1
|
Shaikh S, Chary PS, Mehra NK. Nano-interventions for dengue: a comprehensive review of control, detection and treatment strategies. Inflammopharmacology 2025; 33:979-1011. [PMID: 39976669 DOI: 10.1007/s10787-025-01655-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/12/2025] [Indexed: 03/19/2025]
Abstract
Dengue, a formidable life-threatening malady, currently exerts a profound impact upon the Western Pacific and Southeast-Asian developing and underdeveloped nations. The intricacies inherent in addressing dengue are manifold, requiring a concerted effort not only towards vector control but also the implementation of efficacious host treatments to forestall the progression of the disease into severe manifestations, such as hemorrhage and shock. The only vaccine available for dengue in the market is DENGVAXIA, with several other vaccine candidates which are currently in the clinical developmental stages. However, DENGVAXIA, owing to incidences of adverse events in among children, was withdrawn in Philippines. This warrants the development of new safer vaccine candidates. The existent control strategies, regrettably, demonstrate inadequacy in effectively mitigating the rampant dissemination of this ailment. Moreover, the diagnostic and therapeutic modalities exhibit potential for refinement, specifically through precision diagnostics and tailored therapeutic interventions, to enhance the precision and efficacy of dengue management. This comprehensive review endeavors to provide an in-depth elucidation of the utilization of nanotechnology-based approaches synergistically integrated with conventional methodologies in the overarching domains of dengue control, diagnosis, and treatment.
Collapse
Affiliation(s)
- Samia Shaikh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ministry of Chemical and Family Welfare, Hyderabad, Telangana, 500 037, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ministry of Chemical and Family Welfare, Hyderabad, Telangana, 500 037, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ministry of Chemical and Family Welfare, Hyderabad, Telangana, 500 037, India.
| |
Collapse
|
2
|
Paul DC, Bhattacharjee M. Revisiting the significance of natural protease inhibitors: A comprehensive review. Int J Biol Macromol 2024; 280:135899. [PMID: 39317291 DOI: 10.1016/j.ijbiomac.2024.135899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Protease inhibitors (PIs) function as a natural adversary to proteolytic enzymes. They can diminish or inhibit the catalytic properties of proteases, which are crucial for various tasks in the physiology and metabolism of cellular forms. Protease Inhibitors are low molecular weight (5-25 kDa) stable proteins. Plants are a fair source of PIs, so foods containing PIs remarkably influence human health. PIs are usually present in storage tissues of the plant, although they are present in other aerial parts as well. In plants, protease inhibitors participate in vital functions such as maintaining physiological homeostasis, mobilization of storage proteins, defense systems, apoptosis, and other processes. In recent years, plant-derived PIs have shown promising results in treating various diseases including inflammatory conditions, osteoporosis, cardiovascular issues, and brain disorders. The primary goal of this review is to provide a comprehensive understanding of the characteristics, applications, and challenges associated with natural protease inhibitors in plants, which draws insights from an extensive examination of 80+ research papers with a focus on their potential in agriculture and medicine. By synthesizing findings from an extensive literature review, this work aims to guide future research directions and innovations in leveraging plant-based PIs for sustainable agricultural practices and advanced therapeutic interventions.
Collapse
Affiliation(s)
- Dhiman Chandra Paul
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India
| | - Minakshi Bhattacharjee
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India.
| |
Collapse
|
3
|
Gujjarlapudi M, Kotarya B, Mohanraj SS, Gupta D, Prasad ER, Kalle AM, Jaba J, Ponnusamy D, Padmasree K. Development of a rapid process for purification of Bowman-Birk and Kunitz inhibitors from legume seeds, and evaluation of their biophysical, insecticidal, and antimicrobial properties. Int J Biol Macromol 2023; 238:124050. [PMID: 36933601 DOI: 10.1016/j.ijbiomac.2023.124050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Bowman-Birk inhibitor (BBI ~10 kDa) and Kunitz inhibitor (KI ~20 kDa) are serine protease/proteinase inhibitor(s) [PI(s)] ubiquitously found in several Leguminous plant species with insecticidal and therapeutic properties. Due to narrow molecular mass differences, the separation of these inhibitors from a single seed variety is tedious. The present study is aimed to develop a rapid protocol (<24 h) for purifying BBI and KI from legume seeds using mild trichloroacetic acid (TCA) extraction followed by trypsin-affinity chromatography. The mature seeds of Vigna radiata and Cajanus platycarpus are used as a model to purify BBI and KI using this protocol. The BBI and KI purified from the seeds of V. radiata are labeled as VrBBI & VrKI, and C. platycarpus are labeled as CpBBI & CpKI, respectively. These PIs are confirmed by immunodetection and MALDI-TOF studies and further characterized for their structural (CD & fluorescence spectroscopy) and functional properties (temperature & DTT stability). BBI(s) purified using the above process are effective in the management of castor semi-looper 'Achaea janata', while KI(s) are effective in the management of pod borer 'Helicoverpa armigera'. Besides, both BBI(s) and KI(s) have significant potential in controlling the growth of methicillin-sensitive 'Staphylococcus aureus', a gram-positive pathogenic bacterium.
Collapse
Affiliation(s)
- Mariyamma Gujjarlapudi
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500 046, India
| | - Bharti Kotarya
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500 046, India
| | | | - Deepali Gupta
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500 046, India
| | - Elaprolu R Prasad
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Arunasree M Kalle
- Department of Animal Biology, University of Hyderabad, Hyderabad 500 046, India
| | - Jagdish Jaba
- Entomology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502 324, India
| | - Duraimurugan Ponnusamy
- Crop Protection Section, ICAR-Indian Institute of Oilseeds Research, Hyderabad 500 030, India
| | - Kollipara Padmasree
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
4
|
Feng W, Shi H, Xu W, Song P. Heterologous expression and physicochemical characteristics identification of Kunitz protease inhibitor in Brassica napus. 3 Biotech 2022; 12:81. [PMID: 35251883 PMCID: PMC8882505 DOI: 10.1007/s13205-022-03149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/11/2022] [Indexed: 11/01/2022] Open
Abstract
A Kunitz protease inhibitor gene (RTI; rti) was cloned from rapeseed and expressed in a Pichia pastoris expression system for the first time. After isolation and purification, the physical and chemical characteristics of the inhibitor were analyzed. The results showed that the induced expression level of the recombinant RTI reached 628 mg/L, and the specific activity of the inhibitor reached 69.6 TIU/mg protein at the shake flask fermentation level; the recombinant RTI retained more than 70% inhibitory activity between 30 and 90 °C and more than 80% inhibitory activity between pH 2.0-11.0. The metal ions Cu2+ and CO2+ and the organic reagents methanol, ethanol, acetone, and chloroform inhibit its activity. The recombinant RTI interacts with trypsin in a noncompetitive manner and has a strong and specific inhibitory effect on trypsin, a typical Kunitz trypsin inhibitor from plants. Combined with its good physical and chemical properties, recombinant RTI has the potential to be developed into an insect resistance protein.
Collapse
Affiliation(s)
- Wei Feng
- grid.411351.30000 0001 1119 5892School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| | - Haiying Shi
- grid.411351.30000 0001 1119 5892School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| | - Wei Xu
- grid.411351.30000 0001 1119 5892School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| | - Peng Song
- grid.411351.30000 0001 1119 5892School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| |
Collapse
|
5
|
Felix SF, Rodrigues AM, Rodrigues ALM, de Freitas JCC, Alves DR, da Silva AA, dos Santos DL, de Oliveira KRL, Montes RA, da Silva MVF, da Silva Lopes FF, de Morais SM. Chemical Composition, Larvicidal Activity, and Enzyme Inhibition of the Essential Oil of Lippia grata Schauer from the Caatinga Biome against Dengue Vectors. Pharmaceuticals (Basel) 2021; 14:ph14030250. [PMID: 33802178 PMCID: PMC8000323 DOI: 10.3390/ph14030250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 12/21/2022] Open
Abstract
Insect resistance and environmental pollution are among the drawbacks of continuous use of synthetic insecticides against the vectors of dengue, Aedesaegypti and Aedes albopictus. The objective of this study was to analyze the composition of the essential oil of Lippia grata Schauer collected from plants, in three periods of the year, to compare the larvicidal activity and enzymatic inhibition of the dengue vectors. The oilsanalyzed by gas chromatography coupled to mass spectrometry (GC-MS), presented thymol and 1,8-cineole, as the main constituents, in all three periods. This composition was different from that found in previous studies of the species from different places, thus, suggesting a new chemotype of Lippia grata. Larvicidal tests were performed at concentrations of 100, 75, 50, 25, and 12.5 μg.mL−1 and the essential oil from the rainy season showed the best results, with LC50 of 22.79 μg.mL−1 and 35.36 μg.mL−1 against Ae. aegypti and Ae. albopictus, respectively; this result was better than other reports. In the rainy period, however, there was a greater variety of components, which led to a better larvicidal effect, possibly due to synergistic action with minor constituents. Total proteins, amylases, and acetylcholinesterase of both species were inhibited by the oils.
Collapse
Affiliation(s)
- Stênio Freitas Felix
- Departamento de Ensino, Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Campus Iguatu, Rodovia Iguatu/Várzea Alegre, km 05, s/n, Vila Cajazeiras, Iguatu, 63503-790 Ceará, Brazil
- Programa de Pós-Graduação em Biotecnologia, RENORBIO, Universidade Estadual do Ceará, Avenida Doutor Silas Munguba, 1700, Fortaleza, 60741-000 Ceará, Brazil;
- Correspondence: (S.F.F.); (S.M.d.M.); Tel.: +55-85-3191-9961 (S.M.d.M.)
| | - Alzeir Machado Rodrigues
- Departamento de Ensino, Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Campus Acopiara/Rodovia CE 060, km 332, s/n, Vila Martins, Acopiara, 63560-000 Ceará, Brazil;
| | - Ana Livya Moreira Rodrigues
- Programa de Pós-Graduação em Biotecnologia, RENORBIO, Universidade Estadual do Ceará, Avenida Doutor Silas Munguba, 1700, Fortaleza, 60741-000 Ceará, Brazil;
- Laboratório de Análises Cromatográficas e Espectroscópicas, Universidade Estadual do Ceará, Avenida Doutor Silas Munguba, 1700, Fortaleza, 60741-000 Ceará, Brazil;
| | | | - Daniela Ribeiro Alves
- Programa de Pós-Graduação em Ciências Naturais, Universidade Estadual do Ceará, Avenida Doutor Silas Munguba, 1700, Fortaleza, 60741-000 Ceará, Brazil;
- Laboratório de Química de Produtos Naturais, Universidade Estadual do Ceará, Avenida Doutor Silas Munguba, 1700, Fortaleza, 60741-000 Ceará, Brazil; (A.A.d.S.); (D.L.d.S.); (K.R.L.d.O.); (R.A.M.); (M.V.F.d.S.)
| | - Alice Araújo da Silva
- Laboratório de Química de Produtos Naturais, Universidade Estadual do Ceará, Avenida Doutor Silas Munguba, 1700, Fortaleza, 60741-000 Ceará, Brazil; (A.A.d.S.); (D.L.d.S.); (K.R.L.d.O.); (R.A.M.); (M.V.F.d.S.)
| | - Dayanne Lima dos Santos
- Laboratório de Química de Produtos Naturais, Universidade Estadual do Ceará, Avenida Doutor Silas Munguba, 1700, Fortaleza, 60741-000 Ceará, Brazil; (A.A.d.S.); (D.L.d.S.); (K.R.L.d.O.); (R.A.M.); (M.V.F.d.S.)
| | - Kethelly Rayne Lima de Oliveira
- Laboratório de Química de Produtos Naturais, Universidade Estadual do Ceará, Avenida Doutor Silas Munguba, 1700, Fortaleza, 60741-000 Ceará, Brazil; (A.A.d.S.); (D.L.d.S.); (K.R.L.d.O.); (R.A.M.); (M.V.F.d.S.)
| | - Renato Almeida Montes
- Laboratório de Química de Produtos Naturais, Universidade Estadual do Ceará, Avenida Doutor Silas Munguba, 1700, Fortaleza, 60741-000 Ceará, Brazil; (A.A.d.S.); (D.L.d.S.); (K.R.L.d.O.); (R.A.M.); (M.V.F.d.S.)
| | - Marcus Vinicius Ferreira da Silva
- Laboratório de Química de Produtos Naturais, Universidade Estadual do Ceará, Avenida Doutor Silas Munguba, 1700, Fortaleza, 60741-000 Ceará, Brazil; (A.A.d.S.); (D.L.d.S.); (K.R.L.d.O.); (R.A.M.); (M.V.F.d.S.)
| | - Francisco Flávio da Silva Lopes
- Laboratório de Análises Cromatográficas e Espectroscópicas, Universidade Estadual do Ceará, Avenida Doutor Silas Munguba, 1700, Fortaleza, 60741-000 Ceará, Brazil;
| | - Selene Maia de Morais
- Departamento de Química, Universidade Estadual do Ceará, Avenida Doutor Silas Munguba, 1700, Fortaleza, 60741-000 Ceará, Brazil
- Correspondence: (S.F.F.); (S.M.d.M.); Tel.: +55-85-3191-9961 (S.M.d.M.)
| |
Collapse
|
6
|
Fakchich J, Elachouri M. An overview on ethnobotanico-pharmacological studies carried out in Morocco, from 1991 to 2015: Systematic review (part 1). JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113200. [PMID: 32750461 DOI: 10.1016/j.jep.2020.113200] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The full bibliometric records of data retrieved from ethnobotanical field studies carried out in Morocco (1991-2015) was quali-quantitatively analysed. Despite the importance of traditional medicinal uses in Morocco, any comments about the methodologies and approaches adopted by reviewed studies have been undertaken. Include more data about the importance of traditional medicinal uses in Morocco. AIM OF THE STUDY Three key points were targeted in this review: (i) to contribute to original compilation of medicinal plants traditionally used by people at whole Morocco, by gathering and documenting the current status of these ancestral medical practices, (ii) to provide a novel insight into the relationship between local and biomedical disease concepts in Moroccan society, taking into account health-related beliefs, and their influences on medicinal plant uses, (iii) to figurout the weaknesses and the strengths of the conceptual approches and methods adopted by researchers in ethnobotanical field works. MATERIALS AND METHODS With the help of a computerized database querying, we conducted an extensive literature search respecting our integration criteria. We performed this bibliographic research by using the following search engines available over the Web: Google Scholar, PUBMED, Sciencedirect, Current Content Connect, SCOPUS, SPRINGER LINK, GLOBAL PLANTS, Cochrane Library and SCIRUS. The scientific names listed in the present paper have been validated according to the "The Plant List" and the African Plants Database in order to standardize ethnobotanical data on an international level. For the analysis of data gathered, quali-quantitative analyses have been performed. RESULTS A total of 905 medicinal plant species belonging to 116 families and 726 genera have been selected from 63 published articles. The dominant families were ASTERACEAE (111 species) followed by the FABACEAE (77 species), LAMIACEAE (75 species) and APIACEAE (46 species). The plant species listed are used to cure several public ailments. The digestive ailments represented the most important category (494 species) followed by dermatological diseases (407 species), diabetes (315 species) and urinary diseases (277 species). We assigned the importance of the plant species by several measures (including Frequency Cited (FC), Number of Uses (NU), Number of Respondents (NR) and Index of Performance (IP). The ICF (Informant Consensus Factor) calculated was important in all categories of diseases averaging 47%. CONCLUSION The results obtained, which cover the whole country, delineate the profile of rich wealth of indigenous knowledge on traditional uses of medicinal plants heald by Moroccan society. The total number of 905 plant species listed in this paper, are currently being utilized as medicines and the number is expected to grow as infrastructure allows greater access to unexplored parts of the country. Furthermore, the know how, regarding the plants used, is consistent because the ICF has recorded important values for most diseases treated. Furthermore, in the present paper, we suggested, for authors, some useful recommendations for ethnobotanical field works such as the respect of ethnobotanical standards including checklist of plants with international data base, the deposited voucher specimens, sampling and collection methods.
Collapse
Affiliation(s)
- Jamila Fakchich
- Laboratory of Physiology, Genetics, and Ethnopharmacology, Mohammed First University, Oujda, Morocco.
| | - Mostafa Elachouri
- Laboratory of Physiology, Genetics, and Ethnopharmacology, Mohammed First University, Oujda, Morocco.
| |
Collapse
|
7
|
Tabosa PMS, Almeida Filho LCP, Franca RX, Rocha-Bezerra LCB, Vasconcelos IM, Carvalho AFU. Trypsin inhibitor from Enterolobium contortisiliquum seeds impairs Aedes aegypti development and enhances the activity of Bacillus thuringiensis toxins. PEST MANAGEMENT SCIENCE 2020; 76:3693-3701. [PMID: 32453460 DOI: 10.1002/ps.5918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Disease vector insects are barriers for human development. The use of synthetic chemicals to control these vectors has caused damage to the environment and contributed to the arising of resistant insect populations. This has led to an increased search for plant-derived molecules with insecticidal activity or that show synergistic effects with known insecticidal substances, such as protease inhibitors. Thus, we aimed to evaluate the effect of Enterolobium contortisiliquum trypsin inhibitor (EcTI) on Aedes aegypti development as well as its effect on insecticidal activity of Bacillus thuringiensis toxins. RESULTS EcTI showed an apparent molecular mass about of 20 kDa in SDS-PAGE and was able to inhibit in vitro the activity of trypsin and proteases from midgut of Ae. aegypti larvae. EcTI was not able to cause acute toxicity on mosquito larvae even at 1000 μg mL-1 , however it promoted a delay in larval development after prolonged exposure. The zymogram results for EcTI-treated larvae (from 50 to 200 μg mL-1 ) showed an increase of midgut proteases activity as a larvae defense mechanism, however no changes in the enzyme profile was observed. These same concentrations were able to enhance up to three fold the insecticidal activity of B. thuringiensis toxins without causing toxicity to Artemia sp. nauplii, a non-target organism. CONCLUSIONS The results offer a novel approach by combining EcTI and B. thuringiensis toxins for combating Ae. aegypti larvae. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pedro M S Tabosa
- Biochemistry and Molecular Biology Department, Federal University of Ceará, Fortaleza, Brazil
| | | | - Rute X Franca
- Biology Department, Federal University of Ceará, Fortaleza, Brazil
| | | | - Ilka M Vasconcelos
- Biochemistry and Molecular Biology Department, Federal University of Ceará, Fortaleza, Brazil
| | - Ana F U Carvalho
- Biochemistry and Molecular Biology Department, Federal University of Ceará, Fortaleza, Brazil
- Biology Department, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
8
|
Cisneros JS, Cotabarren J, Parisi MG, Vasconcelos MW, Obregón WD. Purification and characterization of a novel trypsin inhibitor from Solanum tuberosum subsp. andigenum var. overa: Study of the expression levels and preliminary evaluation of its antimicrobial activity. Int J Biol Macromol 2020; 158:S0141-8130(20)33083-X. [PMID: 32360201 DOI: 10.1016/j.ijbiomac.2020.04.217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/23/2022]
Abstract
Protease inhibitors (PIs) have been traditionally recognized by their potential biomedical application in events with exacerbation of endogenous proteases activity. Plant PIs have gained interest as naturally occurring molecules, which usually show lower environmental impact residual toxicity than synthetic compounds. In this work, we isolated, cloned, expressed and purified a novel trypsin inhibitor from S. tuberosum subsp. andigenum var. overa, named oPTI. A significant over-expression of the oPTI coding gene after 48 h exposure of methyl jasmonate compared to the gene of reference. This inhibitor showed a molecular mass of 12 kDa and a Ki of 7.3 × 10-7 M. Finally, we evaluated the antimicrobial activity of oPTI against different pathogenic microorganisms. The oPTI demonstrated inhibitory effect on the growth of Acinetobacter baumannii S-1, Acinetobacter baumannii R, Acinetobacter calcoaceticus R, Acinetobacter calcoaceticus S, Bacillus stearothermophilus, Escherichia coli, Pseudomonas aeruginosa, Salmonella braenderup, Salmonella enteritidis, Salmonella typhimurium and Yersinia enterocolitica strains. This study represents the first report for the antimicrobial activity of a plant PI over a wide range of microorganisms. Our studies reinforce the importance of natural PIs as promising molecules for their potential application in the biomedical field and/or in the food industry as natural food preservatives.
Collapse
Affiliation(s)
- José Sebastián Cisneros
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Diagonal 113 y 64 S/N, B1900AVW La Plata, Buenos Aires, Argentina
| | - Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIProVe), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115s/N, B1900AVW La Plata, Buenos Aires, Argentina.
| | - Mónica Graciela Parisi
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján, 6700 Buenos Aires, Argentina
| | - Marta Wilton Vasconcelos
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Labóratorio Associado, Escola Superior de Biotecnologia, Rua Diorgo Botelho 1357, 4169-005 Porto, Portugal
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115s/N, B1900AVW La Plata, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Cotabarren J, Lufrano D, Parisi MG, Obregón WD. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: A systematic review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110398. [PMID: 32005400 DOI: 10.1016/j.plantsci.2019.110398] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Protease inhibitors (PIs) are regulatory proteins found in numerous animal tissues and fluids, plants, and microorganisms that reduce and inhibit the exacerbated and uncontrolled activity of the target proteases. Specific PIs are also effective tools for inactivating proteases involved in human diseases like arthritis, pancreatitis, hepatitis, cancer, AIDS, thrombosis, emphysema, hypertension, and muscular dystrophy among others. Plant PIs-small peptides with a high content of cystine residues in disulfide bridges-possess a remarkable resistance to heat treatment and a high stability against shifts in pH, denaturing agents, ionic strength, and proteolysis. In recent years, novel biologic activities have been reported for plant PIs, including antimicrobial, anticoagulant, antioxidant action plus inhibition of tumor-cell growth; thus pointing to possible applications in medicine, agriculture, and biotechnology. In this review, we provide a comparative overview of plant-PIs classifying them in four groups according of their thermal and pH stability (high stability and hyperstable -to temperature and to pHs-, respectively), then emphasizing the relevance of the physicochemical characteristics of these proteins for potential biotechnological and industrial applications. Finally, we analyze the biologic activities of the stable protease inhibitors previously characterized that are the most relevant to potential applications in biomedicine, the food industry, and agriculture.
Collapse
Affiliation(s)
- Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| | - Daniela Lufrano
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| | - Mónica Graciela Parisi
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján, 6700, Buenos Aires, Argentina.
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| |
Collapse
|
10
|
Rodrigues AM, Silva AAS, Pinto CCC, Lima Dos Santos D, Carneiro de Freitas JC, Martins VEP, Maia de Morais S. Larvicidal and Enzymatic Inhibition Effects of Annona muricata Seed Extract and Main Constituent Annonacin against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Pharmaceuticals (Basel) 2019; 12:E112. [PMID: 31357557 PMCID: PMC6789477 DOI: 10.3390/ph12030112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/13/2019] [Accepted: 07/20/2019] [Indexed: 11/16/2022] Open
Abstract
The mosquitoes Aedes aegypti and Aedes albopictus are vectors of arboviruses that cause dengue, zika and chikungunya. Bioactive compounds from plants are environmentally sustainable alternatives to control these vectors and thus the arboviruses transmitted by them. The present study evaluated the larvicidal activity of an acetogenin-rich fraction (ACERF) and its main constituent annonacin obtained from Annona muricata seeds on Ae. aegypti and Ae. albopictus. The larvicidal assays were performed using different concentrations to calculate the LC50 and LC90 values observed 24 h after exposure to the treatment. Annonacin was more active against Ae. aegypti (LC50 2.65 μg·mL-1) in comparison with Ae. albopictus (LC50 8.34 μg·mL-1). In contrast, the acetogenin-rich fraction was more active against Ae. albopictus (LC50 3.41 μg·mL-1) than Ae. aegypti (LC50 12.41 μg·mL-1). ACERF and annonacin treated larvae of Ae. aegypti and Ae. albopictus showed significant differences in the inhibition of their metabolic enzymes when compared to untreated larvae. The results demonstrate the relevant larvicidal action of the acetogenin-rich fraction and annonacin showing the potential to develop new products for the control of Ae. aegypti and Ae. albopictus.
Collapse
Affiliation(s)
- Alzeir Machado Rodrigues
- Departamento de Ensino, Ciências e Formação de Professores, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Avenida Almirante Barroso, 1155, Belém 66093-020, Pará, Brazil.
- Programa de Pós-Graduação em Biotecnologia, RENORBIO, Universidade Estadual do Ceará, Avenida Doutor Silas Munguba, 1700, Fortaleza 60741-000, Ceará, Brazil.
| | - Antonio Adailson Sousa Silva
- Programa de Pós-Graduação em Farmacologia, Universidade Federal do Ceará, Rua Coronel Nunes de Melo, 1127, Fortaleza 60430-275, Ceará, Brazil
| | - Cleonilda Claita Carneiro Pinto
- Programa de Pós-Graduação em Biotecnologia, RENORBIO, Universidade Estadual do Ceará, Avenida Doutor Silas Munguba, 1700, Fortaleza 60741-000, Ceará, Brazil
| | - Dayanne Lima Dos Santos
- Laboratório de Química de Produtos Naturais, Universidade Estadual do Ceará, Avenida Doutor Silas Munguba, 1700, Fortaleza 60741-000, Ceará, Brazil
| | | | - Victor Emanuel Pessoa Martins
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira (Unilab), Campus das Auroras, Rua José Franco de Oliveira s/n, Redenção 62790-970, Ceará, Brazil
| | - Selene Maia de Morais
- Departamento de Química, Universidade Estadual do Ceará, Avenida Doutor Silas Munguba, 1700, Fortaleza 60741-000, Ceará, Brazil.
| |
Collapse
|
11
|
Napoleão TH, Albuquerque LP, Santos ND, Nova IC, Lima TA, Paiva PM, Pontual EV. Insect midgut structures and molecules as targets of plant-derived protease inhibitors and lectins. PEST MANAGEMENT SCIENCE 2019; 75:1212-1222. [PMID: 30306668 DOI: 10.1002/ps.5233] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/29/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
The midgut of insects is involved in digestion, osmoregulation and immunity. Although several defensive strategies are present in this organ, its organization and function may be disturbed by some insecticidal agents, including bioactive proteins like lectins and protease inhibitors (PIs) from plants. PIs interfere with digestion, leading to poor nutrient absorption and decreasing amino acid bioavailability. Intake of PIs can delay development, cause deformities and reduce fertility. Ingestion of PIs may lead to changes in the set of proteases secreted in the insect gut, but this response is often insufficient and results in aggravation of the malnutrition status. Lectins are proteins that are able to interact with glycoconjugates, including those linked to cell surfaces. Their effects on the midgut include disruption of the peritrophic matrix, brush border and secretory cell layer; induction of apoptosis and oxidative stress; interference with nutrient absorption and transport proteins; and damaging effects on symbionts. In addition, lectins can cross the intestinal barrier and reach the hemolymph. The establishment of resistant insect populations due to selective pressure resulting from massive use of a bioactive protein is an actual possibility, but this can be minimized by the multiple mode-of-action of these proteins, mainly the lectins. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thiago H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Lidiane P Albuquerque
- Departamento de Bioquímica e Farmacologia, Universidade Federal do Piauí, Teresina, Brazil
| | - Nataly Dl Santos
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Isabella Cv Nova
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Thâmarah A Lima
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Patrícia Mg Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Emmanuel V Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|