1
|
Kahwa I, Omara T, Ayesiga I, Shah K, Ambe GNNN, Panwala ZJ, Mbabazi R, Iqbal S, Kyarimpa C, Nagawa CB, Chauhan NS. Nutraceutical benefits of seaweeds and their phytocompounds: a functional approach to disease prevention and management. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40304066 DOI: 10.1002/jsfa.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 05/02/2025]
Abstract
Seaweeds (SWD), macroalgae or sea vegetables are a diverse group of over 9000 macroscopic and multicellular marine algae taxonomically classified (based on morphology and pigmentation) as green, brown and red algae. With microalgae, SWD represents one of the most researched oceanic resources turned to as treasure troves of bioactive compounds with ethnomedicinal, pharmaceutical, cosmeceutical and dietetic end-uses for millennia. This review compiles the nutraceutical uses of SWD and their bioactive compounds in nutrition and traditional management of diseases, offering future perspectives on using this group of organisms to improve human life. The review reveals that the nutraceutical application of SWD as nutrient-dense marine foods for treating diseases may be correlated with their inherent biosynthesis and possession of minerals, vitamins, dietary fibres and bioactive compounds. Compounds of algal origin have been validated and found to elicit antimicrobial, anti-inflammatory, free radical scavenging (antioxidant), antiproliferative and antidiabetic activities, among others. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ivan Kahwa
- Pharm-BioTechnology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Timothy Omara
- Department of Chemistry, College of Natural Sciences, Makerere University, Kampala, Uganda
| | | | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | | | - Rachel Mbabazi
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Shabnoor Iqbal
- African Medicines Innovations and Technologies Development, Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Christine Kyarimpa
- Department of Chemistry, Faculty of Science, Kyambogo University, Kampala, Uganda
| | - Christine Betty Nagawa
- Department of Forestry, Biodiversity and Tourism, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | | |
Collapse
|
2
|
Shi QL, Feng CR, Li HY, Wang PL, Chen P, Wei X, Kuang WH, Li GJ, Qin SJ, Liu R, Chen RX, Zhang JZ, Song P, Yuan Y, Wang JG, Huang L. Celastrol inhibits the DPYSL2-JAK/STAT pathway by targeting mito-IDHs mediated mitochondrial metabolism to exhaust breast cancer. Acta Pharmacol Sin 2025:10.1038/s41401-025-01548-0. [PMID: 40274961 DOI: 10.1038/s41401-025-01548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/18/2025] [Indexed: 04/26/2025]
Abstract
Targeting mitochondrial metabolism represents a novel approach in the discovery and development of anti-tumor drugs. Celastrol (Cel) is a naturally-derived small molecule from Tripterygium wilfordii with significant anticancer activities. In this study, we investigated the anti-tumor mechanisms involving mitochondrial metabolic reprogramming regulated by Cel in breast cancer (BRCA). We showed that Cel potently inhibited the proliferation of triple-negative breast cancer cells (MDA-MB-231) and ER+ breast cancer cells (MCF-7) with IC50 values of 2.15 μM and 2.29 μM, respectively. Administration of Cel (5, 2, 2 mg/kg, i.p. for three times after tumor formation) significantly suppressed the tumor growth in syngeneic allograft and CDX breast cancer mouse models. Using activity-based protein profiling (ABPP) technology, we identified mitochondrial isocitrate dehydrogenases (including IDH2 and IDH3A, collectively referred to as mito-IDHs) as direct targets of Cel. We demonstrated that Cel significantly inhibited mito-IDHs mediated mitochondrial metabolism to induce the accumulation of metabolites α-ketoglutaric acid, and that Cel enhanced the interaction between DPYSL2 with IDH3A while promoting the accumulation of DPYSL2 within mitochondria of BRCA cells resulting in inactivation of JAK/STAT pathway and ultimately induced ferroptosis and apoptosis in cancer cells. Collectively, this study elucidates a pharmacological mechanism by which Cel exerts its tumor-inhibiting effects through modulation of mitochondrial metabolism. Furthermore, it provides compelling evidence supporting Cel as a promising candidate for development as a small-molecule inhibitor targeting mitochondrial metabolism.
Collapse
Affiliation(s)
- Qiao-Li Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chen-Ran Feng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hui-Ying Li
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523000, China
| | - Pei-Li Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Peng Chen
- Experimental Research Center, China Academy of Traditional Chinese Medicine, Beijing, 100700, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wen-Hua Kuang
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Guan-Jun Li
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Shi-Jie Qin
- Innovative Vaccine and Immunotherapy Research Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Rui Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Rui-Xing Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun-Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Song
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yuan Yuan
- Experimental Research Center, China Academy of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Ji-Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523000, China.
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Ling Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
| |
Collapse
|
3
|
Tan R, Yang Z, Xie J, Wu Z, Guo S, Li L, Yin Z, Hua H, Liu M, Li R. Innovative design concepts in tumor-targeting peptide-drug conjugates: Insights into emerging applications. Chin Med J (Engl) 2025:00029330-990000000-01456. [PMID: 40033748 DOI: 10.1097/cm9.0000000000003438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 03/05/2025] Open
Abstract
ABSTRACT Peptide-drug conjugates (PDCs) have emerged as a promising strategy in cancer therapy, offering improved therapeutic efficacy and reduced toxicity. Compared to antibody-drug conjugates (ADCs) and small molecule-drug conjugates (SMDCs), PDCs possess distinct advantages, such as lower immunogenicity, improved tumor penetration, and simpler synthesis. This review discusses the latest advancements in PDC design, including novel peptide targeting mechanisms, linker selection, and formulation improvements for increased stability. Additionally, it explores the expanding clinical applications of PDCs and examines their limitations. The aim of this review is to provide a comprehensive overview of current PDC progress and outline future directions for their role in cancer treatment.
Collapse
Affiliation(s)
- Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan 610041, China
| | - Zhenya Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jun Xie
- Information Technology Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- West China Sanya Hospital of Sichuan University, Sanya, Hainan 572000, China
| | - Zijun Wu
- Xiangya School of Public Health, Central South University, Changsha, Hunan 410013, China
| | - Shanshan Guo
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan 610041, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan 610041, China
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan 610041, China
| | - Hua Hua
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan 610041, China
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Cai J, Liao W, Wen J, Ye F, Nie Q, Chen W, Zhao C. Algae-derived polysaccharides and polysaccharide-based nanoparticles: A natural frontier in breast cancer therapy. Int J Biol Macromol 2025; 297:139936. [PMID: 39824414 DOI: 10.1016/j.ijbiomac.2025.139936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/01/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Breast cancer is the second leading cause of cancer-related mortality among women worldwide, with its progression closely tied to the tumor microenvironment. To address the limitations and adverse effects of conventional therapies, algal polysaccharides and their nanoparticle derivatives have emerged as promising and effective anti-breast cancer agents. These bioactive compounds, derived from algae, are distinguished by their natural origin, non-toxicity, and significant medical relevance. Notably, algal polysaccharide-based nanoparticles exhibit advantageous properties such as hydrophilicity, biodegradability, prolonged circulation, and selective accumulation in tumor tissues. This review explores the relationship between the structural attributes of algal polysaccharides and their therapeutic efficacy. It further highlights the advantages of algal polysaccharide-based nanoparticles as drug delivery systems, particularly their potential in tumor targeting and overcoming multidrug resistance, thereby providing a theoretical foundation for their application in breast cancer treatment.
Collapse
Affiliation(s)
- Jiaer Cai
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Liao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahui Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangting Ye
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing Nie
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Qiu Y, Wang N, Yu Z, Guo X, Yang M. Changes in the chemical composition and medicinal effects of black ginseng during processing. Front Pharmacol 2024; 15:1425794. [PMID: 39588153 PMCID: PMC11586192 DOI: 10.3389/fphar.2024.1425794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/02/2024] [Indexed: 11/27/2024] Open
Abstract
Aim of the Study To study the changes in the chemical composition and medicinal effects of black ginseng during processing. Materials and Methods The contents of ginsenosides Rg1, Re, Rh1, Rb1, 20-(S)-Rg3, 20-(R)-Rg3, and Rg5 were determined using high-performance liquid chromatography (HPLC), and the percentage of rare saponins was calculated. Furthermore, changes in the contents of reducing sugars and amino acids (i.e., Maillard reaction (MR) substrates) were measured to assess the relationship between processing and the MR. Compounds were identified using HPLC-MS and their cleavage patterns were analyzed. Gene co-expression network bioinformatics techniques were applied to identify the pharmacological mechanism of black ginseng. Results The changes in the physicochemical characteristics of black ginseng during processing were determined based on the MR. Rare saponins accumulated during black ginseng processing. In addition, reducing sugars were produced through polysaccharide pyrolysis and the MR; thus, their content initially increased and then decreased. The amino acid content gradually decreased as the number of evaporation steps increased, indicating that both amino acids and reducing sugars acted as substrates for the MR during black ginseng processing. Thirty-one saponins, 18 sugars, and 58 amino acids were identified based on the MS analysis. Transcriptomics results demonstrated that black ginseng can regulate signaling pathways such as the TNF, IL-17, MAPK, and PI3K-Akt pathways. This finding helps us understand the observed proliferation and differentiation of immune-related cells and positively regulated cell adhesion.
Collapse
Affiliation(s)
- Ye Qiu
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- National Pharmaceutical Engineering Centre for Solid Preparation in Chinese Herbal Medicine, Nanchang, Jiangxi, China
- Department of Traditional Chinese Medicine, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Nengyuan Wang
- Department of Traditional Chinese Medicine, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhe Yu
- Department of Traditional Chinese Medicine, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiao Guo
- Jilin Cancer Hospital, Changchun, China
| | - Ming Yang
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- National Pharmaceutical Engineering Centre for Solid Preparation in Chinese Herbal Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Li J, Zhou M, Xie J, Chen J, Yang M, Ye C, Cheng S, Liu M, Li R, Tan R. Organoid modeling meets cancers of female reproductive tract. Cell Death Discov 2024; 10:410. [PMID: 39333482 PMCID: PMC11437045 DOI: 10.1038/s41420-024-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Diseases of the female reproductive system, especially malignant tumors, pose a serious threat to women's health worldwide. One of the key factors limiting research progress in this area is the lack of representative models. Organoid technology, especially tumor organoids, has been increasingly applied in the study of female reproductive system tumors due to their high heterogeneity, close resemblance to the physiological state, easy acquisition and cultivation advantages. They play a significant role in understanding the origin and causes of tumors, drug screening, and personalized treatment and more. This article reviews the organoid models for the female reproductive system, focusing on the cancer research advancements. It discusses the methods for constructing tumor organoids of the female reproductive tract and summarizes the limitations of current research. The aim is to offer a reference for future development and application of these organoid models, contributing to the advancement of anti-tumor drugs and treatment strategies for female reproductive tract cancer patients.
Collapse
Affiliation(s)
- Jiao Li
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Mengting Zhou
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Xie
- Information Technology Center, West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Jiani Chen
- Chongqing Medical University, Chongqing, China
| | - Mengni Yang
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changjun Ye
- Rehabilitation Department, Changgeng Yining Hospital, Wenzhou, China
| | - Shihu Cheng
- Geriatric Department, Changgeng Yining Hospital, Wenzhou, China
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
7
|
Wang T, Fu ZY, Li YJ, Zi L, Song CZ, Tao YX, Zhang M, Gu W, Yu J, Yang XX. Recognition on pharmacodynamic ingredients of natural products. Saudi Pharm J 2024; 32:102124. [PMID: 38933713 PMCID: PMC11201352 DOI: 10.1016/j.jsps.2024.102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Natural products (NPs) play an irreplaceable role in the intervention of various diseases and have been considered a critical source of drug development. Many new pharmacodynamic compounds with potential clinical applications have recently been derived from NPs. These compounds range from small molecules to polysaccharides, polypeptides, proteins, self-assembled nanoparticles, and extracellular vesicles. This review summarizes various active substances found in NPs. The investigation of active substances in NPs can potentiate new drug development and promote the in-depth comprehension of the mechanism of action of NPs that can be beneficial in the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Tao Wang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Zhong-Yu Fu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Yan-Juan Li
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Lei Zi
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Cheng-Zhu Song
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Yu-Xuan Tao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Mei Zhang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Wen Gu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| | - Xing-Xin Yang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, 1076 Yuhua Road, Kunming 650500, China
- Yunnan Key Laboratory of Southern Medicine Utilization, 1076 Yuhua Road, Kunming 650500, China
| |
Collapse
|
8
|
Kuo CH, Xu ZY, Hsiao PZ, Liao PC, Liu CH, Hong MC, Chiu K. Utilizing fish wastewater in aquaponic systems to enhance anti-inflammatory and antioxidant bioactive compounds in Sarcodia suae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169958. [PMID: 38211863 DOI: 10.1016/j.scitotenv.2024.169958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Aquaculture wastewater, rich in organic nutrients, is an essential environmental factor. When applied to seaweed cultivation systems, this wastewater holds the potential to notably increase the growth rate and carbon capture of Sarcodia suae. Sarcodia suae has the potential to be a healthy food due to its various biological activities; however, its chemical composition has yet to be completely defined. In this study, we applied a UHPLC-HRMS-based foodomics strategy to determine and classify possible bioactive metabolites in S. suae. From pooled seaweed samples (S. suae cultured in filtered running, FR, aquaponic recirculation, AR systems), we identified 179 and 146 compounds in POS and NEG modes, respectively. These compounds were then classified based on their structures using the Classyfire classification. Results show that S. suae in AR exhibited higher growth performance, and ten upregulated metabolites were determined. We also validated the anti-inflammatory and antioxidative bioactivities of some selected compounds. Our study provided important insights into the potential use of fish wastewater in aquaponic systems to profile and produce bioactive compounds in S. suae comprehensively. This has significant implications for the development of sustainable food and the promotion of environmental health.
Collapse
Affiliation(s)
- Chiu-Hui Kuo
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Zi-Yan Xu
- Tungkang Aquaculture Research Center, Fisheries Research Institute, MOA, Taiwan
| | - Ping-Zu Hsiao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Ming-Chang Hong
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Kuohsun Chiu
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; Department of Oceanography, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
9
|
Liu Y, Wu J, Hao H. Antitumor immunostimulatory activity of the traditional Chinese medicine polysaccharide on hepatocellular carcinoma. Front Immunol 2024; 15:1369110. [PMID: 38455058 PMCID: PMC10917928 DOI: 10.3389/fimmu.2024.1369110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignancy, often associated with compromised immune function in affected patients. This can be attributed to the secretion of specific factors by liver cancer cells, which hinder the immune response and lead to a state of immune suppression. Polysaccharides derived from traditional Chinese medicine (TCM) are valuable constituents known for their immunomodulatory properties. This review aims to look into the immunomodulatory effects of TCM polysaccharides on HCC. The immunomodulatory effects of TCM polysaccharides are primarily manifested through the activation of effector T lymphocytes, dendritic cells, NK cells, and macrophages against hepatocellular carcinoma (HCC) both in vivo and in vitro settings. Furthermore, TCM polysaccharides have demonstrated remarkable adjuvant antitumor immunomodulatory effects on HCC in clinical settings. Therefore, the utilization of TCM polysaccharides holds promising potential for the development of novel therapeutic agents or adjuvants with advantageous immunomodulatory properties for HCC.
Collapse
Affiliation(s)
- Yang Liu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jiawen Wu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Huiqin Hao
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
10
|
Yang M, Zhang Y, Hu Z, Xie H, Tian W, Liu Z. Application of hyaluronic acid-based nanoparticles for cancer combination therapy. Int J Pharm 2023; 646:123459. [PMID: 37778513 DOI: 10.1016/j.ijpharm.2023.123459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Cancer is a significant public health problem in the world. The treatment methods include surgery, chemotherapy, phototherapy, and immunotherapy. Due to their respective limitations, the treatment effect is often unsatisfactory, laying hidden dangers for metastasis and recurrence. Since their exceptional biocompatibility and excellent targeting capabilities, hyaluronic acid-based biomaterials have generated great interest as drug delivery methods for tumor therapy. Moreover, modified HA can self-assemble into hydrogels or nanoparticles (NPs) for precise drug administration. This article summarizes the application of HA-based NPs in combination therapy. Ultimately, it is anticipated that this research will offer guidance for creating various HA-based NPs utilized in numerous cancer therapies.
Collapse
Affiliation(s)
- Mengru Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ying Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zheming Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Haonan Xie
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Wenli Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
11
|
Xu P, Cui C, Liu Y, Fang K, Wang Q, Liu C, Tan R. Case report: Herbal treatment of neutropenic enterocolitis after chemotherapy for breast cancer. Open Life Sci 2023; 18:20220753. [PMID: 37941783 PMCID: PMC10628586 DOI: 10.1515/biol-2022-0753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 11/10/2023] Open
Abstract
In this case report, a 53-year-old woman was diagnosed with severe NE after receiving chemotherapy for breast cancer. The patient with breast cancer was treated with a single cycle of docetaxel (140 mg) + epirubicin (130 mg) + cyclophosphamide (0.9 g) chemotherapy. However, the woman presented with symptoms of fatigue and diarrhea 5 days later accompanied with severe neutropenia according to the routine blood test. The computed tomography examination displayed the thickening and swelling of the colorectal wall. After the diagnosis of NE, the woman received antibiotics and supportive treatment, but her symptoms were not improved. The Chinese herbal medicine (CHM) diagnostic pattern was then designed for the patient. The patient was administered with two CHM decoctions. One decoction contained 24 kinds of herbal materials, and the other one was called pure ginseng decoction. These two decoctions were administered to the patient 2 or 3 times per day to tonify the spleen, nourish Qi and blood, and remove phlegm and damp heat symptoms. After the CHM treatment lasting for 10 days, the symptoms of the patient were improved, and she was discharged. In conclusion, CHM treatment played an indispensable role in curing the woman with chemotherapy-induced NE.
Collapse
Affiliation(s)
- Peng Xu
- Galactophore Department, The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, No. 127, Si-Liu South Road, Qingdao266042, China
| | - Chaoxiong Cui
- Ophthalmology Department, The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, No. 127, Si-Liu South Road, Qingdao266042, China
| | - Yukun Liu
- Galactophore Department, The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, No. 127, Si-Liu South Road, Qingdao266042, China
| | - Kun Fang
- Galactophore Department, The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, No. 127, Si-Liu South Road, Qingdao266042, China
| | - Qitang Wang
- Galactophore Department, The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, No. 127, Si-Liu South Road, Qingdao266042, China
| | - Chao Liu
- Health Management Department, Ophthalmology Department, The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, No. 127, Si-Liu South Road, Qingdao266042, China
| | - Ruixia Tan
- Health Management Department, The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, No. 127, Si-Liu South Road, Qingdao266042, Shandong, China
| |
Collapse
|
12
|
Baghel RS, Choudhary B, Pandey S, Pathak PK, Patel MK, Mishra A. Rehashing Our Insight of Seaweeds as a Potential Source of Foods, Nutraceuticals, and Pharmaceuticals. Foods 2023; 12:3642. [PMID: 37835294 PMCID: PMC10573080 DOI: 10.3390/foods12193642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
In a few Southeast Asian nations, seaweeds have been a staple of the cuisine since prehistoric times. Seaweeds are currently becoming more and more popular around the world due to their superior nutritional value and medicinal properties. This is because of rising seaweed production on a global scale and substantial research on their composition and bioactivities over the past 20 years. By reviewing several articles in the literature, this review aimed to provide comprehensive information about the primary and secondary metabolites and various classes of bioactive compounds, such as polysaccharides, polyphenols, proteins, and essential fatty acids, along with their bioactivities, in a single article. This review also highlights the potential of seaweeds in the development of nutraceuticals, with a particular focus on their ability to enhance human health and overall well-being. In addition, we discuss the challenges and potential opportunities associated with the advancement of pharmaceuticals and nutraceuticals derived from seaweeds, as well as their incorporation into different industrial sectors. Furthermore, we find that many bioactive constituents found in seaweeds have demonstrated potential in terms of different therapeutic attributes, including antioxidative, anti-inflammatory, anticancer, and other properties. In conclusion, seaweed-based bioactive compounds have a huge potential to play an important role in the food, nutraceutical, and pharmaceutical sectors. However, future research should pay more attention to developing efficient techniques for the extraction and purification of compounds as well as their toxicity analysis, clinical efficacy, mode of action, and interactions with regular diets.
Collapse
Affiliation(s)
- Ravi S. Baghel
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Panaji 403004, Goa, India;
| | - Babita Choudhary
- Division of Applied Phycology and Biotechnology, CSIR, Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India;
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sonika Pandey
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7528809, Israel;
| | - Pradeep Kumar Pathak
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel;
| | - Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel;
| | - Avinash Mishra
- Division of Applied Phycology and Biotechnology, CSIR, Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India;
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
13
|
Wang L, Jayawardena TU, Kim YS, Wang K, Fu X, Ahn G, Cha SH, Kim JG, Lee JS, Jeon YJ. Anti-Melanogenesis and Anti-Photoaging Effects of the Sulfated Polysaccharides Isolated from the Brown Seaweed Padina boryana. Polymers (Basel) 2023; 15:3382. [PMID: 37631439 PMCID: PMC10459840 DOI: 10.3390/polym15163382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Sulfated polysaccharides isolated from seaweeds are thought of as ideal ingredients in the pharmaceutical, nutraceutical, and cosmetics industries. Our previous study isolated and characterized sulfated polysaccharides from Padina boryana. The sulfated polysaccharides of Padina boryana (PBP) were extracted, and the antioxidant activity of PBP was evaluated. The results indicate that PBP possesses antioxidant effects and potential in the cosmetic industry. To further investigate the potential of PBP in cosmetics, the photoprotective and anti-melanogenesis effects of PBP were evaluated. The anti-melanogenesis test results display that PBP reduced the melanin content in the murine melanoma cells stimulated by alpha melanocyte-stimulating hormone from 203.7% to 183.64%, 144.63%, and 127.57% at concentrations of 25 μg/mL, 50 μg/mL, and 100 μg/mL, respectively. The anti-photodamage test results showed that PBP significantly protected skin cells against UVB-stimulated photodamage. PBP suppressed human epidermal keratinocyte (HaCaT cell) death by inhibiting apoptosis and reducing the level of intracellular reactive oxygen species. The intracellular reactive oxygen species level of HaCaT cells irradiated by UVB was reduced from 192.67% to 181.22%, 170.25%, and 160.48% by 25 μg/mL, 50 μg/mL, and 100 μg/mL PBP, respectively. In addition, PBP remarkably reduced UVB-induced human dermal fibroblast damage by suppressing oxidative damage, inhibiting collagen degradation, and attenuating inflammatory responses. These results indicate that PBP possesses photoprotective and anti-melanogenesis activities and suggest that PBP is a potential ingredient in the cosmetic industry.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Thilina U. Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada;
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Young-Sang Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ginnae Ahn
- Department of Marine Bio Food Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Seon-Heui Cha
- Department of Marine Bio and Medical Science, Hanseo Universirty, Seosan-si 32158, Republic of Korea
| | - Jeong Gyun Kim
- Department of Seafood Science & Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (J.G.K.); (J.S.L.)
| | - Jung Suck Lee
- Department of Seafood Science & Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea; (J.G.K.); (J.S.L.)
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
| |
Collapse
|
14
|
Shao Y, Wang Y, Su R, Pu W, Chen S, Fu L, Yu H, Qiu Y. Dual identity of tumor-associated macrophage in regulated cell death and oncotherapy. Heliyon 2023; 9:e17582. [PMID: 37449180 PMCID: PMC10336529 DOI: 10.1016/j.heliyon.2023.e17582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/25/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Tumor-associated macrophage (TAM) affects the intrinsic properties of tumor cells and the tumor microenvironment (TME), which can stimulate tumor cell proliferation, migration, and genetic instability, and macrophage diversity includes the diversity of tumors with different functional characteristics. Macrophages are now a central drug target in various diseases, especially in the TME, which, as "tumor promoters" and "immunosuppressors", have different responsibilities during tumor development and accompany by significant dynamic alterations in various subpopulations. Remodelling immunosuppression of TME and promotion of pre-existing antitumor immune responses is critical by altering TAM polarization, which is relevant to the efficacy of immunotherapy, and uncovering the exact mechanism of action of TAMs and identifying their specific targets is vital to optimizing current immunotherapies. Hence, this review aims to reveal the triadic interactions of macrophages with programmed death and oncotherapy, and to integrate certain relationships in cancer treatment.
Collapse
Affiliation(s)
- Yingying Shao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yu Wang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Ranran Su
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Weiling Pu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Sibao Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen, China
- Department of Applied Biology and Chemical Technology, Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
| | - Leilei Fu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Zhang M, Mo R, Li M, Qu Y, Wang H, Liu T, Liu P, Wu Y. Comparison of the Effects of Enzymolysis Seaweed Powder and Saccharomyces boulardii on Intestinal Health and Microbiota Composition in Kittens. Metabolites 2023; 13:metabo13050637. [PMID: 37233678 DOI: 10.3390/metabo13050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Kittens are prone to intestinal health problems as their intestines are not completely developed. Seaweed is rich in plant polysaccharides and bioactive substances that are highly beneficial to gut health. However, the effects of seaweed on cat gut health have not been assessed. This study compared the effects of dietary supplementation with enzymolysis seaweed powder and Saccharomyces boulardii on the intestinal health of kittens. In total, 30 Ragdoll kittens (age: 6 months; weight: 1.50 ± 0.29 kg) were assigned to three treatment groups for a 4-week feeding trial. The dietary treatment given was as follows: (1) basal diet (CON); (2) CON + enzymolysis seaweed powder (20 g/kg of feed) mixed evenly with the diet (SE); and (3) CON + Saccharomyces boulardii (2 × 1010 CFU/kg of feed) mixed evenly with the diet (SB). Compared with the CON and SB groups, dietary supplementation with the enzymolysis seaweed powder improved the immune and antioxidant capacity and also reduced the intestinal permeability and inflammation levels of kittens. The relative abundance of Bacteroidetes, Lachnospiraceae, Prevotellaceae, and Faecalibacterium in the SE group was higher than those in the CON and SB groups (p ≤ 0.05), while the relative abundance of Desulfobacterota, Sutterellaceae, and Erysipelatoclostridium in the SB group was lower than that in the SE group (p ≤ 0.05). Moreover, enzymolysis seaweed powder did not alter the level of intestinal SCFAs in kittens. Conclusively, supplementing kitten diet with enzymolysis seaweed powder can promote intestinal health by enhancing the gut barrier function and optimizing the microbiota composition. Our findings provide new perspectives on the application of enzymolysis seaweed powder.
Collapse
Affiliation(s)
- Mingrui Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ruixia Mo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mingtan Li
- Shidai Marine Biotechnology Co., Ltd., Weihai 264319, China
| | - Yuankai Qu
- Shidai Marine Biotechnology Co., Ltd., Weihai 264319, China
| | - Haotian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tianyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Pan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
16
|
Li J, Wang YF, Shen ZC, Zou Q, Lin XF, Wang XY. Recent developments on natural polysaccharides as potential anti-gastric cancer substance: Structural feature and bioactivity. Int J Biol Macromol 2023; 232:123390. [PMID: 36706878 DOI: 10.1016/j.ijbiomac.2023.123390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Gastric cancer (GC) is being a serious threat to human health. Seeking safer and more effective ingredients for anti-GC is of significance. Increasing natural polysaccharides (NPs) have been demonstrated to possess anti-GC activity. However, the information on anti-GC NPs is scattered. For well-understanding the potential of NPs as anti-GC substances, the recent developments on structure, bioactivity and mechanism of anti-GC NPs were comprehensively reviewed in this article. Meanwhile, the structure-activity relationship was discussed. Recent studies indicated that anti-GC NPs could be mainly divided into glucan and heteropolysaccharide, whose structures affected by sources and protocols of extraction and purification. NPs exhibited anti-GC activities in cell and animal experiments as well as clinical trials, and the mechanisms might be anti-proliferation, inducing apoptosis, anti-metastasis and anti-invasion, inducing autophagy, boosting immunity, anti-angiogenesis, reducing drug resistance, anti-angiogenesis, improving antioxidant level and changing metabolites. Moreover, structural features included molecular weight, functional groups, uronic acid and monosaccharide composition, glycosidic linkage type, and degree of branching and conformation might influence the activities. Otherwise, modifications could enhance the anti-GC activity of NPs, and anti-GC NPs could be combinedly used with chemotherapeutic drugs. This review supports the applications of NPs in anti-GC and provides theoretical basis for future study.
Collapse
Affiliation(s)
- Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
17
|
El-Sheekh MM, Nassef M, Bases E, Shafay SE, El-Shenody R. Antitumor immunity and therapeutic properties of marine seaweeds-derived extracts in the treatment of cancer. Cancer Cell Int 2022; 22:267. [PMID: 35999584 PMCID: PMC9396856 DOI: 10.1186/s12935-022-02683-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
Marine seaweeds are important sources of drugs with several pharmacological characteristics. The present study aims to evaluate the antitumor and antitumor immunological potentials of the extracts from the brown alga Padina pavonica and the red alga Jania rubens, inhibiting the Egyptian marine coasts. Hep-G2 cell lines were used for assessment of the antitumor efficacy of Padina pavonica and Jania rubens extracts in vitro, while Ehrlich ascites carcinoma (EAC) cells were applied to gain more antitumor immunity and antitumor insights of P. pavonica and J. rubens extracts in vivo. In vitro antitumor potentials of P. pavonica and J. rubens extracts were analyzed against human liver cancer Hep-G2 cells by MTT and trypan blue exclusion assays. In vivo antitumor immunological potentials of P. pavonica and J. rubens extracts at low, high, and prophylactic doses were analyzed by blood counting and flow cytometry in mice challenged with Ehrlich ascites carcinoma (EAC) cells. In vitro results revealed that P. pavonica and J. rubens extracts caused significant decreases in the number and viability of Hep-G2 cells in a dose-dependent manner as compared to untreated Hep-G2 cells or Cisplatin®-treated Hep-G2 cells. In vivo findings showed that P. pavonica and J. rubens extracts at low, high, and prophylactic doses significantly reduced the number and viability of EAC tumor cells accompanied by increases in EAC apoptosis compared to naïve EAC mouse. Additionally, P. pavonica and J. rubens extracts at low and prophylactic doses remarkably increased both the total WBC count and the relative numbers of lymphocytes and decreased the relative numbers of neutrophils and monocytes. Flow cytometric analysis showed that P. pavonica and J. rubens extracts at the treatment and the prophylactic doses resulted in a significant increase in the phenotypic expressions of CD4+ T, CD8+ T, and CD335 cells compared to naïve EAC mouse. Overall, both extracts P. pavonica and J. rubens possess potential antitumor and antitumor immunological effects with less toxicity, opening new approaches for further studies of the chemical and biological mechanisms behind these effects.
Collapse
Affiliation(s)
- Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed Nassef
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Eman Bases
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Shimaa El Shafay
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Rania El-Shenody
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|