1
|
Jorge AMS, Pereira JFB. Aqueous two-phase systems - versatile and advanced (bio)process engineering tools. Chem Commun (Camb) 2024; 60:12144-12168. [PMID: 39350759 DOI: 10.1039/d4cc02663b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Aqueous two-phase systems (ATPS), also known as Aqueous Biphasic Systems (ABS), have been extensively studied as platforms for the separation and purification of biomolecules and other valuable compounds. These liquid-liquid extraction (LLE) systems have been a tool for biotechnology since its origin (Albertsson, 1950's), recently expanding to exciting fields such as health, biomedicine and material sciences. Due to their biocompatibility, amenability, flexibility, and versatility, ATPS have been applied across various research areas, addressing many challenges associated with conventional methodologies. In this feature article, we first discuss the fundamentals of ATPS and the molecular mechanisms that govern their formation and are crucial for their application. We then explore the most prominent and innovative applications of these systems in downstream processing. Additionally, we provide insights into the design of in situ upstream-downstream integrated platforms, and their use as pre-treatment and analytical tools. The latest advancements in ATPS applications within disruptive bioengineering and biotechnology fields are presented, along with their pioneering use in emerging scientific areas, such as the formation of all-aqueous (water-in-water) emulsions, microfluidic systems, and membrane-free batteries. Overall, this work underscores the transformative potential of ATPS in various branches of science, pinpointing directions for future research to fully explore and maximize ATPS capabilities, overcome existing hurdles, and drive innovation forward.
Collapse
Affiliation(s)
- Alexandre M S Jorge
- University of Coimbra, CERES, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal.
| | - Jorge F B Pereira
- University of Coimbra, CERES, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal.
| |
Collapse
|
2
|
Meutelet R, Bisch LJ, Buerfent BC, Müller M, Hubbuch J. Partitioning behavior of short DNA fragments in polymer/salt aqueous two-phase systems. Biotechnol J 2024; 19:e2400394. [PMID: 39246125 DOI: 10.1002/biot.202400394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
The development of liquid biopsy as a minimally invasive technique for tumor profiling has created a need for efficient biomarker extraction systems from body fluids. The analysis of circulating cell-free DNA (cfDNA) is especially promising, but the low amounts and high fragmentation of cfDNA found in plasma pose challenges to its isolation. While the potential of aqueous two-phase systems (ATPS) for the extraction and purification of various biomolecules has already been successfully established, there is limited literature on the applicability of these findings to short cfDNA-like fragments. This study presents the partitioning behavior of a 160 bp DNA fragment in polyethylene glycol (PEG)/salt ATPS at pH 7.4. The effect of PEG molecular weight, tie-line length, neutral salt additives, and phase volume ratio is evaluated to maximize DNA recovery. Selected ATPS containing a synthetic plasma solution spiked with human serum albumin and immunoglobulin G are tested to determine the separation of DNA fragments from the main plasma protein fraction. By adding 1.5% (w/w) NaCl to a 17.7% (w/w) PEG 400/17.3% (w/w) phosphate ATPS, 88% DNA recovery was achieved in the salt-rich bottom phase while over 99% of the protein was removed.
Collapse
Affiliation(s)
- Rafaela Meutelet
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Lea J Bisch
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Markus Müller
- BioEcho Life Sciences GmbH, BioCampus Cologne, Köln, Germany
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
3
|
A clean and efficient method for separation of vanadium and molybdenum by aqueous two-phase systems. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Teixeira AG, Kleinman A, Agarwal R, Tam NW, Wang J, Frampton JP. Confinement of Suspension-Cultured Cells in Polyethylene Glycol/Polyethylene Oxide-Albumin Aqueous Two-Phase Systems. Front Chem 2019; 7:441. [PMID: 31275925 PMCID: PMC6591268 DOI: 10.3389/fchem.2019.00441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
Aqueous two-phase systems (ATPSs) have numerous applications in separation science, and more recently, in bioassays enabled by the solution micropatterning of cells. The most frequently used ATPS in these applications is the polyethylene glycol (PEG)-dextran (Dex) system, as the polymers that form this ATPS have been extensively characterized in terms of their physicochemical properties. However, in addition to this well-known system, there exist many other ATPSs with properties that may be exploited to improve upon the PEG-dextran system for specific applications. One of these underexplored systems is the ATPS formed from PEG/polyethylene oxide (PEO) and albumin. In this article, we characterize the phase separation of PEG (35 kDa) and polyethylene oxide (PEO) (200, 900, and 4,000 kDa) with bovine serum albumin (BSA). We describe the microscopic emulsion behavior of these systems in the presence of NaCl and compounds (NaHCO3, NaH2PO4, and HEPES) commonly used in buffer solutions and cell culture media. We further demonstrate that PEG- and PEO-albumin systems can be used in place of the PEG-dextran system for confinement of suspension-cultured cells (Jurkat T cells and RPMI-8226 B cells). Cell viability and morphology are examined for various polymer formulations relative to the commonly used PEG 35 kDa-Dex 500 kDa system and polymer-free cell culture medium. In addition, we examine cell activation for various phase-separating medium components by measuring IL-2 and IL-6 secretion. We demonstrate that we can confine immune cells and cytokines in the PEG-BSA system, and that this system can be employed to screen immune responses by enzyme-linked immunospot (ELISpot) assay. This new system represents a promising ATPS formulation for applications where low levels of baseline cell activation are required, for instance, when culturing immune cells.
Collapse
Affiliation(s)
- Alyne G. Teixeira
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | | | - Rishima Agarwal
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - Nicky W. Tam
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - Jun Wang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Canadian Center for Vaccinology, IWK Health Centre, Halifax, NS, Canada
| | - John P. Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
5
|
Karmakar R, Sen K. Aqueous biphasic extraction of metal ions: An alternative technology for metal regeneration. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Matos T, Bülow L. Separation of Nucleic Acids Using Single- and Multimodal Chromatography. Curr Protein Pept Sci 2018; 20:49-55. [DOI: 10.2174/1389203718666171024112556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/01/2017] [Accepted: 09/22/2017] [Indexed: 12/23/2022]
Abstract
The needs for purified nucleic acids for preparative and analytical applications have increased
constantly, demanding for the development of new and more efficient methods for their recovery and
isolation. DNA molecules harbour some intrinsic chemical properties that render them suitable for
chromatographic separations. These include a negatively charged phosphate backbone as well as a hydrophobic
character originating mainly from the major groove of DNA which exposes the base pairs on
the surface of the molecule. In addition, single stranded DNA often allows for a free exposure of the hydrophobic
aromatic bases. In this review, multimodal chromatography (MMC) has been evaluated as an
alternative tool for complex separations of nucleic acids. MMC embraces more than one kind of interaction
between the chromatographic ligand and the target molecules. These resins have often proved superior
to conventional single-mode chromatographic materials for DNA isolation, including, e.g., the purification
of plasmid DNA from crude cell lysates and for the preparation of DNA fragments before or
after a polymerase chain reaction (PCR).
Collapse
Affiliation(s)
- Tiago Matos
- Pure and Applied Biochemistry, Chemical Center, Lund University, Lund, Sweden
| | - Leif Bülow
- Pure and Applied Biochemistry, Chemical Center, Lund University, Lund, Sweden
| |
Collapse
|
7
|
The solvent side of proteinaceous membrane-less organelles in light of aqueous two-phase systems. Int J Biol Macromol 2018; 117:1224-1251. [PMID: 29890250 DOI: 10.1016/j.ijbiomac.2018.06.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
Water represents a common denominator for liquid-liquid phase transitions leading to the formation of the polymer-based aqueous two-phase systems (ATPSs) and a set of the proteinaceous membrane-less organelles (PMLOs). ATPSs have a broad range of biotechnological applications, whereas PMLOs play a number of crucial roles in cellular compartmentalization and often represent a cellular response to the stress. Since ATPSs and PMLOs contain high concentrations of polymers (such as polyethylene glycol (PEG), polypropylene glycol (PPG), Ucon, and polyvinylpyrrolidone (PVP), Dextran, or Ficoll) or biopolymers (peptides, proteins and nucleic acids), it is expected that the separated phases of these systems are characterized by the noticeable changes in the solvent properties of water. These changes in solvent properties can drive partitioning of various compounds (proteins, nucleic acids, organic low-molecular weight molecules, metal ions, etc.) between the phases of ATPSs or between the PMLOs and their surroundings. Although there is a sizable literature on the properties of the ATPS phases, much less is currently known about PMLOs. In this perspective article, we first represent liquid-liquid phase transitions in water, discuss different types of biphasic (or multiphasic) systems in water, and introduce various PMLOs and some of their properties. Then, some basic characteristics of polymer-based ATPSs are presented, with the major focus being on the current understanding of various properties of ATPS phases and solvent properties of water inside them. Finally, similarities and differences between the polymer-based ATPSs and biological PMLOs are discussed.
Collapse
|
8
|
Teixeira AG, Agarwal R, Ko KR, Grant‐Burt J, Leung BM, Frampton JP. Emerging Biotechnology Applications of Aqueous Two-Phase Systems. Adv Healthc Mater 2018; 7:e1701036. [PMID: 29280350 DOI: 10.1002/adhm.201701036] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/30/2017] [Indexed: 02/06/2023]
Abstract
Liquid-liquid phase separation between aqueous solutions containing two incompatible polymers, a polymer and a salt, or a polymer and a surfactant, has been exploited for a wide variety of biotechnology applications throughout the years. While many applications for aqueous two-phase systems fall within the realm of separation science, the ability to partition many different materials within these systems, coupled with recent advances in materials science and liquid handling, has allowed bioengineers to imagine new applications. This progress report provides an overview of the history and key properties of aqueous two-phase systems to lend context to how these materials have progressed to modern applications such as cellular micropatterning and bioprinting, high-throughput 3D tissue assembly, microscale biomolecular assay development, facilitation of cell separation and microcapsule production using microfluidic devices, and synthetic biology. Future directions and present limitations and design considerations of this adaptable and promising toolkit for biomolecule and cellular manipulation are further evaluated.
Collapse
Affiliation(s)
- Alyne G. Teixeira
- School of Biomedical Engineering Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
| | - Rishima Agarwal
- School of Biomedical Engineering Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
| | - Kristin Robin Ko
- School of Biomedical Engineering Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
| | - Jessica Grant‐Burt
- School of Biomedical Engineering Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
| | - Brendan M. Leung
- School of Biomedical Engineering Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
- Department of Applied Oral Science Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
| | - John P. Frampton
- School of Biomedical Engineering Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
| |
Collapse
|
9
|
Zaslavsky BY, Uversky VN. In Aqua Veritas: The Indispensable yet Mostly Ignored Role of Water in Phase Separation and Membrane-less Organelles. Biochemistry 2018; 57:2437-2451. [PMID: 29303563 DOI: 10.1021/acs.biochem.7b01215] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite the common practice of presenting structures of biological molecules on an empty background and the assumption that interactions between biological macromolecules take place within the inert solvent, water represents an active component of various biological processes. This Perspective addresses indispensable, yet mostly ignored, roles of water in biological liquid-liquid phase transitions and in the biogenesis of various proteinaceous membrane-less organelles. We point out that changes in the structure of water reflected in the changes in its abilities to donate and/or accept hydrogen bonds and participate in dipole-dipole and dipole-induced dipole interactions in the presence of various solutes (ranging from small molecules to synthetic polymers and biological macromolecules) might represent a driving force for the liquid-liquid phase separation, define partitioning of various solutes in formed phases, and define the exceptional ability of intrinsically disordered proteins to be engaged in the formation of proteinaceous membrane-less organelles.
Collapse
Affiliation(s)
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine , University of South Florida , Tampa , Florida 33612 , United States.,Laboratory of New Methods in Biology , Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| |
Collapse
|
10
|
Chakane S, Matos T, Kettisen K, Bulow L. Fetal hemoglobin is much less prone to DNA cleavage compared to the adult protein. Redox Biol 2017; 12:114-120. [PMID: 28222378 PMCID: PMC5318347 DOI: 10.1016/j.redox.2017.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
Hemoglobin (Hb) is well protected inside the red blood cells (RBCs). Upon hemolysis and when free in circulation, Hb can be involved in a range of radical generating reactions and may thereby attack several different biomolecules. In this study, we have examined the potential damaging effects of cell-free Hb on plasmid DNA (pDNA). Hb induced cleavage of supercoiled pDNA (sc pDNA) which was proportional to the concentration of Hb applied. Almost 70% of sc pDNA was converted to open circular or linear DNA using 10 µM of Hb in 12 h. Hb can be present in several different forms. The oxy (HbO2) and met forms are most reactive, while the carboxy-protein shows only low hydrolytic activity. Hemoglobin A (HbA) could easily induce complete pDNA cleavage while fetal hemoglobin (HbF) was three-fold less reactive. By inserting, a redox active cysteine residue on the surface of the alpha chain of HbF by site-directed mutagenesis, the DNA cleavage reaction was enhanced by 82%. Reactive oxygen species were not directly involved in the reaction since addition of superoxide dismutase and catalase did not prevent pDNA cleavage. The reactivity of Hb with pDNA can rather be associated with the formation of protein based radicals. Hemoglobin induced plasmid DNA cleavage in the absence of hydrogen peroxide. Fetal hemoglobin was three-fold less reactive compared to the adult protein on plasmid DNA. Insertion of a cysteine residue in the alpha chain enhanced the DNA cleavage reaction by 82%. Protein based radicals are associated with the DNA cleavage activity of hemoglobin.
Collapse
Affiliation(s)
- Sandeep Chakane
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund 22362, Sweden
| | - Tiago Matos
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund 22362, Sweden
| | - Karin Kettisen
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund 22362, Sweden
| | - Leif Bulow
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund 22362, Sweden.
| |
Collapse
|
11
|
Nazer B, Dehghani MR, Goliaei B. Plasmid DNA affinity partitioning using polyethylene glycol – sodium sulfate aqueous two-phase systems. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1044-1045:112-119. [DOI: 10.1016/j.jchromb.2017.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/27/2016] [Accepted: 01/01/2017] [Indexed: 11/16/2022]
|
12
|
Soares RRG, Silva DFC, Fernandes P, Azevedo AM, Chu V, Conde JP, Aires-Barros MR. Miniaturization of aqueous two-phase extraction for biological applications: From micro-tubes to microchannels. Biotechnol J 2016; 11:1498-1512. [PMID: 27624685 DOI: 10.1002/biot.201600356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 01/26/2023]
Abstract
Aqueous two-phase extraction (ATPE) is a biocompatible liquid-liquid (L-L) separation technique that has been under research for several decades towards the purification of biomolecules, ranging from small metabolites to large animal cells. More recently, with the emergence of rapid-prototyping techniques for fabrication of microfluidic structures with intricate designs, ATPE gained an expanded range of applications utilizing physical phenomena occurring exclusively at the microscale. Today, research is being carried simultaneously in two different volume ranges, mL-scale (microtubes) and nL-scale (microchannels). The objective of this review is to give insight into the state of the art at both microtube and microchannel-scale and to analyze whether miniaturization is currently a competing or divergent technology in a field of applications including bioseparation, bioanalytics, enhanced fermentation processes, catalysis, high-throughput screening and physical/chemical compartmentalization. From our perspective, both approaches are worthy of investigation and, depending on the application, it is likely that either (i) one of the approaches will eventually become obsolete in particular research areas such as purification at the preparative scale or high-throughput screening applications; or (ii) both approaches will function as complementing techniques within the bioanalytics field.
Collapse
Affiliation(s)
- Ruben R G Soares
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.,IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel F C Silva
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.,IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Fernandes
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Azevedo
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - João P Conde
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - M Raquel Aires-Barros
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Zhang Y, Sun T, Hou Q, Guo Q, Lu T, Guo Y, Yan C. A green method for extracting molybdenum (VI) from aqueous solution with aqueous two-phase system without any extractant. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.05.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Li Y, Zhao Y, Huang R, Cui Q, Lu X, Guo H. A thermodynamic study on the phase behaviour of ethanol and 2-propanol in aqueous ammonium sulphate/sodium sulphate solution. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Soares RRG, Azevedo AM, Van Alstine JM, Aires-Barros MR. Partitioning in aqueous two-phase systems: Analysis of strengths, weaknesses, opportunities and threats. Biotechnol J 2015. [PMID: 26213222 DOI: 10.1002/biot.201400532] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For half a century aqueous two-phase systems (ATPSs) have been applied for the extraction and purification of biomolecules. In spite of their simplicity, selectivity, and relatively low cost they have not been significantly employed for industrial scale bioprocessing. Recently their ability to be readily scaled and interface easily in single-use, flexible biomanufacturing has led to industrial re-evaluation of ATPSs. The purpose of this review is to perform a SWOT analysis that includes a discussion of: (i) strengths of ATPS partitioning as an effective and simple platform for biomolecule purification; (ii) weaknesses of ATPS partitioning in regard to intrinsic problems and possible solutions; (iii) opportunities related to biotechnological challenges that ATPS partitioning may solve; and (iv) threats related to alternative techniques that may compete with ATPS in performance, economic benefits, scale up and reliability. This approach provides insight into the current status of ATPS as a bioprocessing technique and it can be concluded that most of the perceived weakness towards industrial implementation have now been largely overcome, thus paving the way for opportunities in fermentation feed clarification, integration in multi-stage operations and in single-step purification processes.
Collapse
Affiliation(s)
- Ruben R G Soares
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Azevedo
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - James M Van Alstine
- Division of Industrial Biotechnology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden.,JMVA Biotech, Stockholm, Sweden
| | - M Raquel Aires-Barros
- IBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
16
|
Santos JH, e Silva FA, Coutinho JA, Ventura SP, Pessoa A. Ionic liquids as a novel class of electrolytes in polymeric aqueous biphasic systems. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Sakurai Y, Matsuda T, Hada T, Harashima H. Efficient Packaging of Plasmid DNA Using a pH Sensitive Cationic Lipid for Delivery to Hepatocytes. Biol Pharm Bull 2015; 38:1185-1191. [PMID: 26235581 DOI: 10.1248/bpb.b15-00138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Plasmid DNA (pDNA) is expected to be a new class of medicine for treating currently incurable diseases. To deliver these nucleic acids, we developed a liposomal delivery system we have called a multifunctional envelope-type nano device (MEND). In this report, we demonstrate that a MEND containing a pH-sensitive cationic lipid, YSK05 (YSK-MEND), efficiently delivered pDNA via systemic injection, and that its expression was highly dependent on the encapsulation state of the pDNA. In the preparation, the pH, ionic strength, and sodium chloride (NaCl) concentration of the lipid/pDNA mixture strongly affected the encapsulation efficiency of pDNA. Additionally, the transgene expression of luciferase in the liver by the injected YSK-MEND was dependent on the encapsulation state of pDNA rather than the nature of the YSK-MEND. Confocal laser scanning microscopy findings revealed that injection of the YSK-MEND led to homogenous gene expression in the liver compared to injection via the hydrodynamic tail vein (HTV). Concerning the safety of the YSK-MEND, a transient increase in the activity of liver enzymes was observed. However, no significant adverse events were observed. Taken together, the YSK-MEND represents a potentially attractive therapy for the treatment of various hepatic diseases.
Collapse
Affiliation(s)
- Yu Sakurai
- Faculty of Pharmaceutical Sciences, Hokkaido University
| | | | | | | |
Collapse
|
18
|
Matos T, Queiroz JA, Bülow L. Plasmid DNA purification using a multimodal chromatography resin. J Mol Recognit 2014; 27:184-9. [DOI: 10.1002/jmr.2349] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Tiago Matos
- Department of Pure and Applied Biochemistry; Lund University; SE 22100 Lund Sweden
- CICS - Health Sciences Research Centre; University of Beira Interior; 6201-001 Covilhã Portugal
| | - João A. Queiroz
- CICS - Health Sciences Research Centre; University of Beira Interior; 6201-001 Covilhã Portugal
| | - Leif Bülow
- Department of Pure and Applied Biochemistry; Lund University; SE 22100 Lund Sweden
| |
Collapse
|
19
|
Matos T, Johansson HO, Queiroz J, Bulow L. Isolation of PCR DNA fragments using aqueous two-phase systems. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2013.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
de Lencastre Novaes LC, de Carvalho Santos Ebinuma V, Mazzola PG, Júnior AP. Polymer-based alternative method to extract bromelain from pineapple peel waste. Biotechnol Appl Biochem 2013; 60:527-35. [DOI: 10.1002/bab.1121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/23/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Letícia Celia de Lencastre Novaes
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science; University of São Paulo; São Paulo Brazil
| | | | - Priscila Gava Mazzola
- Department of Clinical Pathology, Faculty of Medical Sciences; University of Campinas; Campinas Brazil
| | - Adalberto Pessoa Júnior
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Science; University of São Paulo; São Paulo Brazil
| |
Collapse
|
21
|
Kallberg K, Johansson HO, Bulow L. Multimodal chromatography: An efficient tool in downstream processing of proteins. Biotechnol J 2012; 7:1485-95. [DOI: 10.1002/biot.201200074] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/26/2012] [Accepted: 10/09/2012] [Indexed: 11/06/2022]
|