabadi Z, Farsadrooh M, Hayati P, Javadian H, Karimi M, Karimi-Maleh H, Rostamnia S, Karaman C, Aghababaei F. Photocatalytic degradation of remdesivir nucleotide pro-drug using [Cu(1-methylimidazole) 4(SCN) 2] nanocomplex synthesized by sonochemical process: Theoretical, hirshfeld surface analysis, degradation kinetic, and thermodynamic studies. ENVIRONMENTAL RESEARCH 2023; 222:115321. [PMID: 36696944 DOI: 10.1016/j.envres.2023.115321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/11/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The first ultrasonic synthesis of [Cu(L)4(SCN)2] (L = 1-methylimidazole) nanocomplex was carried out under ultrasonic irradiation, and its photocatalytic performance for the degradation of remdesivir (RS) under sunlight irradiation was comprehensively investigated for the first time in this study. The physicochemical properties of the synthesized photocatalyst were examined by Fourier-transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), diffuse reflectance spectroscopy (DRS), and thermogravimetric analysis (TGA) techniques. The band gap of the synthesized [Cu(L)4(SCN)2] nanocomplex was determined to be 2.60 eV by the diffuse reflectance spectroscopy method using Kubelka-Munk formula. The photocatalytic performance of nanocomplex was examined for the removal of remdesivir under sunlight from water for which the results indicated that an amount of 0.5 gL-1 of the [Cu(L)4(SCN)2] nanocomplex was sufficient to remove more than 96% remdesivir from its 2 mg L-1 concentration within 20 min, at pH = 6. The kinetic data showed that the photodegradation onto the [Cu(L)4(SCN)2] nanocomplex has a high correlation (0.98) with the pseudo-second-order kinetic model. The decrease in chemical oxygen demand (COD) (from 70.5 mg L-1 to 36.4 mg L-1) under optimal conditions clearly confirmed the mineralization of the RS drug. The values of ΔS° (-0.131 kJ mol-1 K-1) and ΔH° (-49.750 kJ mol-1) were negative, indicating that the adsorption process was spontaneous and more favorable in lower temperatures. Moreover, the RS structure in the open shell state and the high HOMO and LUMO gaps based on the M06/6-31 + G (d) level of theory may be a confirmation of this fact. In addition, the Hirshfeld surface analysis (HSA) of the crystal packing of the prepared complex was discussed in detail to evaluate the interactions between the crystal packings. The results of this study confirm that the [Cu(L)4(SCN)2] nanocomplex can be successfully used for the photodegradation of pharmaceutical contaminants.
Collapse
Affiliation(s)
- Fazlolah Eshghi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Zohreh Mehrabadi
- Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran.
| | - Majid Farsadrooh
- Renewable Energies Research Laboratory, Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, P.O. Box, 98135 674, Zahedan, Iran.
| | - Payam Hayati
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box, 16846-13114, Tehran, Iran.
| | - Hamedreza Javadian
- Chemistry & Chemical Engineering Research Center of Iran (CCERCI), P.O. Box 14335-186, Tehran, Iran
| | - Mehdi Karimi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O.Box 611731, Xiyuan Ave, Chengdu, China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box, 16846-13114, Tehran, Iran.
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Fatemeh Aghababaei
- Centre D'Innovació, Recerca I Transferència en Tecnologia Dels Aliments (CIRTTA), TECNIO-UAB, XIA, Departament de Ciència Animal I Dels Aliments, UAB-Campus, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
9
|
Karimi-Maleh H, Darabi R, Karimi F, Karaman C, Shahidi SA, Zare N, Baghayeri M, Fu L, Rostamnia S, Rouhi J, Rajendran S. State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: A review. ENVIRONMENTAL RESEARCH 2023; 222:115338. [PMID: 36702186 DOI: 10.1016/j.envres.2023.115338] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/26/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
p_Aminophenol, namely 4-aminophenol (4-AP), is an aromatic compound including hydroxyl and amino groups contiguous together on the benzene ring, which are suitable chemically reactive, amphoteric, and alleviating agents in nature. Amino phenols are appropriate precursors for synthesizing oxazoles and oxazines. However, since the toxicity of aniline and phenol can harm human and herbal organs, it is essential to improve a reliable technique for the determination of even a trace amount of amino phenols, as well as elimination or (bio)degradation/photodegradation of it to protect both the environment and people's health. For this purpose, various analytical methods have been suggested up till now, including spectrophotometry, liquid chromatography, spectrofluorometric and capillary electrophoresis, etc. However, some drawbacks such as the requirement of complex instruments, high costs, not being portable, slow response time, low sensitivity, etc. prevent them to be employed in a wide range and swift in-situ applications. In this regard, besides the efforts such as (bio)degradation/photodegradation or removal of 4-AP pollutants from real samples, electroanalytical techniques have become a promising alternative for monitoring them with high sensitivity. In this review, it was aimed to emphasize and summarize the recent advances, challenges, and opportunities for removal, degradation, and electrochemical sensing 4-AP in real samples. Electroanalytical monitoring of amino phenols was reviewed in detail and explored the various types of electrochemical sensors applied for detecting and monitoring in real samples. Furthermore, the various technique of removal and degradation of 4-AP in industrial and urban wastes were also deliberated. Moreover, deep criticism of multifunctional nanomaterials to be utilized as a catalyst, adsorbent/biosorbent, and electroactive material for the fabrication of electrochemical sensors was covered along with their unique properties. Future perspectives and conclusions were also criticized to pave the way for further studies in the field of application of up-and-coming nanostructures in environmental applications.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Rozhin Darabi
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China
| | - Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Seyed Ahmad Shahidi
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Najmeh Zare
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran
| | - Jalal Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, 51566, Iran
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Avda, General Velasquez, 1775, Arica, Chile
| |
Collapse
|
10
|
Ameen F, Karimi-Maleh H, Darabi R, Akin M, Ayati A, Ayyildiz S, Bekmezci M, Bayat R, Sen F. Synthesis and characterization of activated carbon supported bimetallic Pd based nanoparticles and their sensor and antibacterial investigation. ENVIRONMENTAL RESEARCH 2023; 221:115287. [PMID: 36640937 DOI: 10.1016/j.envres.2023.115287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Activated carbon (AC) supported palladium cobalt bimetallic nanoparticles (PdCo@AC NPs) were obtained by green synthesis method using Cinnamomum verum (C. Verum) extract. The obtained NPs were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Crystallography (XRD), Transmission Electron Microscope (TEM) and Ultraviolet Visible (UV-VIS) spectroscopy, and the functional groups and morphology of the nanoparticle were elucidated. The resulting particle size was found to be 2.467 nm. NPs were evaluated using Cyclic Voltammetry (CV), Scan Rate (SR), and Differential Pulse Voltammetry (DPV) techniques for potential dopamine sensors application. According to the obtained DPV results, Limit of Detection (LOD) and Limit of Quantitation (LOQ) values are found to be 5.68 pM and 17.21 pM, respectively. It was also observed that AC supported PdCo nanoparticles obtained from C. verum extract sensed dopamine quite well. Besides, to examine the antibacterial properties of NPs, antibacterial analyzes were performed with Escherichia coli (E. Coli) and Staphylococcus aureus (S. Aureus). It was observed that it showed good antibacterial properties against gram positive (S. aureus) and gram negative (E. coli) bacteria. The study gave important results in terms of the synthesis of bimetallic NPs using the green synthesis method and their usability in different areas. With this study, it was observed that a good antibacterial dopamine sensor were obtained with the successful biogenic synthesis of AC supported PdCo bimetallic NPs.
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028 Johannesburg, 17011, South Africa.
| | - Rozhin Darabi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China
| | - Merve Akin
- Sen Research Group, Department of Biochemistry, Dumlupinar University, Kutahya, Turkey; Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Kutahya, Turkey
| | - Ali Ayati
- ChemBio Cluster, ITMO University, 9 Lomonosova Street, Saint Petersburg, 191002, Russia
| | - Selma Ayyildiz
- Sen Research Group, Department of Biochemistry, Dumlupinar University, Kutahya, Turkey
| | - Muhammed Bekmezci
- Sen Research Group, Department of Biochemistry, Dumlupinar University, Kutahya, Turkey; Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Kutahya, Turkey
| | - Ramazan Bayat
- Sen Research Group, Department of Biochemistry, Dumlupinar University, Kutahya, Turkey; Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Kutahya, Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Dumlupinar University, Kutahya, Turkey.
| |
Collapse
|
11
|
Raza S, Hameed MU, Ghasali E, Hayat A, Orooji Y, Lin H, Karaman C, Karimi F, Erk N. Algae extract delamination of molybdenum disulfide and surface modification with glycidyl methacrylate and polyaniline for the elimination of metal ions from wastewater. ENVIRONMENTAL RESEARCH 2023; 221:115213. [PMID: 36610540 DOI: 10.1016/j.envres.2023.115213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/22/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
A special type of two-dimensional (2D) material based conducting polymer was constructed by green synthesis and in-situ polymerization techniques. The 2D Molybdenum Disulfide (MoS2) were first synthesized with the combination of, ammonium tetrathiomolybdate dissolved in 20 mL algae extract under stirring. After stirring for about 2 h, and then finally sulfurization was initiated using sulfur powder in 20 mL of sulfuric solution and stirred for 8 h. The resulting black precipitates of MoS2 were collected by centrifugation at 5000 rpm. Moreover, the prepared MoS2 was functionalized with glycidyl methacrylate (GMA) and form the MoS2@PGMA. Further, the MoS2@PGMA is combined with polyaniline (PANI) to form conducting polymer grafted thin film nanosheets named MoS2@PGMA/PANI with a thickness in micrometer size through grafting method. The prepared materials were characterized by SEM, FTIR, XRD, XPS and EDX techniques. To check the performance of materials the adsorption study was performed. Moreover, the adsorption study toward Cu2+ and Cd2+ showed a tremendous results and the maximum adsorption was 307.7 mg/g and 214.7 mg/g respectively. In addition, the pseudo-first and second order models as well as the adsorption isotherm were investigated using the Langmuir and Freundlich model. The results were best fitted with the pseudo-second order and Langmuir models. The regeneration study was also conducted and MoS2@PGMA/PANI nanosheets can be easily recycled and restored after five successful recycling. The established methodology for preparing the 2D materials and conducting polymer based MoS2@PGMA/PANI nanosheets is expected to be applicable for other multiple applications.
Collapse
Affiliation(s)
- Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Muhammad Usman Hameed
- Department of Chemistry University of Poonch Rawalakot, 12350, Azad Kashmir, Pakistan
| | - Ehsan Ghasali
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Yasin Orooji
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Hongjun Lin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Fatemeh Karimi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| |
Collapse
|
12
|
Deng Z, Wu Z, Alizadeh M, Zhang H, Chen Y, Karaman C. Electrochemical monitoring of 4-chlorophenol as a water pollutant via carbon paste electrode amplified with Fe 3O 4 incorporated cellulose nanofibers (CNF). ENVIRONMENTAL RESEARCH 2023; 219:114995. [PMID: 36529324 DOI: 10.1016/j.envres.2022.114995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
A crucial problem that needs to be resolved is the sensitive and selective monitoring of chlorophenol compounds, especifically 4-chlorophenol (4-CP), one of the most frequently used organic industrial chemicals. In light of this, the goal of this study was to synthesize Fe3O4 incorporated cellulose nanofiber composite (Fe3O4/CNF) as an amplifier in the development of a modified carbon paste electrode (CPE) for 4-CP detection. Transmission electron microscopy (TEM) was used to evaluate the morphology of the synthesized nanocatalyst, while differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) techniques were implemented to illuminate the electrochemical characteristics of the fabricated sensor. The ultimate electrochemical sensor (Fe3O4/CNF/CPE) was used as a potent electrochemical sensor for monitoring 4-CP in the concentration range of 1.0 nM-170 μM with a limit of detection value of 0.5 nM. As a result of optimization studies, 8.0 mg Fe3O4/CNF was found to be the ideal catalyst concentration, whereas pH = 6.0 was chosen as the ideal pH. The 4-CP's oxidation current was found to be over 1.67 times greater at ideal operating conditions than it was at the surface of bare CPE, and its oxidation potential decreased by about 120 mV. By using the standard addition procedure on samples of drinking water and wastewater, the suggested capability of Fe3O4/CNF/CPE to detect 4-CP was further investigated. The recovery range was found to be 98.52-103.66%. This study paves the way for the customization of advanced nanostructure for the application in electrochemical sensors resulting in beneficial environmental impact and enhancing human health.
Collapse
Affiliation(s)
- Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Zixuan Wu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Marzieh Alizadeh
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hongcai Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yaobang Chen
- Sibang Environmental Protection Technology Co., Ltd., Yichun, 336000, China
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
13
|
George J, Rajendran DS, Senthil Kumar P, Sonai Anand S, Vinoth Kumar V, Rangasamy G. Efficient decolorization and detoxification of triarylmethane and azo dyes by porous-cross-linked enzyme aggregates of Pleurotus ostreatus laccase. CHEMOSPHERE 2023; 313:137612. [PMID: 36563730 DOI: 10.1016/j.chemosphere.2022.137612] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/20/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
In this preset study, porous-cross-linked enzyme aggregates (CLEAs) of Pleurotus ostreatus laccase were utilized for the spontaneous decolorization and detoxification of triarylmethane and azo dyes, reactive blue 2 (RB) and malachite green (MG). The specific surface area and pore radius of the porous-CLEAs are 136.3 m2/g and 19.47 Ao, and the higher specific surface indicated greater biocatalytic efficiency, as increased mass transfer and dye interaction with the CLEAs laccase. CLEAs laccase decolorized 500 ppm of MG and RB with 98.12-58.33% efficiency after 120 min, at pH 5.0 and 50°C, without a mediator. Furthermore, the biotransformation of the MG and RB with immobilized laccase was confirmed with the help of UV-visible spectroscopy, high-performance liquid chromatography, and Fourier transform infrared spectroscopy. The reusability potential of CLEAs was assessed in batch mode for 10 cycles of dye decolorization. The decolorization activities for the immobilized laccase were 89% and 12% at the 6th cycle for MG and RB, respectively. This immobilized enzyme could effectively remove dyes from aqueous solution, and demonstrated significant detoxification in experimental plants (Triticum aestivum and Phaseolus mungo) and plant growth-promoting rhizobacteria (Azospirillum brasilense, Bacillus megaterium, Rhizobium leguminosarum, Bacillus subtilis, and Pseudomonas fluorescens). In conclusion, porous CLEAs laccase could be useful as a potential bioremediation tool for the detoxification and decolorization of dyeing wastewater in future.
Collapse
Affiliation(s)
- Jenet George
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603 110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603 110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Srinidhi Sonai Anand
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
14
|
Gomes Souza F, Pal K, Ampah JD, Dantas MC, Araújo A, Maranhão F, Domingues P. Biofuels and Nanocatalysts: Python Boosting Visualization of Similarities. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1175. [PMID: 36770184 PMCID: PMC9921263 DOI: 10.3390/ma16031175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Among the most relevant themes of modernity, using renewable resources to produce biofuels attracts several countries' attention, constituting a vital part of the global geopolitical chessboard since humanity's energy needs will grow faster and faster. Fortunately, advances in personal computing associated with free and open-source software production facilitate this work of prospecting and understanding complex scenarios. Thus, for the development of this work, the keywords "biofuel" and "nanocatalyst" were delivered to the Scopus database, which returned 1071 scientific articles. The titles and abstracts of these papers were saved in Research Information Systems (RIS) format and submitted to automatic analysis via the Visualization of Similarities Method implemented in VOSviewer 1.6.18 software. Then, the data extracted from the VOSviewer were processed by software written in Python, which allowed the use of the network data generated by the Visualization of Similarities Method. Thus, it was possible to establish the relationships for the pair between the nodes of all clusters classified by Link Strength Between Items or Terms (LSBI) or by year. Indeed, other associations should arouse particular interest in the readers. However, here, the option was for a numerical criterion. However, all data are freely available, and stakeholders can infer other specific connections directly. Therefore, this innovative approach allowed inferring that the most recent pairs of terms associate the need to produce biofuels from microorganisms' oils besides cerium oxide nanoparticles to improve the performance of fuel mixtures by reducing the emission of hydrocarbons (HC) and oxides of nitrogen (NOx).
Collapse
Affiliation(s)
- Fernando Gomes Souza
- Biopolymers & Sensors Lab, Instituto de Macromoléculas Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
- Biopolymers & Sensors Lab, Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Kaushik Pal
- University Center for Research and Development (UCRD), Department of Physics, Chandigarh University, Ludhiana–Chandigarh State Hwy, Mohali 140413, Punjab, India
| | | | - Maria Clara Dantas
- Biopolymers & Sensors Lab, Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Aruzza Araújo
- LABPROBIO, Institute of Chemistry, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Fabíola Maranhão
- Biopolymers & Sensors Lab, Instituto de Macromoléculas Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Priscila Domingues
- Biopolymers & Sensors Lab, Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| |
Collapse
|
15
|
Mostafazadeh R, Karimi-Maleh H, Ghaffarinejad A, Tajabadi F, Hamidian Y. Highly sensitive electrochemical sensor based on carbon paste electrode modified with graphene nanoribbon-CoFe 2O 4@NiO and ionic liquid for azithromycin antibiotic monitoring in biological and pharmaceutical samples. APPLIED NANOSCIENCE 2023; 13:1-10. [PMID: 36710715 PMCID: PMC9870783 DOI: 10.1007/s13204-023-02773-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
In this report, Azithromycin (Azi) antibiotic was measured by carbon paste electrode (CPE) improved by graphene nanoribbon-CoFe2O4@NiO nanocomposite and 1-hexyl-3 methylimidazolium hexafluorophosphate (HMIM PF6) as an ionic liquid binder. The electrochemical behavior of Azi on the graphene nanoribbon-CoFe2O4@NiO/HMIM PF6/CPE is investigated by voltammetric methods, and the results showed that the modifiers improve the conductivity and electrochemical activity of the CPE. According to obtained data, the electrochemical behavior of Azi is related to pH. under optimum conditions, the sensor has linear ranges from 10 µM to 2 mM with a LOD of 0.66 µM. The effect of scan rate and chronoamperometry were studied, which showed that the Azi electro-oxidation is diffusion controlled with the diffusion coefficient of 9.22 × 10-6 cm2/s. The reproducibility (3.15%), repeatability (2.5%), selectivity, and stability (for 30 days) tests were investigated, which results were acceptable. The actual sample analysis confirmed that the proposed sensor is an appropriate electrochemical tool for Azi determination in urine and Azi capsule.
Collapse
Affiliation(s)
- Reza Mostafazadeh
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114 Iran
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, PO Box 31787-316, Karaj, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, P.O. Box 611731, Chengdu, People’s Republic of China
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114 Iran
- Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114 Iran
| | - Fariba Tajabadi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, PO Box 31787-316, Karaj, Iran
| | - Yasamin Hamidian
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, 16315-1618 Iran
| |
Collapse
|
16
|
Günay MG, Kemerli U, Karaman C, Karaman O, Güngör A, Karimi-Maleh H. Review of functionalized nano porous membranes for desalination and water purification: MD simulations perspective. ENVIRONMENTAL RESEARCH 2023; 217:114785. [PMID: 36395866 DOI: 10.1016/j.envres.2022.114785] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Today, it is known that most of the water sources in the world are either drying out or contaminated. With the increasing population, the water demand is increasing drastically almost in every sector each year, which makes processes like water treatment and desalination one of the most critical environmental subjects of the future. Therefore, developing energy-efficient and faster methods are a must for the industry. Using functional groups on the membranes is known to be an effective way to develop shorter routes for water treatment. Accordingly, a review of nano-porous structures having functional groups used or designed for desalination and water treatment is presented in this study. A systematic scan has been conducted in the literature for the studies performed by molecular dynamics simulations. The selected studies have been classified according to membrane geometry, actuation mechanism, functionalized groups, and contaminant materials. Permeability, rejection rate, pressure, and temperature ranges are compiled for all of the studies examined. It has been observed that the pore size of a well-designed membrane should be small enough to reject contaminant molecules, atoms, or ions but wide enough to allow high water permeation. Adding functional groups to membranes is observed to affect the permeability and the rejection rate. In general, hydrophilic functional groups around the pores increase membrane permeability. In contrast, hydrophobic ones decrease the permeability. Besides affecting water permeation, the usage of charged functional groups mainly affects the rejection rate of ions and charged molecules.
Collapse
Affiliation(s)
- M Gökhan Günay
- Mechanical Engineering Department, Akdeniz University, Antalya, Turkey
| | - Ubade Kemerli
- Mechanical Engineering Department, Trakya University, Edirne, Turkey
| | - Ceren Karaman
- Vocational School of Technical Sciences, Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Onur Karaman
- Vocational School of Health Services, Department of Medical Services and Techniques, Akdeniz University, Antalya, 07070, Turkey.
| | - Afşin Güngör
- Mechanical Engineering Department, Akdeniz University, Antalya, Turkey.
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
17
|
Hojjati-Najafabadi A, Aygun A, Tiri RNE, Gulbagca F, Lounissaa MI, Feng P, Karimi F, Sen F. Bacillus thuringiensis Based Ruthenium/Nickel Co-Doped Zinc as a Green Nanocatalyst: Enhanced Photocatalytic Activity, Mechanism, and Efficient H 2 Production from Sodium Borohydride Methanolysis. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Akbar Hojjati-Najafabadi
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou221116, PR China
| | - Aysenur Aygun
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000Kutahya, Turkiye
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000Kutahya, Turkiye
| | - Fulya Gulbagca
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000Kutahya, Turkiye
| | - Mohamed Islam Lounissaa
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000Kutahya, Turkiye
| | - Peizhong Feng
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou221116, PR China
| | - Fatemeh Karimi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan9477177870, Iran
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000Kutahya, Turkiye
| |
Collapse
|
18
|
Sun W, Hong Y, Li T, Chu H, Liu J, Feng L, Baghayeri M. Biogenic synthesis of reduced graphene oxide decorated with silver nanoparticles (rGO/Ag NPs) using table olive (olea europaea) for efficient and rapid catalytic reduction of organic pollutants. CHEMOSPHERE 2023; 310:136759. [PMID: 36228729 DOI: 10.1016/j.chemosphere.2022.136759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/18/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
In this work, graphene oxide (GO) sheets were prepared via a facile electrochemical exfoliation of graphite in acidic medium and subsequent oxidation with potassium permanganate. The GO sheets were employed for preparation of reduced GO adorned with nanosized silver (rGO/Ag NPs) using green reduction of GO and Ag(I) via olive fruit extract as a reducing and immobilizing agent. The crystal phase, morphology, and nanostructure of the prepared catalyst were characterized by XRD, SEM, EDX, UV-Vis and Raman spectroscopy techniques. The as-prepared rGO/Ag NPs showed superior catalytic performance towards the complete reduction (up to 99%) of 4-nitrophenol (4-NPH) to 4-aminophenol (4-APH) and rhodamine B (RhB) to Leuco RhB within 180 s using NaBH4 at ambient condition. The rate constant (k) values were found to be 0.021 and 0.022 s-1 for 4-NPH and RhB reduction, respectively. In addition, the regenerated catalyst could be reused after seven cycles without losing any apparent catalytic efficiency. Accounting for the excellent catalytic capability, chemical stability and environment-friendly synthesis protocol, the rGO/Ag NPs has great potential working as a heterogeneous catalyst in the transforming harmful organic contaminants into less harmful or harmless compounds.
Collapse
Affiliation(s)
- Wen Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, China
| | - Yaoliang Hong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, China
| | - Tian Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Junxia Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Mehidi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran
| |
Collapse
|
19
|
Mohtasham H, Rostami M, Gholipour B, Sorouri AM, Ehrlich H, Ganjali MR, Rostamnia S, Rahimi-Nasrabadi M, Salimi A, Luque R. Nano-architecture of MOF (ZIF-67)-based Co 3O 4 NPs@N-doped porous carbon polyhedral nanocomposites for oxidative degradation of antibiotic sulfamethoxazole from wastewater. CHEMOSPHERE 2023; 310:136625. [PMID: 36181853 DOI: 10.1016/j.chemosphere.2022.136625] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Co3O4 NPs in N-doped porous carbon (Co3O4 NPs@N-PC) materials were prepared by one-pot pyrolysis of a ZIF-67 powder under N2 atmosphere and followed by oxidation under air atmosphere (200 °C) toward promotion catalytic activity and activation of peroxymonosulfate (PMS) to degradation sulfamethoxazole (SMZ). 2-methylimidazole was used as a nitrogen source and a competitive ligand for the synthesis of Co3O4 NPs@N-PC, which in addition to affecting nucleation and growth of the crystal, promotes the production of active Co-N sites. Co3O4 NPs@N-PC nano-architecture has high specific surface areas (250 m2 g-1) and is a non-toxic, effective and stable PMS activator. The effect of operating parameters including SMZ concentration, catalyst dosage, temperature and pH in the presence of Co3O4 NPs@N-PC was investigated. The Co3O4 NPs@N-PC composite showed superior performance in activating PMS over a wide range of pH (2-10) and different temperatures so that complete degradation of SMZ (50 μM, 100 mL) was achieved within 15 min. The role of Co2+/Co3+ redox system in the mechanism before and after PMS activation was determined using XPS analysis. Surface-generated radicals led to the degradation of SMZ, in which the SMZ degradation rate attained 0.21 min-1 with the mineralization of 36.8%. The feasible degradation mechanism of SMZ was studied in the presence of different scavengers and it was revealed that the degradation reaction proceeds from the radical/non-radical pathway and in this process most of the SO4- and OH radicals are dominant. The recoverability and reuse of Co3O4 NPs@N-PC were evaluated to confirm its stability and potential for SMZ degradation and it was observed that the catalyst maintains its catalytic power for at least 5 cycles.
Collapse
Affiliation(s)
- Hamed Mohtasham
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Behnam Gholipour
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran
| | - Amir Mohammad Sorouri
- Islamic Azad University, Science & Research Branch-Tehran, Faculty of Veterinary Science, Tehran, Iran
| | - Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599, Freiberg, Germany; Center for Advanced Technology, Adam Mickiewicz University, 61614, Poznan, Poland
| | - Mohmmad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran.
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599, Freiberg, Germany; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russia
| |
Collapse
|
20
|
Soozanipour A, Ejeian F, Boroumand Y, Rezayat A, Moradi S. Biotechnological advancements towards water, food and medical healthcare: A review. CHEMOSPHERE 2023; 312:137185. [PMID: 36368538 DOI: 10.1016/j.chemosphere.2022.137185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The global health status is highly affected by the growing pace of urbanization, new lifestyles, climate changes, and resource exploitation. Modern technologies pave a promising way to deal with severe concerns toward sustainable development. Herein, we provided a comprehensive review of some popular biotechnological advancements regarding the progress achieved in water, food, and medicine, as the most substantial fields related to public health. The emergence of novel organic/inorganic materials has brought about significant improvement in conventional water treatment techniques, anti-fouling approaches, anti-microbial agents, food processing, biosensors, drug delivery systems, and implants. Particularly, a growing interest has been devoted to nanomaterials and their application for developing novel structures or improving the characteristics of standard components. Also, bioinspired materials have been widely used to improve the performance, efficiency, accuracy, stability, safety, and cost-effectiveness of traditional systems. On the other side, the fabrication of innovative devices for precisely monitoring and managing various ecosystem and human health issues is of great importance. Above all, exceptional advancements in designing ion-selective electrodes (ISEs), microelectromechanical systems (MEMs), and implantable medical devices have altered the future landscape of environmental and biomedical research. This review paper aimed to shed light on the wide-ranging materials and devices that have been developed for health applications and mainly focused on the impact of nanotechnology in this field.
Collapse
Affiliation(s)
- Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Yasaman Boroumand
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Azam Rezayat
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran; Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Sina Moradi
- School of Chemical Engineering, University of New South Wales, Sydney, 2052, Australia; Artificial Intelligence Centre of Excellence (AI CoE), NCSI Australia, Sydney, NSW, 2113, Australia.
| |
Collapse
|
21
|
Karami-Kolmoti P, Beitollahi H, Modiri S. Voltammetric detection of catechol in real samples using MnO2 nanorods-graphene oxide nanocomposite modified electrode. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Deng Z, Wu Z, Rokni H, Yin Z, Lin J, Zhang H, Cheraghi S. Electrochemical sensor amplified with cellulose nanofibers/Fe 3O 4 composite to the monitoring of hydrazine as a pollutant in water and wastewater samples. CHEMOSPHERE 2022; 309:136568. [PMID: 36167210 DOI: 10.1016/j.chemosphere.2022.136568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
A quite swift and sensitive analytical instrument was designed in this work to detect and monitor hydrazine in various water and wastewater samples. The glassy carbon electrode (GCE) was amplified using cellulose nanofibers/Fe3O4 composite (CNF-Fe3O4/NC) for monitoring hydrazine in the concentration range of 0.001 - 140 M with a superior detection limit of 0.5 nM. Results showed a diffusion control process for the oxidation of hydrazine at the surface of CNF-Fe3O4/NC/GCE. Under the optimum condition (pH=8.0), the oxidation current of hydrazine was improved by about 2.3 times and the oxidation potential was reduced by about 60 mV at the surface of CNF-Fe3O4/NC/GCE compare to unmodified GCE. A standard addition method was employed to assess CNF-Fe3O4/NC/GCE's capability for the detection of hydrazine in water and wastewater samples, and a recovery range of 97.6 % to 104.9 % was noted.
Collapse
Affiliation(s)
- Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zixuan Wu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hassan Rokni
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Zihua Yin
- Shanghai Ruihe Environmental Technology Co. Ltd., Shanghai 200333, China
| | - Junzhong Lin
- Shanghai Ruihe Environmental Technology Co. Ltd., Shanghai 200333, China
| | - Hongcai Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Somaye Cheraghi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
23
|
Sun W, Hong Y, Li T, Chu H, Liu J, Feng L. Application of sulfur-coated magnetic carbon nanotubes for extraction of some polycyclic aromatic hydrocarbons from water resources. CHEMOSPHERE 2022; 309:136632. [PMID: 36181857 DOI: 10.1016/j.chemosphere.2022.136632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
In the present work, novel sulfur-coated magnetic carbon nanotubes (MCNTs-S) material was fabricated by S coating on the MCNTs using a simple heating procedure. TGA, EDX, XRD, TEM, and VSM were employed to characterize the as-prepared composite. Using HPLC-UV system, the produced superparamagnetic sorbent was employed for the extraction and measurement of trace levels of five polycyclic aromatic hydrocarbons (PAHs) in environmental waters. The synergistic effect of the sulfur layer and CNTs substrate is primarily responsible for the remarkable extraction efficiency of the MCNTs-S sorbent towards PAHs. The experimental factors including MCNTs-S dosage, sorption time, elution solvent, ionic strength and solution pH were explored and optimized. Considering that the ionic strength and pH do not have any impact on the PAHs extraction, as a result, there is no need the unnecessary adjustment of the water samples. The linear dynamic ranges and detection limits under optimal conditions were in the range of 0.05-0.11 ng mL-1 and 0.2-150 ng mL-1, respectively. The analysis of PAHs in the real samples (sea water and river water) using this approach was successfully assessed with appropriate recovery values (94.6%-99.0%).
Collapse
Affiliation(s)
- Wen Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, China
| | - Yaoliang Hong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, China
| | - Tian Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Junxia Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
24
|
Alizadeh M, Asrami PN, Altuner EE, Gulbagca F, Tiri RNE, Aygun A, Kaynak İ, Sen F, Cheraghi S. An ultra-sensitive rifampicin electrochemical sensor based on Fe 3O 4 nanoparticles anchored Multiwalled Carbon nanotube modified glassy carbon electrode. CHEMOSPHERE 2022; 309:136566. [PMID: 36152837 DOI: 10.1016/j.chemosphere.2022.136566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to guide future sensor studies against other pharmaceutical drugs by synthesizing Fe3O4NPs@MWCNT metallic nanoparticles (NPs). Side damage caused by excessive accumulation of tuberculosis drugs in the body can cause clots in the organs, and cause serious damage such as heart attack and respiratory failure, and threaten human life. Therefore, the development of sensors sensitive to various antibiotics in this study is important for human health. In this study, the sensitivity of Fe3O4 NPs to tuberculosis drug (rifampicin) was evaluated by catalytic reaction using bare/GCE, MWCNT/GCE, and Fe3O4NPs@MWCNT/GCE electrodes. First of all, Fe3O4 NPs were successfully synthesized for the study and MWCNT/GCE and Fe3O4 NPs@MWCNT/GCE electrodes were formed with the modification of the MWCNT support material. It was observed that the Fe3O4 NPs@MWCNT/GCE electrode gave the highest signal against the other electrodes. The morphological structure of Fe3O4 NPs was determined by various characterization techniques such as Transmission Electron Microscopy (TEM), Fourier Transmission Infrared Spectroscopy (FTIR), ultraviolet-visible (UV-Vis), and X-ray differential (XRD) and the obtained NPs were used for sensor studies, and it was observed that the current intensity increased as the scanning speed of each electrode increased in CV and DPV measurements. The average size of Fe3O4 NPs was found to be 7.32 ± 3.2 nm. Anodic current peaks occurred in the linear range of 2-25 μM. According to the results obtained from the measurements, the limit of detection (LOD) value was calculated as 0.64 μM limit of quantification (LOQ) 1.92 μM.
Collapse
Affiliation(s)
- Marzie Alizadeh
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Elif Esra Altuner
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkiye
| | - Fulya Gulbagca
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkiye
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkiye
| | - Aysenur Aygun
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkiye
| | - İdris Kaynak
- Department of Machinery and Metal Technologies, University of Usak, 64000, Usak, Turkiye
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkiye.
| | - Somaye Cheraghi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
25
|
Ultralow–biased solar photoelectrochemical hydrogen generation by Ag2S/ZnO heterojunction with high efficiency. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Incorporation of Nanocatalysts for the Production of Bio-Oil from Staphylea holocarpa Wood. Polymers (Basel) 2022; 14:polym14204385. [PMID: 36297963 PMCID: PMC9609867 DOI: 10.3390/polym14204385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Biomass has been recognized as the most common source of renewable energy. In recent years, researchers have paved the way for a search for suitable biomass resources to replace traditional fossil fuel energy and provide high energy output. Although there are plenty of studies of biomass as good biomaterials, there is little detailed information about Staphylea holocarpa wood (S. holocarpa) as a potential bio-oil material. The purpose of this study is to explore the potential of S. holocarpa wood as a bio-oil. Nanocatalyst cobalt (II) oxide (Co3O4) and Nickel (II) oxide (NiO) were used to improve the production of bio-oil from S. holocarpa wood. The preparation of biofuels and the extraction of bioactive drugs were performed by the rapid gasification of nanocatalysts. The result indicated that the abundant chemical components detected in the S. holocarpa wood extract could be used in biomedicine, cosmetics, and biofuels, and have a broad industrial application prospect. In addition, nanocatalyst cobalt tetraoxide (Co3O4) could improve the catalytic cracking of S. holocarpa wood and generate more bioactive molecules at high temperature, which is conducive to the utilization and development of S. holocarpa wood as biomass. This is the first time that S. holocarpa wood was used in combination with nanocatalysts. In the future, nanocatalysts can be used to solve the problem of sustainable development of biological resources.
Collapse
|
27
|
Machine learning in hydrogen production. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|