1
|
Tsopelas F, Stergiopoulos C, Danias P, Tsantili-Kakoulidou A. Biomimetic separations in chemistry and life sciences. Mikrochim Acta 2025; 192:133. [PMID: 39904888 PMCID: PMC11794418 DOI: 10.1007/s00604-025-06980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
Since Otto Schmitt introduced the term "biomimetics" in 1957, the imitation of biological systems to develop separation methods and simulate biological processes has seen continuous growth, particularly over the past five decades. The biomimetic approach relies on the use of specific ligands-biospecific, biomimetic, or synthetic-which target biomolecules, such as proteins, antibodies, nucleic acids, enzymes, drugs, pesticides, and other bioactive analytes. This review highlights advances in biomimetic separations, focusing on biomimetic liquid chromatography (including immobilized artificial membrane chromatography, cell membrane chromatography, biomimetic affinity chromatography, weak affinity chromatography, micellar liquid chromatography, immobilized liposome chromatography, and liposome electrokinetic capillary chromatography) for the complex separation and purification of biomolecules and other important chemical compounds. It also explores their application in studying drug-receptor interactions, screening chemical permeability, absorption, distribution, toxicity, as well as predicting environmental risks. Additionally, this review discusses the application of biomimetic magnetic nanoparticles, which leverage biological membranes and proteins for drug discovery, protein purification, and diagnostics.
Collapse
Affiliation(s)
- Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780, Zografou Athens, Greece.
| | - Chrysanthos Stergiopoulos
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780, Zografou Athens, Greece
| | - Panagiotis Danias
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780, Zografou Athens, Greece
| | - Anna Tsantili-Kakoulidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Zografou Athens, Greece
| |
Collapse
|
2
|
Sobańska AW, Brzezińska E. Immobilized Keratin HPLC Stationary Phase-A Forgotten Model of Transdermal Absorption: To What Molecular and Biological Properties Is It Relevant? Pharmaceutics 2023; 15:1172. [PMID: 37111656 PMCID: PMC10144615 DOI: 10.3390/pharmaceutics15041172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Chromatographic retention data collected on immobilized keratin (KER) or immobilized artificial membrane (IAM) stationary phases were used to predict skin permeability coefficient (log Kp) and bioconcentration factor (log BCF) of structurally unrelated compounds. Models of both properties contained, apart from chromatographic descriptors, calculated physico-chemical parameters. The log Kp model, containing keratin-based retention factor, has slightly better statistical parameters and is in a better agreement with experimental log Kp data than the model derived from IAM chromatography; both models are applicable primarily to non-ionized compounds.Based on the multiple linear regression (MLR) analyses conducted in this study, it was concluded that immobilized keratin chromatographic support is a moderately useful tool for skin permeability assessment.However, chromatography on immobilized keratin may also be of use for a different purpose-in studies of compounds' bioconcentration in aquatic organisms.
Collapse
Affiliation(s)
- Anna Weronika Sobańska
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
| | | |
Collapse
|
3
|
Vallianatou T, Tsopelas F, Tsantili-Kakoulidou A. Prediction Models for Brain Distribution of Drugs Based on Biomimetic Chromatographic Data. Molecules 2022; 27:molecules27123668. [PMID: 35744794 PMCID: PMC9227077 DOI: 10.3390/molecules27123668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
The development of high-throughput approaches for the valid estimation of brain disposition is of great importance in the early drug screening of drug candidates. However, the complexity of brain tissue, which is protected by a unique vasculature formation called the blood−brain barrier (BBB), complicates the development of robust in silico models. In addition, most computational approaches focus only on brain permeability data without considering the crucial factors of plasma and tissue binding. In the present study, we combined experimental data obtained by HPLC using three biomimetic columns, i.e., immobilized artificial membranes, human serum albumin, and α1-acid glycoprotein, with molecular descriptors to model brain disposition of drugs. Kp,uu,brain, as the ratio between the unbound drug concentration in the brain interstitial fluid to the corresponding plasma concentration, brain permeability, the unbound fraction in the brain, and the brain unbound volume of distribution, was collected from literature. Given the complexity of the investigated biological processes, the extracted models displayed high statistical quality (R2 > 0.6), while in the case of the brain fraction unbound, the models showed excellent performance (R2 > 0.9). All models were thoroughly validated, and their applicability domain was estimated. Our approach highlighted the importance of phospholipid, as well as tissue and protein, binding in balance with BBB permeability in brain disposition and suggests biomimetic chromatography as a rapid and simple technique to construct models with experimental evidence for the early evaluation of CNS drug candidates.
Collapse
Affiliation(s)
- Theodosia Vallianatou
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Correspondence: (T.V.); (A.T.-K.)
| | - Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece;
| | - Anna Tsantili-Kakoulidou
- Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece
- Correspondence: (T.V.); (A.T.-K.)
| |
Collapse
|
4
|
Park EY, Oh D, Park S, Kim W, Kim C. New contrast agents for photoacoustic imaging and theranostics: Recent 5-year overview on phthalocyanine/naphthalocyanine-based nanoparticles. APL Bioeng 2021; 5:031510. [PMID: 34368604 PMCID: PMC8325568 DOI: 10.1063/5.0047660] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
The phthalocyanine (Pc) and naphthalocyanine (Nc) nanoagents have drawn much attention as contrast agents for photoacoustic (PA) imaging due to their large extinction coefficients and long absorption wavelengths in the near-infrared region. Many investigations have been conducted to enhance Pc/Ncs' photophysical properties and address their poor solubility in an aqueous solution. Many diverse strategies have been adopted, including centric metal chelation, structure modification, and peripheral substitution. This review highlights recent advances on Pc/Nc-based PA agents and their extended use for multiplexed biomedical imaging, multimodal diagnostic imaging, and image-guided phototherapy.
Collapse
Affiliation(s)
| | - Donghyeon Oh
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Sinyoung Park
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Wangyu Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
5
|
Kowalska D, Maculewicz J, Stepnowski P, Dołżonek J. Interaction of pharmaceutical metabolites with blood proteins and membrane lipids in the view of bioconcentration: A preliminary study based on in vitro assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146987. [PMID: 33866166 DOI: 10.1016/j.scitotenv.2021.146987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals pose a real threat to the environment, which has been proven in many studies to date. However, still little is known about the transformation products (TPs) of these compounds, which can also interact with organisms, causing adverse effects like noticeable toxicity or bioconcentration. Many recent works confirm that metabolites of pharmaceuticals are present in the environment, and preliminary studies suggest that they may be equally dangerous to or even more so than their parent compounds. Additionally, it has been proven that some of them have high hydrolytic stability, thus they may be persistent in the environment. This property also increases the likelihood that these compounds will be uptaken and accumulated in the tissues of organisms. Therefore, the aim of the present study was to preliminarily estimate the affinity of the transformation products of selected drugs for blood proteins and cell membrane-forming lipids, considered as important sorption phases during distribution in a living organism. In this study, it was shown that although the examined metabolites do not have a strong affinity for membrane lipids, they exhibit relatively strong binding to proteins, which may considerably affect the distribution of TPs in an organism and may indicate a non-classical process of bioconcentration. The results obtained confirm that the TPs of pharmaceuticals should be given much more attention and their potential for bioconcentration should be further determined.
Collapse
Affiliation(s)
- Dorota Kowalska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
6
|
Mohammadnia F, Fatemi MH, Taghizadeh SM. The experimental and theoretical assessment of biopartitioning micellar liquid chromatography to mimic the drug‐protein binding of some pain‐relief drugs. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fatemeh Mohammadnia
- Laboratory of Chemometrics, Faculty of Chemistry University of Mazandaran Babolsar Iran
- Novel Drug Delivery Systems, Faculty of Science Iran Polymer and Petrochemical Institute Tehran Iran
| | | | - Seyed Mojtaba Taghizadeh
- Novel Drug Delivery Systems, Faculty of Science Iran Polymer and Petrochemical Institute Tehran Iran
| |
Collapse
|
7
|
Sobańska AW. Emerging or Underestimated Silica-Based Stationary Phases in Liquid Chromatography. Crit Rev Anal Chem 2020; 51:631-655. [PMID: 32482079 DOI: 10.1080/10408347.2020.1760782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several newly synthesized or forgotten silica-based stationary phases proposed for liquid chromatography are described, including non-endcapped, short-chain alkyl phases; hydrophilic and polar-endcapped stationary phases; polar-embedded alkyl phases; long-chain alkyl phases. Stationary phases with aromatic, cyanopropyl, diol and aminopropyl functionalities are also reviewed. Stationary phases of particular interest are biomolecular materials - based on immobilized cholesterol, aminoacids, peptides, proteins or lipoproteins. Packing materials involving macrocyclic chemistry (crown ethers; calixarenes; aza-macrocycles; oligo-and polysaccharides including these of marine origin - chitin- or chitosan-based; macrocyclic antibiotics) are discussed. Since many stationary phases developed for one type of applications (e.g. chiral separation) have been found useful in solving other analytical problems (e.g. drug's plasma protein binding ability), it seemed reasonable to discuss particular chemistries behind the stationary phases presented in this review rather than specific types of interactions or chromatographic modes.
Collapse
Affiliation(s)
- Anna W Sobańska
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
8
|
Biopartitioning micellar chromatography under different conditions: Insight into the retention mechanism and the potential to model biological processes. J Chromatogr A 2020; 1621:461027. [PMID: 32276854 DOI: 10.1016/j.chroma.2020.461027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/14/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
In the present study, 88 structurally- diverse drugs were investigated by biopartitioning micellar chromatography (BMC) using Brij-35 as surfactant under different chromatographic conditions. It was found that temperature and presence of NaCl have only a minor effect in BMC retention. Correlation of BMC retention factors with octanol-water partitioning required the inclusion of fractions of ionized species as additional parameters, showing that there is a weaker effect of ionization in BMC environment. Compared to Immobilized Artificial Membrane (IAM) Chromatography, BMC retention factors cover a relatively narrow span, two-fold smaller than retention factors on IAM stationary phases as a result of the presence of micelles facilitating elution of lipophilic compounds and the absence of secondary attractive electrostatic interactions in the BMC environment. Similarities/dissimilarities between BMC, octanol-water partitioning and IAM Chromatography were investigated by Linear Free Energy Relationships (LSER). BMC retention factors were used to construct relationships with cell permeability,% Human Oral Absorption (%HOA) and Plasma Protein Binding (%PPB). Linear BMC models were obtained with Caco-2 cell lines and Parallel Artificial Membrane Permeability Assay (PAMPA). For %HOA, a hyperbolic model was established upon incorporation of topological polar surface area (tPSA) as additional parameter. A sigmoidal model was constructed for %PPB and a linear one for the corresponding thermodynamic binding constant logK. In both cases inclusion of the fraction of anionic species with a positive sign was required reflecting the preference of human albumin for acidic drugs.
Collapse
|
9
|
Tsopelas F, Tsantili-Kakoulidou A. Advances with weak affinity chromatography for fragment screening. Expert Opin Drug Discov 2019; 14:1125-1135. [DOI: 10.1080/17460441.2019.1648425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | |
Collapse
|
10
|
Kempińska D, Chmiel T, Kot-Wasik A, Mróz A, Mazerska Z, Namieśnik J. State of the art and prospects of methods for determination of lipophilicity of chemical compounds. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Sagandykova GN, Pomastowski PP, Kaliszan R, Buszewski B. Modern analytical methods for consideration of natural biological activity. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Mucaji P, Atanasov AG, Bak A, Kozik V, Sieron K, Olsen M, Pan W, Liu Y, Hu S, Lan J, Haider N, Musiol R, Vanco J, Diederich M, Ji S, Zitko J, Wang D, Agbaba D, Nikolic K, Oljacic S, Vucicevic J, Jezova D, Tsantili-Kakoulidou A, Tsopelas F, Giaginis C, Kowalska T, Sajewicz M, Silberring J, Mielczarek P, Smoluch M, Jendrzejewska I, Polanski J, Jampilek J. The Forty-Sixth Euro Congress on Drug Synthesis and Analysis: Snapshot †. Molecules 2017; 22:molecules22111848. [PMID: 29143778 PMCID: PMC6150335 DOI: 10.3390/molecules22111848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 01/08/2023] Open
Abstract
The 46th EuroCongress on Drug Synthesis and Analysis (ECDSA-2017) was arranged within the celebration of the 65th Anniversary of the Faculty of Pharmacy at Comenius University in Bratislava, Slovakia from 5-8 September 2017 to get together specialists in medicinal chemistry, organic synthesis, pharmaceutical analysis, screening of bioactive compounds, pharmacology and drug formulations; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topic of the conference, "Drug Synthesis and Analysis," meant that the symposium welcomed all pharmacists and/or researchers (chemists, analysts, biologists) and students interested in scientific work dealing with investigations of biologically active compounds as potential drugs. The authors of this manuscript were plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.
Collapse
Affiliation(s)
- Pavel Mucaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland.
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Andrzej Bak
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Violetta Kozik
- Department of Synthesis Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Karolina Sieron
- Department of Physical Medicine, Medical University of Silesia, Medykow 18, 40752 Katowice, Poland.
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy Glendale, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA.
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| | - Yazhou Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| | - Shengchao Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| | - Junjie Lan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang 550014, China.
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, 3491 Baijin Road, Guiyang, 550014, China.
| | - Norbert Haider
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria.
| | - Robert Musiol
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Jan Vanco
- Department of Inorganic Chemistry & Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, 17. listopadu 12, 77146 Olomouc, Czech Republic.
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Seoul 08826, Korea.
| | - Seungwon Ji
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Seoul 08826, Korea.
| | - Jan Zitko
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic.
| | - Dongdong Wang
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland.
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Danica Agbaba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Slavica Oljacic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Jelica Vucicevic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Daniela Jezova
- Laboratory of Pharmacological Neuroendocrinology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia.
| | - Anna Tsantili-Kakoulidou
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece.
| | - Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens, Greece.
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece.
| | - Teresa Kowalska
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Mieczyslaw Sajewicz
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30059 Krakow, Poland.
| | - Przemyslaw Mielczarek
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30059 Krakow, Poland.
| | - Marek Smoluch
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30059 Krakow, Poland.
| | - Izabela Jendrzejewska
- Department of Crystallography, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Bankowa 12, 40006 Katowice, Poland.
| | - Jaroslaw Polanski
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland.
| | - Josef Jampilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia.
| |
Collapse
|
13
|
Tsopelas F, Giaginis C, Tsantili-Kakoulidou A. Lipophilicity and biomimetic properties to support drug discovery. Expert Opin Drug Discov 2017. [PMID: 28644732 DOI: 10.1080/17460441.2017.1344210] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Lipophilicity, expressed as the octanol-water partition coefficient, constitutes the most important property in drug action, influencing both pharmacokinetic and pharmacodynamics processes as well as drug toxicity. On the other hand, biomimetic properties defined as the retention outcome on HPLC columns containing a biological relevant agent, provide a considerable advance for rapid experimental - based estimation of ADME properties in early drug discovery stages. Areas covered: This review highlights the paramount importance of lipophilicity in almost all aspects of drug action and safety. It outlines problems brought about by high lipophilicity and provides an overview of the drug-like metrics which incorporate lower limits or ranges of logP. The fundamental factors governing lipophilicity are compared to those involved in phospholipophilicity, assessed by Immobilized Artificial Membrane Chromatography (IAM). Finally, the contribution of biomimetic properties to assess plasma protein binding is evaluated. Expert opinion: Lipophilicity and biomimetic properties have important distinct and overlapping roles in supporting the drug discovery process. Lipophilicity is unique in early drug design for library screening and for the identification of the most promising compounds to start with, while biomimetic properties are useful for the experimentally-based evaluation of ADME properties for the synthesized novel compounds, supporting the prioritization of drug candidates and guiding further synthesis.
Collapse
Affiliation(s)
- Fotios Tsopelas
- a Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering , National Technical University of Athens , Athens , Greece
| | - Constantinos Giaginis
- b Department of Food Science and Nutrition , School of Environment, University of the Aegean , Myrina , Lemnos , Greece
| | - Anna Tsantili-Kakoulidou
- c Department of Pharmaceutical Chemistry, Faculty of Pharmacy , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
14
|
Stępnik KE, Malinowska I. Determination of binding properties of ampicillin in drug-human serum albumin standard solution using N-vinylpyrrolidone copolymer combined with the micellar systems. Talanta 2016; 162:241-248. [PMID: 27837825 DOI: 10.1016/j.talanta.2016.09.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/16/2016] [Accepted: 09/23/2016] [Indexed: 01/09/2023]
Abstract
It is well-known that only the unbound (free) drug fraction can achieve a pharmacological effect. Therefore the determination of free drug concentration is a very important issue in the field of pharmacology. In this study poly-1-vinyl-2-pyrrolidone (VP) crosslinked with divinylbenzene (DVB) compared with the micellar liquid chromatography (MLC) with and without pre-made drug adsorption was used for quantitative analysis of free ampicillin concentration in the standard solution of drug-human serum albumin owing to its ability to block protein adsorption. The commonly recognized adsorption method based on drug adsorption on VP-DVB has been compared to the entirely new application of MLC with direct sample injection (DSI) not requiring pre-made adsorption. Micellar aggregates are able to solubilize various compounds therefore micellar environment can be used for direct determination of free drug concentration. The obtained results show that the free drug concentration values obtained in the micellar systems based on cetyltrimethylammonium bromide (CTAB) (93.98μgL-1, 78.3%) as well as on polyoxyethylene (23) lauryl ether (Brij35) (91.15μgL-1, 75.9%) are similar to those obtained after the drug adsorption on VP-DVB using both RP-HPLC (95.85μgmL-1, 79.9%) and spectrophotometry (96.47μgmL-1, 80.4%). However, only %PPB (% plasma protein binding) value calculated on the basis of Brij35 retention factor is similar to the literature data. The obtained results are within the analytical range of % of free drug concentration. Therefore N-vinylpyrrolidone copolymer as well as micellar system based on the non-ionic surfactant can be successfully applied for determination of free drug concentration. Moreover, the new application of MLC with DSI can be recognized as a promising, fast and simple method for quantitative determination of free drug concentration.
Collapse
Affiliation(s)
- Katarzyna E Stępnik
- Faculty of Chemistry, Chair of Physical Chemistry, Department of Planar Chromatography, Maria Curie - Skłodowska University, M. Curie - Skłodowska Sq. 3, 20-031 Lublin, Poland.
| | - Irena Malinowska
- Faculty of Chemistry, Chair of Physical Chemistry, Department of Planar Chromatography, Maria Curie - Skłodowska University, M. Curie - Skłodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
15
|
Filipic S, Ruzic D, Vucicevic J, Nikolic K, Agbaba D. Quantitative structure-retention relationship of selected imidazoline derivatives on α1-acid glycoprotein column. J Pharm Biomed Anal 2016; 127:101-11. [DOI: 10.1016/j.jpba.2016.02.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/18/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
|
16
|
Valkó KL. Lipophilicity and biomimetic properties measured by HPLC to support drug discovery. J Pharm Biomed Anal 2016; 130:35-54. [PMID: 27084527 DOI: 10.1016/j.jpba.2016.04.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/21/2022]
Abstract
HPLC methods that use chromatographic retention times for gaining information about the properties of compounds for the purpose of designing drug molecules are reviewed. Properties, such as lipophilicity, protein binding, phospholipid binding, and acid/base character can be incorporated in the design of molecules with the right biological distribution and pharmacokinetic profile to become an effective drug. Standardization of various methodologies is suggested in order to obtain data suitable for inter-laboratory comparison. The published HPLC methods for lipophilicity, acid/base character, protein and phospholipid binding are critically reviewed and compared with each other using the solvation equation approach. One of the most important discussion points is how these data can be used in models and how they can influence the drug discovery process. Therefore, the published models for volume of distribution, unbound volume of distribution and drug efficiency are also discussed. The general relationships between the chemical structure and biomimetic HPLC properties are described in view of ranking and selecting putative drug molecules.
Collapse
Affiliation(s)
- Klára L Valkó
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, United Kingdom; Bio-Mimetic Chromatography Consultancy, 17 Cabot Close, Stevenage, Herts SG2 0ES, United Kingdom.
| |
Collapse
|
17
|
Stępnik KE, Malinowska I, Maciejewska M. A new application of micellar liquid chromatography in the determination of free ampicillin concentration in the drug-human serum albumin standard solution in comparison with the adsorption method. Talanta 2016; 153:1-7. [PMID: 27130082 DOI: 10.1016/j.talanta.2016.02.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 11/24/2022]
Abstract
The determination of free drug concentration is a very important issue in the field of pharmacology because only the unbound drug fraction can achieve a pharmacological effect. Due to the ability to solubilize many different compounds in micellar aggregates, micellar liquid chromatography (MLC) can be used for direct determination of free drug concentration. Proteins are not retained on the stationary phase probably due to the formation of protein - surfactant complexes which are excluded from the pores of stationary phase. The micellar method is simple and fast. It does not require any pre-preparation of the tested samples for analysis. The main aim of this paper is to demonstrate a completely new applicability of the analytical use of MLC concerning the determination of free drug concentration in the standard solution of human serum albumin. The well-known adsorption method using RP-HPLC and the spectrophotometric technique was applied as the reference method. The results show that the free drug concentration value obtained in the MLC system (based on the RP-8 stationary phase and CTAB) is similar to that obtained by the adsorption method: both RP-HPLC (95.83μgmL(-1), 79.86% of free form) and spectrophotometry (95.71μgmL(-1), 79.76%). In the MLC the free drug concentration was 93.98μgmL(-1) (78.3%). This indicates that the obtained results are within the analytical range of % of free ampicillin fraction and the MLC with direct sample injection can be treated like a promising method for the determination of free drug concentration.
Collapse
Affiliation(s)
- Katarzyna E Stępnik
- Faculty of Chemistry, Chair of Physical Chemistry, Department of Planar Chromatography, Maria Curie - Skłodowska University, M. Curie - Skłodowska Sq. 3, 20-031 Lublin, Poland.
| | - Irena Malinowska
- Faculty of Chemistry, Chair of Physical Chemistry, Department of Planar Chromatography, Maria Curie - Skłodowska University, M. Curie - Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Małgorzata Maciejewska
- Faculty of Chemistry, Department of Polymer Chemistry, Maria Curie - Skłodowska University, Gliniana St. 33, 20-614 Lublin, Poland
| |
Collapse
|
18
|
Sensitive determination of plasma protein binding of cationic drugs using mixed-mode solid-phase microextraction. J Pharm Biomed Anal 2015; 115:534-42. [DOI: 10.1016/j.jpba.2015.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 11/17/2022]
|
19
|
Salary M, Hadjmohammadi M. Human serum albumin-mimetic chromatography based hexadecyltrimethylammonium bromide as a novel direct probe for protein binding of acidic drugs. J Pharm Biomed Anal 2015; 114:1-7. [DOI: 10.1016/j.jpba.2015.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/26/2015] [Accepted: 04/28/2015] [Indexed: 01/17/2023]
|
20
|
Lambrinidis G, Vallianatou T, Tsantili-Kakoulidou A. In vitro, in silico and integrated strategies for the estimation of plasma protein binding. A review. Adv Drug Deliv Rev 2015; 86:27-45. [PMID: 25819487 DOI: 10.1016/j.addr.2015.03.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 02/11/2015] [Accepted: 03/20/2015] [Indexed: 12/28/2022]
Abstract
Plasma protein binding (PPB) strongly affects drug distribution and pharmacokinetic behavior with consequences in overall pharmacological action. Extended plasma protein binding may be associated with drug safety issues and several adverse effects, like low clearance, low brain penetration, drug-drug interactions, loss of efficacy, while influencing the fate of enantiomers and diastereoisomers by stereoselective binding within the body. Therefore in holistic drug design approaches, where ADME(T) properties are considered in parallel with target affinity, considerable efforts are focused in early estimation of PPB mainly in regard to human serum albumin (HSA), which is the most abundant and most important plasma protein. The second critical serum protein α1-acid glycoprotein (AGP), although often underscored, plays also an important and complicated role in clinical therapy and thus the last years it has been studied thoroughly too. In the present review, after an overview of the principles of HSA and AGP binding as well as the structure topology of the proteins, the current trends and perspectives in the field of PPB predictions are presented and discussed considering both HSA and AGP binding. Since however for the latter protein systematic studies have started only the last years, the review focuses mainly to HSA. One part of the review highlights the challenge to develop rapid techniques for HSA and AGP binding simulation and their performance in assessment of PPB. The second part focuses on in silico approaches to predict HSA and AGP binding, analyzing and evaluating structure-based and ligand-based methods, as well as combination of both methods in the aim to exploit the different information and overcome the limitations of each individual approach. Ligand-based methods use the Quantitative Structure-Activity Relationships (QSAR) methodology to establish quantitate models for the prediction of binding constants from molecular descriptors, while they provide only indirect information on binding mechanism. Efforts for the establishment of global models, automated workflows and web-based platforms for PPB predictions are presented and discussed. Structure-based methods relying on the crystal structures of drug-protein complexes provide detailed information on the underlying mechanism but are usually restricted to specific compounds. They are useful to identify the specific binding site while they may be important in investigating drug-drug interactions, related to PPB. Moreover, chemometrics or structure-based modeling may be supported by experimental data a promising integrated alternative strategy for ADME(T) properties optimization. In the case of PPB the use of molecular modeling combined with bioanalytical techniques is frequently used for the investigation of AGP binding.
Collapse
|
21
|
Tryptophan-[Re6Se8I6]3− Cluster Interaction: A Computational Study. J CLUST SCI 2015. [DOI: 10.1007/s10876-014-0828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Green mixed micellar liquid chromatography as a toxicity screening method of psychotropic drugs. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-015-0606-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Rojas-Mancilla E, Oyarce A, Verdugo V, Zheng Z, Ramírez-Tagle R. The cluster [Re6Se8I6]3- induces low hemolysis of human erythrocytes in vitro: protective effect of albumin. Int J Mol Sci 2015; 16:1728-35. [PMID: 25590300 PMCID: PMC4307330 DOI: 10.3390/ijms16011728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/02/2015] [Indexed: 11/16/2022] Open
Abstract
The cluster Re6Se8I63- has been shown to induce preferential cell death of a hepatic carcinoma cell line, thus becoming a promising anti-cancer drug. Whether this cluster induces acute hemolysis or if it interacts with albumin remains unclear. The effect of acute exposure of human red blood cells to different concentrations of the cluster with and without albumin is described. Red blood cells from healthy donors were isolated, diluted at 1% hematocrit and exposed to the cluster (25-150 µM) at 37 °C, under agitation. Hemolysis and morphology were analyzed at 1 and 24 h. The potential protection of 0.1% albumin was also evaluated. Exposition to therapeutic doses of the cluster did not induce acute hemolysis. Similar results were observed following 24 h of exposition, and albumin slightly reduced hemolysis levels. Furthermore, the cluster induced alteration in the morphology of red blood cells, and this was prevented by albumin. Together, these results indicate that the cluster Re6Se8I63- is not a hemolytic component and induces moderate morphological alterations of red blood cells at high doses, which are prevented by co-incubation with albumin. In conclusion, the cluster Re6Se8I63- could be intravenously administered in animals at therapeutic doses for in vivo studies.
Collapse
Affiliation(s)
- Edgardo Rojas-Mancilla
- Universidad Bernardo O' Higgins, Departamento de Ciencias Químicas y Biológicas, General Gana 1780, Santiago 8370854, Chile.
| | - Alexis Oyarce
- Universidad Bernardo O'Higgins, Escuela de Tecnología Médica, General Gana 1780, Santiago 8370854, Chile.
| | - Viviana Verdugo
- Universidad Bernardo O'Higgins, Escuela de Tecnología Médica, General Gana 1780, Santiago 8370854, Chile.
| | - Zhiping Zheng
- Department of Chemistry, the University of Arizona, Tucson, AZ 85721, USA.
| | - Rodrigo Ramírez-Tagle
- Universidad Bernardo O' Higgins, Laboratorio de Bionanotecnología, General Gana 1780, Santiago 8370854, Chile.
| |
Collapse
|
24
|
Chrysanthakopoulos M, Vallianatou T, Giaginis C, Tsantili-Kakoulidou A. Investigation of the retention behavior of structurally diverse drugs on alpha1 acid glycoprotein column: Insight on the molecular factors involved and correlation with protein binding data. Eur J Pharm Sci 2014; 60:24-31. [DOI: 10.1016/j.ejps.2014.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/27/2014] [Accepted: 04/24/2014] [Indexed: 12/01/2022]
|
25
|
Leung AHH, Jin J, Wang S, Lei H, Wong WT. Inflammation Targeted Gd3+-Based MRI Contrast Agents Imaging Tumor and Rheumatoid Arthritis Models. Bioconjug Chem 2014; 25:1112-23. [DOI: 10.1021/bc5001356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Arthur Ho-Hon Leung
- Department
of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jiefu Jin
- Department
of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shuxia Wang
- Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics & Mathematics, Chinese Academy of Sciences, Wuhan 430071, Hubei China
| | - Hao Lei
- Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics & Mathematics, Chinese Academy of Sciences, Wuhan 430071, Hubei China
| | - Wing-Tak Wong
- Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- PearL Materia Medica Development (Shenzhen) Ltd., Shenzhen 518057, China
- Henry
Cheng Research Laboratory for Drug Development, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
26
|
Huang Y, Chen H, He F, Zhang ZR, Zheng L, Liu Y, Lan YY, Liao SG, Li YJ, Wang YL. Simultaneous determination of human plasma protein binding of bioactive flavonoids in Polygonum orientale by equilibrium dialysis combined with UPLC-MS/MS. J Pharm Anal 2013; 3:376-381. [PMID: 29403842 PMCID: PMC5761012 DOI: 10.1016/j.jpha.2013.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/06/2013] [Indexed: 11/23/2022] Open
Abstract
A simple and selective ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) assay was developed for the determination of the human plasma protein binding of four bioactive flavonoids (such as orientin and vitexin) in Polygonum orientale. Protein precipitation was used for sample preparation. Equilibrium dialysis technique was applied to determine the plasma protein binding under physiological conditions. The separation was achieved through a Waters C18 column with a mobile phase composed of 0.1% formic acid in acetonitrile and 0.1% aqueous formic acid using step gradient elution at a flow rate of 0.35 mL/min. A Waters ACQUITY™ TQD system was operated under the multiple reaction monitoring (MRM) mode of positive electrospray ionization. All of the recovery, precision, accuracy and stability of the method met the requirements. Good correlations (r>0.99) of the four compounds were found, which suggested that these compounds can be simultaneously determined with acceptable accuracy. Results showed that the plasma protein bindings of the four bioactive flavonoids were in the range of 74-89% over the six concentrations studied. The binding parameters containing protein binding affinity, protein binding dissociation constant, and protein binding site were studied. The maximum ability to bind with protein was also determined in the assay in order to understand the drug-protein binding of each compound better.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yong-Lin Wang
- Provincial Key Laboratory of Pharmaceutics in Guizhou Province, School of Pharmacy, Guiyang Medical University, 9 Beijing Road, Guiyang, Guizhou 550004, PR China
| |
Collapse
|
27
|
Tsopelas F, Kakoulidou AT, Ochsenkühn-Petropoulou M. Lipophilicity, biomimetic retention profile and antioxidant activity of selenium species. Microchem J 2013. [DOI: 10.1016/j.microc.2013.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Wang QY, Xiong YJ, Lu BZ, Fan J, Zheng SR, Zhang WG. Effect of Chromatographic Conditions on Enantioseparation of Bovine Serum Albumin Chiral Stationary Phase in HPLC and Thermodynamic Studies. Chirality 2013; 25:487-92. [DOI: 10.1002/chir.22163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/11/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Qiu-Yun Wang
- Institute of Special Materials/School of Chemistry and Environment; South China Normal University; Guangzhou China
| | - Ya-Jin Xiong
- Institute of Special Materials/School of Chemistry and Environment; South China Normal University; Guangzhou China
| | - Bao-Zhu Lu
- Guangzhou Research & Creativity Biotechnology Ltd.; Guangzhou China
| | - Jun Fan
- Institute of Special Materials/School of Chemistry and Environment; South China Normal University; Guangzhou China
| | - Sheng-Run Zheng
- Institute of Special Materials/School of Chemistry and Environment; South China Normal University; Guangzhou China
| | - Wei-Guang Zhang
- Institute of Special Materials/School of Chemistry and Environment; South China Normal University; Guangzhou China
- Guangzhou Research & Creativity Biotechnology Ltd.; Guangzhou China
| |
Collapse
|
29
|
Vallianatou T, Lambrinidis G, Tsantili-Kakoulidou A. In silicoprediction of human serum albumin binding for drug leads. Expert Opin Drug Discov 2013; 8:583-95. [DOI: 10.1517/17460441.2013.777424] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Giaginis C, Tsantili-Kakoulidou A. Quantitative Structure–Retention Relationships as Useful Tool to Characterize Chromatographic Systems and Their Potential to Simulate Biological Processes. Chromatographia 2012. [DOI: 10.1007/s10337-012-2374-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Hadjmohammadi M, Salary M. Biopartitioning micellar chromatography with sodium dodecyl sulfate as a pseudo α(1)-acid glycoprotein to the prediction of protein-drug binding. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 912:50-5. [PMID: 23261822 DOI: 10.1016/j.jchromb.2012.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 11/30/2022]
Abstract
A simple and fast method is of urgent need to measure protein-drug binding affinity in order to meet the rapid development of new drugs. Biopartitioning micellar chromatography (BMC), a mode of micellar liquid chromatography (MLC) using micellar mobile phases in adequate experimental conditions, can be useful as an in vitro system in mimicking the drug-protein interactions. In this study, sodium dodecyl sulfate-micellar liquid chromatography (SDS-MLC) was used for the prediction of protein-drug binding based on the similar property of SDS micelles to α(1)-acid glycoprotein (AGP). The relationships between the BMC retention data of a heterogeneous set of 14 basic and neutral drugs and their plasma protein binding parameter were studied and the predictive ability of models was evaluated. Modeling of logk(BMC) of these compounds was established by multiple linear regression (MLR) and second-order polynomial models obtained in two different concentrations (0.07 and 0.09M) of SDS. The developed MLR models were characterized by both the descriptive and predictive ability (R(2)=0.882, R(CV)(2)=0.832 and R(2)=0.840, R(CV)(2)=0.765 for 0.07 and 0.09M SDS, respectively). The p values <0.01 also indicated that the relationships between the protein-drug binding and the logk(BMC) values were statistically significant at the 99% confidence level. The standard error of estimation showed the standard deviation of the regression to be 11.89 and 13.87 for 0.07 and 0.09M, respectively. The application of the developed model to a prediction set demonstrated that the model was also reliable with good predictive accuracy. The external and internal validation results showed that the predicted values were in good agreement with the experimental value.
Collapse
|