1
|
Pravdivtseva MS, Shevelev OB, Yanshole VV, Moshkin MP, Koptyug IV, Akulov AE. In Vitro 1H NMR Metabolic Profiles of Liver, Brain, and Serum in Rats After Chronic Consumption of Alcohol. APPLIED MAGNETIC RESONANCE 2021; 52:661-675. [DOI: 10.1007/s00723-021-01338-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 01/06/2025]
Abstract
AbstractThe impact of alcohol on the body can be investigated with NMR spectroscopy in vitro, which can detect a wide range of metabolites but preparing samples includes tissue biopsy. Blood sampling is less invasive, but blood metabolic content might not reflect the changes occurring in other tissues. Thus, this study aimed to investigate the liver, brain, and serum metabolism and evaluate the link between tissues and serum metabolic content. Two experimental groups with ten outbred rats each were provided intragastrically with water (control group) and 50% ethanol solution (alcohol group) for 28 days. 1H NMR spectroscopy in vitro was performed on the brain cortex, liver, and serum samples. Student’s t test with Holm–Bonferroni correction was used to investigate significant differences between groups. Partial least-squares discriminant analysis (PLS-DA) and two-way ANOVA were performed to compare liver and serum, brain and serum. In all, 38, 37, and 21 metabolites were identified in the liver, brain, and serum samples, respectively. Significant differences for three metabolites were found in the liver (alanine, proline, and glutathione, p < 0.002) and four in serum (lactate, betaine, acetate, and formic acid, p < 0.002) were detected between the control and alcohol groups. The contents of glucose, betaine, and isoleucine were correlated (r > 0.65) between serum and liver samples. PLS-DA determined separation between all tissues (p < 0.001) and between control and alcohol groups only for liver and serum (p < 0.001). Alcohol had a more substantial effect on liver and serum metabolism than on the brain.
Collapse
|
2
|
Application of Q-TOF-MS based metabonomics techniques to analyze the plasma metabolic profile changes on rats following death due to acute intoxication of phorate. Int J Legal Med 2021; 135:1437-1447. [PMID: 33987742 DOI: 10.1007/s00414-021-02532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/10/2021] [Indexed: 11/27/2022]
Abstract
Organophosphorus pesticides (OPS) are widely used in the world, and many poisoning cases were caused by them. Phorate intoxication is especially common in China. However, there are currently few methods for discriminating phorate poisoning death from phorate exposure after death and interpretation of false-positive results due to the lack of effective biomarkers. In this study, we investigated the metabonomics of rat plasma at different dose levels of acute phorate intoxication using ultra-performance liquid chromatography quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS) analysis. A total of 11 endogenous metabolites were significantly changed in the groups exposed to phorate at LD50 level and three times of LD50 (3LD50) level compared with the control group, which could be potential biomarkers of acute phorate intoxication. Plasma metabonomics analysis showed that diethylthiophosphate (DETP) could be a useful biomarker of acute phorate intoxication. The levels of uric acid, acylcarnitine, succinate, gluconic acid, and phosphatidylcholine (PC) (36:2) were increased, while pyruvate level was decreased in all groups exposed to phorate. The levels of ceramides (Cer) (d 18:0/16:0), palmitic acid, and lysophosphatidylcholine (lysoPC) (18:1) were only changed after 3LD50 dosage. The results of this study indicate that the dose-dependent relationship exists between metabolomic profile change and toxicities associated with apoptosis, fatty acid metabolism disorder, energy metabolism disorder especially tricarboxylic acid (TCA) cycle, as well as liver, kidney, and nervous system functions after acute exposure of phorate. This study shows that metabonomics is a useful tool in identifying biomarkers for the forensic toxicology study of phorate poisoning.
Collapse
|
3
|
Theodoridis G, Pechlivanis A, Thomaidis NS, Spyros A, Georgiou CA, Albanis T, Skoufos I, Kalogiannis S, Tsangaris GT, Stasinakis AS, Konstantinou I, Triantafyllidis A, Gkagkavouzis K, Kritikou AS, Dasenaki ME, Gika H, Virgiliou C, Kodra D, Nenadis N, Sampsonidis I, Arsenos G, Halabalaki M, Mikros E. FoodOmicsGR_RI. A Consortium for Comprehensive Molecular Characterisation of Food Products. Metabolites 2021; 11:74. [PMID: 33513809 PMCID: PMC7911248 DOI: 10.3390/metabo11020074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The national infrastructure FoodOmicsGR_RI coordinates research efforts from eight Greek Universities and Research Centers in a network aiming to support research and development (R&D) in the agri-food sector. The goals of FoodOmicsGR_RI are the comprehensive in-depth characterization of foods using cutting-edge omics technologies and the support of dietary/nutrition studies. The network combines strong omics expertise with expert field/application scientists (food/nutrition sciences, plant protection/plant growth, animal husbandry, apiculture and 10 other fields). Human resources involve more than 60 staff scientists and more than 30 recruits. State-of-the-art technologies and instrumentation is available for the comprehensive mapping of the food composition and available genetic resources, the assessment of the distinct value of foods, and the effect of nutritional intervention on the metabolic profile of biological samples of consumers and animal models. The consortium has the know-how and expertise that covers the breadth of the Greek agri-food sector. Metabolomics teams have developed and implemented a variety of methods for profiling and quantitative analysis. The implementation plan includes the following research axes: development of a detailed database of Greek food constituents; exploitation of "omics" technologies to assess domestic agricultural biodiversity aiding authenticity-traceability control/certification of geographical/genetic origin; highlighting unique characteristics of Greek products with an emphasis on quality, sustainability and food safety; assessment of diet's effect on health and well-being; creating added value from agri-food waste. FoodOmicsGR_RI develops new tools to evaluate the nutritional value of Greek foods, study the role of traditional foods and Greek functional foods in the prevention of chronic diseases and support health claims of Greek traditional products. FoodOmicsGR_RI provides access to state-of-the-art facilities, unique, well-characterised sample sets, obtained from precision/experimental farming/breeding (milk, honey, meat, olive oil and so forth) along with more than 20 complementary scientific disciplines. FoodOmicsGR_RI is open for collaboration with national and international stakeholders.
Collapse
Affiliation(s)
- Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Alexandros Pechlivanis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.S.T.); (A.S.K.); (M.E.D.)
| | - Apostolos Spyros
- Department of Chemistry, University of Crete, Voutes Campus, 71003 Heraklion, Greece;
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Triantafyllos Albanis
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.A.); (I.K.)
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece;
| | - Stavros Kalogiannis
- Department of Nutritional Sciences & Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece; (S.K.); (I.S.)
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | | | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.A.); (I.K.)
| | - Alexander Triantafyllidis
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Gkagkavouzis
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia S. Kritikou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.S.T.); (A.S.K.); (M.E.D.)
| | - Marilena E. Dasenaki
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.S.T.); (A.S.K.); (M.E.D.)
| | - Helen Gika
- Department of Medicine, Laboratory of Forensic Medicine & Toxicology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Christina Virgiliou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Dritan Kodra
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioannis Sampsonidis
- Department of Nutritional Sciences & Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece; (S.K.); (I.S.)
| | - Georgios Arsenos
- Department of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Maria Halabalaki
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (M.H.); (E.M.)
| | - Emmanuel Mikros
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (M.H.); (E.M.)
| | | |
Collapse
|
4
|
Deda O, Virgiliou C, Armitage EG, Orfanidis A, Taitzoglou I, Wilson ID, Loftus N, Gika HG. Metabolic Phenotyping Study of Mouse Brains Following Acute or Chronic Exposures to Ethanol. J Proteome Res 2020; 19:4071-4081. [PMID: 32786683 DOI: 10.1021/acs.jproteome.0c00440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chronic and acute effect of ethanol administration on the metabolic phenotype of mouse brain was studied in a C57BL/6 mouse model of ethanol abuse using both untargeted and targeted ultra performance liquid chromatography-tandem mass spectrometry. Two experiments based on either chronic (8 week) exposure to ethanol of both male and female mice or acute exposure of male mice for 11 days, plus 2 oral gavage doses of 25% ethanol, were undertaken. Marked differences were found in amino acids, nucleotides, nucleosides, and related metabolites as well as a number of different lipids. Using untargeted metabolite profiling, acute ethanol exposure found significant decreases in several metabolites including nucleosides, fatty acids, glycerophosphocholine, and a number of phospholipids, while chronic exposure resulted in increases in several amino acids with notable decreases in adenosine, acetylcarnitine, and galactosylceramides. Similarly, targeted metabolite analysis, focusing on the hydrophilic fraction of the brain tissue extract, identified significant decreases in the metabolism of amino acids and derivatives, as well as purine degradation especially after chronic exposure to ethanol.
Collapse
Affiliation(s)
- Olga Deda
- Laboratory of Forensic Medicine and Toxicology, Department of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.,Biomic_Auth, Bioanalysis and Omics Lab, Centre for Interdisciplinary Research of Aristotle University of Thessaloniki, Innovation Area of Thessaloniki, Thermi 57001, Greece
| | - Christina Virgiliou
- Biomic_Auth, Bioanalysis and Omics Lab, Centre for Interdisciplinary Research of Aristotle University of Thessaloniki, Innovation Area of Thessaloniki, Thermi 57001, Greece.,Department of Chemistry, Aristotle University, Thessaloniki 54124, Greece
| | | | - Amvrosios Orfanidis
- Laboratory of Forensic Medicine and Toxicology, Department of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Ioannis Taitzoglou
- School of Veterinary Medicine, Aristotle University, Thessaloniki 54124, Greece
| | - Ian D Wilson
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K
| | - Neil Loftus
- Shimadzu Corporation, Manchester M17 1GP, U.K
| | - Helen G Gika
- Laboratory of Forensic Medicine and Toxicology, Department of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.,Biomic_Auth, Bioanalysis and Omics Lab, Centre for Interdisciplinary Research of Aristotle University of Thessaloniki, Innovation Area of Thessaloniki, Thermi 57001, Greece
| |
Collapse
|
5
|
Chen Y, Manna SK, Golla S, Krausz KW, Cai Y, Garcia-Milian R, Chakraborty T, Chakraborty J, Chatterjee R, Thompson DC, Gonzalez FJ, Vasiliou V. Glutathione deficiency-elicited reprogramming of hepatic metabolism protects against alcohol-induced steatosis. Free Radic Biol Med 2019; 143:127-139. [PMID: 31351176 PMCID: PMC6848780 DOI: 10.1016/j.freeradbiomed.2019.07.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 05/26/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022]
Abstract
Depletion of glutathione (GSH) is considered a critical pathogenic event promoting alcohol-induced lipotoxicity. We recently show that systemic GSH deficiency in mice harboring a global disruption of the glutamate-cysteine ligase modifier subunit (Gclm) gene confers protection against alcohol-induced steatosis. While several molecular pathways have been linked to the observed hepatic protection, including nuclear factor erythroid 2-related factor 2 and AMP-activated protein kinase pathways, the precise mechanisms are yet to be defined. In this study, to gain insights into the molecular mechanisms underpinning the protective effects of loss of GCLM, global profiling of hepatic polar metabolites combined with liver microarray analysis was carried out. These inter-omics analyses revealed both low GSH- and alcohol-driven changes in multiple cellular pathways involving the metabolism of amino acids, fatty acid, glucose and nucleic acids. Notably, several metabolic changes were uniquely present in alcohol-treated Gclm-null mouse livers, including acetyl-CoA enrichment and diversion of acetyl-CoA flux from lipogenesis to alterative metabolic pathways, elevation in glutamate concentration, and induction of the glucuronate pathway and nucleotide biosynthesis. These metabolic features reflect low GSH-elicited cellular response to chronic alcohol exposure, which is beneficial for the maintenance of hepatic redox and metabolic homeostasis. The current study indicates that fine-tuning of hepatic GSH pool may evoke metabolic reprogramming to cope with alcohol-induced cellular stress.
Collapse
Affiliation(s)
- Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06521, USA
| | - Soumen K Manna
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics-HBNI, Kolkata, 700064, India
| | - Srujana Golla
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD, 20852, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD, 20852, USA
| | - Yan Cai
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD, 20852, USA
| | | | - Tanushree Chakraborty
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics-HBNI, Kolkata, 700064, India
| | | | | | - David C Thompson
- Department of Clinical Pharmacology, University of Colorado AMC, Aurora, CO, 80045, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD, 20852, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06521, USA.
| |
Collapse
|
6
|
Deda O, Virgiliou C, Orfanidis A, Gika HG. Study of Fecal and Urinary Metabolite Perturbations Induced by Chronic Ethanol Treatment in Mice by UHPLC-MS/MS Targeted Profiling. Metabolites 2019; 9:E232. [PMID: 31623107 PMCID: PMC6836053 DOI: 10.3390/metabo9100232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) as a consequence of ethanol chronic consumption could lead to hepatic cirrhosis that is linked to high morbidity and mortality. Disease diagnosis is still very challenging and usually clear findings are obtained in the later stage of ALD. The profound effect of ethanol on metabolism can be depicted using metabolomics; thus, the discovery of novel biomarkers could shed light on the initiation and the progression of the ALD, serving diagnostic purposes. In the present study, Hydrophilic Interaction Liquid Chromatography tandem Mass Spectrometry HILIC-MS/MS based metabolomics analyisis of urine and fecal samples of C57BL/6 mice of both sexes at two sampling time points was performed, monitoring the effect of eight-week ethanol consumption. The altered hepatic metabolism caused by ethanol consumption induces extensive biochemical perturbations and changes in gut microbiota population on a great scale. Fecal samples were proven to be a suitable specimen for studying ALD since it was more vulnerable to the metabolic changes in comparison to urine samples. The metabolome of male mice was affected on a greater scale than the female metabolome due to ethanol exposure. Precursor small molecules of essential pathways of energy production responded to ethanol exposure. A meaningful correlation between the two studied specimens demonstrated the impact of ethanol in endogenous and symbiome metabolism.
Collapse
Affiliation(s)
- Olga Deda
- Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
- Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (KEDEK), 57001 Thessaloniki, Greece.
| | - Christina Virgiliou
- Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (KEDEK), 57001 Thessaloniki, Greece.
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Amvrosios Orfanidis
- Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
- Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (KEDEK), 57001 Thessaloniki, Greece.
| | - Helen G Gika
- Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
- Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (KEDEK), 57001 Thessaloniki, Greece.
| |
Collapse
|
7
|
Clugston RD, Gao MA, Blaner WS. The Hepatic Lipidome: A Gateway to Understanding the Pathogenes is of Alcohol-Induced Fatty Liver. Curr Mol Pharmacol 2019; 10:195-206. [PMID: 26278391 DOI: 10.2174/1874467208666150817111419] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/30/2022]
Abstract
Chronic alcohol consumption can lead to the development of alcoholic fatty liver disease. The underlying pathogenic mechanisms however, have not been fully elucidated. Here, we review the current state of the art regarding the application of lipidomics to study alcohol's effect on hepatic lipids. It is clear that alcohol has a profound effect on the hepatic lipidome, with documented changes in the major lipid categories (i.e. fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids and prenol lipids). Alcohol's most striking effect is the marked change in the hepatic fatty acyl pool. This effect includes increased levels of 18-carbon fatty acyl chains incorporated into multiple lipid species, as well as a general shift toward increased unsaturation of fatty acyl moieties. In addition to our literature review, we also make several recommendations to consider when designing lipidomic studies into alcohol's effects. These recommendations include integration of lipidomic data with other measures of lipid metabolism, inclusion of multiple experimental time points, and presentation of quantitative data. We believe rigorous analysis of the hepatic lipidome can yield new insight into the pathogenesis of alcohol-induced fatty liver. While the existing literature has been largely descriptive, the field is poised to apply lipidomics to yield a new level of understanding on alcohol's effects on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Robin D Clugston
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2H7. Canada
| | - Madeleine A Gao
- Department of Medicine, Columbia University, New York, NY, 10032. United States
| | - William S Blaner
- Department of Medicine, Columbia University, New York, NY, 10032. United States
| |
Collapse
|
8
|
Irwin C, van Reenen M, Mason S, Mienie LJ, Wevers RA, Westerhuis JA, Reinecke CJ. The 1H-NMR-based metabolite profile of acute alcohol consumption: A metabolomics intervention study. PLoS One 2018; 13:e0196850. [PMID: 29746531 PMCID: PMC5944960 DOI: 10.1371/journal.pone.0196850] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/20/2018] [Indexed: 01/15/2023] Open
Abstract
Metabolomics studies of disease conditions related to chronic alcohol consumption provide compelling evidence of several perturbed metabolic pathways underlying the pathophysiology of alcoholism. The objective of the present study was to utilize proton nuclear magnetic resonance (1H-NMR) spectroscopy metabolomics to study the holistic metabolic consequences of acute alcohol consumption in humans. The experimental design was a cross-over intervention study which included a number of substances to be consumed-alcohol, a nicotinamide adenine dinucleotide (NAD) supplement, and a benzoic acid-containing flavoured water vehicle. The experimental subjects-24 healthy, moderate-drinking young men-each provided six hourly-collected urine samples for analysis. Complete data sets were obtained from 20 of the subjects and used for data generation, analysis and interpretation. The results from the NMR approach produced complex spectral data, which could be resolved sufficiently through the application of a combination of univariate and multivariate methods of statistical analysis. The metabolite profiles resulting from acute alcohol consumption indicated that alcohol-induced NAD+ depletion, and the production of an excessive amount of reducing equivalents, greatly perturbed the hepatocyte redox homeostasis, resulting in essentially three major metabolic disturbances-up-regulated lactic acid metabolism, down-regulated purine catabolism and osmoregulation. Of these, the urinary excretion of the osmolyte sorbitol proved to be novel, and suggests hepatocyte swelling due to ethanol influx following acute alcohol consumption. Time-dependent metabolomics investigations, using designed interventions, provide a way of interpreting the variation induced by the different factors of a designed experiment, thereby also giving methodological significance to this study. The outcomes of this approach have the potential to significantly advance our understanding of the serious impact of the pathophysiological perturbations which arise from the consumption of a single, large dose of alcohol-a simulation of a widespread, and mostly naive, social practice.
Collapse
Affiliation(s)
- Cindy Irwin
- Centre for Human Metabolomics, Faculty of Natural Sciences and Agriculture, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Mari van Reenen
- Centre for Human Metabolomics, Faculty of Natural Sciences and Agriculture, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
- Department of Statistics, Faculty of Natural Sciences and Agriculture, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Shayne Mason
- Centre for Human Metabolomics, Faculty of Natural Sciences and Agriculture, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Lodewyk J. Mienie
- Centre for Human Metabolomics, Faculty of Natural Sciences and Agriculture, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Ron A. Wevers
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Johan A. Westerhuis
- Department of Statistics, Faculty of Natural Sciences and Agriculture, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Carolus J. Reinecke
- Centre for Human Metabolomics, Faculty of Natural Sciences and Agriculture, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| |
Collapse
|
9
|
Irwin C, Mienie LJ, Wevers RA, Mason S, Westerhuis JA, van Reenen M, Reinecke CJ. GC-MS-based urinary organic acid profiling reveals multiple dysregulated metabolic pathways following experimental acute alcohol consumption. Sci Rep 2018; 8:5775. [PMID: 29636520 PMCID: PMC5893584 DOI: 10.1038/s41598-018-24128-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/22/2018] [Indexed: 12/14/2022] Open
Abstract
Metabolomics studies of diseases associated with chronic alcohol consumption provide compelling evidence of several perturbed metabolic pathways. Moreover, the holistic approach of such studies gives insights into the pathophysiological risk factors associated with chronic alcohol-induced disability, morbidity and mortality. Here, we report on a GC-MS-based organic acid profiling study on acute alcohol consumption. Our investigation - involving 12 healthy, moderate-drinking young men - simulated a single binge drinking event, and indicated its metabolic consequences. We generated time-dependent data that predicted the metabolic pathophysiology of the alcohol intervention. Multivariate statistical modelling was applied to the longitudinal data of 120 biologically relevant organic acids, of which 13 provided statistical evidence of the alcohol effect. The known alcohol-induced increased NADH:NAD+ ratio in the cytosol of hepatocytes contributed to the global dysregulation of several metabolic reactions of glycolysis, ketogenesis, the Krebs cycle and gluconeogenesis. The significant presence of 2-hydroxyisobutyric acid supports the emerging paradigm that this compound is an important endogenous metabolite. Its metabolic origin remains elusive, but recent evidence indicated 2-hydroxyisobutyrylation as a novel regulatory modifier of histones. Metabolomics has thus opened an avenue for further research on the reprogramming of metabolic pathways and epigenetic networks in relation to the severe effects of alcohol consumption.
Collapse
Affiliation(s)
- Cindy Irwin
- Centre for Human Metabolomics, Faculty of Natural Sciences and Agriculture, North-West University (Potchefstroom Campus), Private Bag, X6001, Potchefstroom, South Africa
| | - Lodewyk J Mienie
- Centre for Human Metabolomics, Faculty of Natural Sciences and Agriculture, North-West University (Potchefstroom Campus), Private Bag, X6001, Potchefstroom, South Africa
| | - Ron A Wevers
- Radboud University Nijmegen Medical Centre, Translational Metabolic Laboratory, Department of Laboratory Medicine, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Shayne Mason
- Centre for Human Metabolomics, Faculty of Natural Sciences and Agriculture, North-West University (Potchefstroom Campus), Private Bag, X6001, Potchefstroom, South Africa
| | - Johan A Westerhuis
- Centre for Human Metabolomics, Faculty of Natural Sciences and Agriculture, North-West University (Potchefstroom Campus), Private Bag, X6001, Potchefstroom, South Africa
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Mari van Reenen
- Department of Statistics, Faculty of Natural Sciences and Agriculture, North-West University (Potchefstroom Campus), Private Bag, X6001, Potchefstroom, South Africa
| | - Carolus J Reinecke
- Centre for Human Metabolomics, Faculty of Natural Sciences and Agriculture, North-West University (Potchefstroom Campus), Private Bag, X6001, Potchefstroom, South Africa.
| |
Collapse
|
10
|
Mostafa H, Amin AM, Teh CH, Murugaiyah VA, Arif NH, Ibrahim B. Plasma metabolic biomarkers for discriminating individuals with alcohol use disorders from social drinkers and alcohol-naive subjects. J Subst Abuse Treat 2017; 77:1-5. [PMID: 28476260 DOI: 10.1016/j.jsat.2017.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/07/2017] [Accepted: 02/22/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Alcohol use disorders (AUD) is a phase of alcohol misuse in which the drinker consumes excessive amount of alcohol and have a continuous urge to consume alcohol which may lead to various health complications. The current methods of alcohol use disorders diagnosis such as questionnaires and some biomarkers lack specificity and sensitivity. Metabolomics is a novel scientific field which may provide a novel method for the diagnosis of AUD by using a sensitive and specific technique such as nuclear magnetic resonance (NMR). METHODS A cross sectional study was conducted on three groups: individuals with alcohol use disorders (n=30), social drinkers (n=54) and alcohol-naive controls (n=60). 1H NMR-based metabolomics was used to obtain the metabolic profiles of plasma samples. Data were processed by multivariate principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) followed by univariate and multivariate logistic regressions to produce the best fit-model for discrimination between groups. RESULTS The OPLS-DA model was able to distinguish between the AUD group and the other groups with high sensitivity, specificity and accuracy of 64.29%, 98.17% and 91.24% respectively. The logistic regression model identified two biomarkers in plasma (propionic acid and acetic acid) as being significantly associated with alcohol use disorders. The reproducibility of all biomarkers was excellent (0.81-1.0). CONCLUSIONS The applied plasma metabolomics technique was able to differentiate the metabolites between AUD and the other groups. These metabolites are potential novel biomarkers for diagnosis of alcohol use disorders.
Collapse
Affiliation(s)
- Hamza Mostafa
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Malaysia
| | - Arwa M Amin
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Malaysia
| | | | | | | | - Baharudin Ibrahim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Malaysia.
| |
Collapse
|
11
|
Sánchez-López E, Marcos A, Ambrosio E, Mayboroda OA, Marina ML, Crego AL. Investigation on the combined effect of cocaine and ethanol administration through a liquid chromatography-mass spectrometry metabolomics approach. J Pharm Biomed Anal 2017; 140:313-321. [PMID: 28384623 DOI: 10.1016/j.jpba.2017.03.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 01/03/2023]
Abstract
Alcohol is the most widely consumed legal drug, whereas cocaine is the illicit psychostimulant most commonly used in Europe. The combined use of alcohol and cocaine is frequent among drug-abuse consumers and leads to further exacerbation of health consequences compared to individual consumption. The pharmacokinetic and metabolic interactions leading to an increase in their combined toxicity still remains poorly understood. Here, the first metabolomics study of combined cocaine and ethanol chronic exposure effects is reported. A Liquid Chromatography strategy based on sample derivatization with 9-fluorenylmethyloxycarbonyl chloride and using a C18 column coupled to high resolution Mass Spectrometry (time of flight analyzer) was employed to analyze plasma from rats exposed intravenously to these drugs in a 52-min analysis. Using a combination of non-supervised and supervised multivariate analysis the metabolic differences between our experimental groups were explored and unraveled. A comparative analysis of the individual models and their variable importance in the projection values have shown that every experiment intervention includes a subset of specific metabolites. Eleven of these metabolites were annotated, where eight were unequivocally identified using standards and three were tentatively identified by matching the MS/MS spectra to libraries. The results demonstrated that the affected metabolic pathways were mainly those related to the metabolism of different amino acids.
Collapse
Affiliation(s)
- Elena Sánchez-López
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Alberto Marcos
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, C/Juan del Rosal 10, Ciudad Universitaria, 28040 Madrid, Spain
| | - Emilio Ambrosio
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, C/Juan del Rosal 10, Ciudad Universitaria, 28040 Madrid, Spain
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; Laboratory of Clinical Metabolomics, Tomsk State University, Tomsk, Russia
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Antonio L Crego
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
12
|
Impact of exercise on fecal and cecal metabolome over aging: a longitudinal study in rats. Bioanalysis 2017; 9:21-36. [DOI: 10.4155/bio-2016-0222] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: Physical exercise can reduce adverse conditions during aging, while both exercise and aging act as metabolism modifiers. The present study investigates rat fecal and cecal metabolome alterations derived from exercise during rats’ lifespan. Methods & results: Groups of rats trained life-long or for a specific period of time were under study. The training protocol consisted of swimming, 15–18 min per day, 3–5 days per week, with load of 4–0% of rat's weight. Fecal samples and cecal extracts were analyzed by targeted and untargeted metabolic profiling methods (GC–MS and LC–MS/MS). Effects of exercise and aging on the rats’ fecal and cecal metabolome were observed. Conclusion: Fecal and cecal metabolomics are a promising field to investigate exercise biochemistry and age-related alterations.
Collapse
|
13
|
The neurometabolic fingerprint of excessive alcohol drinking. Neuropsychopharmacology 2015; 40:1259-68. [PMID: 25418809 PMCID: PMC4367471 DOI: 10.1038/npp.2014.312] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/28/2014] [Accepted: 11/13/2014] [Indexed: 01/03/2023]
Abstract
'Omics' techniques are widely used to identify novel mechanisms underlying brain function and pathology. Here we applied a novel metabolomics approach to further ascertain the role of frontostriatal brain regions for the expression of addiction-like behaviors in rat models of alcoholism. Rats were made alcohol dependent via chronic intermittent alcohol vapor exposure. Following a 3-week abstinence period, rats had continuous access to alcohol in a two-bottle, free-choice paradigm for 7 weeks. Nontargeted flow injection time-of-flight mass spectrometry was used to assess global metabolic profiles of two cortical (prelimbic and infralimbic) and two striatal (accumbens core and shell) brain regions. Alcohol consumption produces pronounced global effects on neurometabolomic profiles leading to a clear separation of metabolic phenotypes between treatment groups, particularly. Further comparisons of regional tissue levels of various metabolites, most notably dopamine and Met-enkephalin, allow the extrapolation of alcohol consumption history. Finally, a high-drinking metabolic fingerprint was identified indicating a distinct alteration of central energy metabolism in the accumbens shell of excessively drinking rats that could indicate a so far unrecognized pathophysiological mechanism in alcohol addiction. In conclusion, global metabolic profiling from distinct brain regions by mass spectrometry identifies profiles reflective of an animal's drinking history and provides a versatile tool to further investigate pathophysiological mechanisms in alcohol dependence.
Collapse
|
14
|
Merging bioactivity with liquid chromatography-mass spectrometry-based chemometrics to identify minor immunomodulatory compounds from a Micronesian adaptogen, Phaleria nisidai. J Chromatogr A 2014; 1364:74-82. [DOI: 10.1016/j.chroma.2014.08.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 01/12/2023]
|
15
|
Analysis of biologically-active, endogenous carboxylic acids based on chromatography-mass spectrometry. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Global metabolic profiling for the study of alcohol-related disorders. Bioanalysis 2014; 6:59-77. [PMID: 24341495 DOI: 10.4155/bio.13.301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alcohol-related disorders are multifaceted since ethanol can induce profound metabolic perturbations when taken in excess. Global metabolic profiling strategies may aid the understanding of ethanol-related effects by shedding light on these metabolic changes and potentially revealing unknown mechanisms of ethanol toxicity. Here an overview of studies designed to explore the effects of alcohol (ethanol) consumption using holistic metabolite profiling approaches (metabonomics/metabolomics) is presented, demonstrating the potential of this methodology. The analytical technologies used (NMR, GC-MS and LC-MS), have been applied to the profiling of serum, plasma, urine and tissues, obtained from animal models or humans, after exposure to alcohol. From the metabolic profiling data of a range of biological samples, a number of endogenous metabolites have been proposed as potential ethanol consumption-related biomarkers. The biomarkers suggested by these studies, and the biochemical insights that they provide for understanding the effects of ethanol mechanisms of toxicity, are discussed.
Collapse
|
17
|
Development of blood biomarkers for drug-induced liver injury: an evaluation of their potential for risk assessment and diagnostics. Mol Diagn Ther 2014; 17:343-54. [PMID: 23868512 DOI: 10.1007/s40291-013-0049-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug-induced liver injury (DILI) remains a rare but serious complication in drug therapy that is a primary cause of drug failure during clinical trials. Conventional biomarkers, particularly the serum transaminases and bilirubin, serve as useful indicators of hepatocellular or cholestatic liver injury, respectively, but only after substantial and sometimes irreversible tissue damage. Ideally, more sensitive biomarkers that respond very early before irreversible injury has occurred would offer improved outcomes. Novel biomarkers are initially being developed in animal models exposed to intrinsically hepatotoxic stimuli. However, the eventual translation to human populations, even those with known risk factors that predispose the liver to drug toxicity, would be the fundamental goal. Ultimately, some might even be applicable for the early identification of individuals predisposed to idiosyncratic hepatotoxicity potential. This article reviews recent progress in the discovery and qualification of novel biomarkers for DILI and delineates the path to eventual utilization for risk assessment. Some major categories of plasma or serum biomarkers surveyed include proteins, cytokines, circulating mRNAs, and microRNAs.
Collapse
|
18
|
Zhong W, Li Q, Xie G, Sun X, Tan X, Sun X, Jia W, Zhou Z. Dietary fat sources differentially modulate intestinal barrier and hepatic inflammation in alcohol-induced liver injury in rats. Am J Physiol Gastrointest Liver Physiol 2013; 305:G919-G932. [PMID: 24113767 PMCID: PMC3882440 DOI: 10.1152/ajpgi.00226.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/03/2013] [Indexed: 01/31/2023]
Abstract
Endotoxemia is a causal factor in the development of alcoholic liver injury. The present study aimed at determining the interactions of ethanol with different fat sources at the gut-liver axis. Male Sprague-Dawley rats were pair fed control or ethanol liquid diet for 8 wk. The liquid diets were based on a modified Lieber-DeCarli formula, with 30% total calories derived from corn oil (rich in polyunsaturated fatty acids). To test the effects of saturated fats, corn oil in the ethanol diet was replaced by either cocoa butter (CB, rich in long-chain saturated fatty acids) or medium-chain triglycerides (MCT, exclusively medium-chain saturated fatty acids). Ethanol feeding increased hepatic lipid accumulation and inflammatory cell infiltration and perturbed hepatic and serum metabolite profiles. Ethanol feeding with CB or MCT alleviated ethanol-induced liver injury and attenuated ethanol-induced metabolic perturbation. Both CB and MCT also normalized ethanol-induced hepatic macrophage activation, cytokine expression, and neutrophil infiltration. Ethanol feeding elevated serum endotoxin level, which was normalized by MCT but not CB. In accordance, ethanol-induced downregulations of intestinal occludin and zonula occludens-1 were normalized by MCT but not CB. However, CB normalized ethanol-increased hepatic endotoxin level in association with upregulation of an endotoxin detoxifying enzyme, argininosuccinate synthase 1 (ASS1). Knockdown ASS1 in H4IIEC3 cells resulted in impaired endotoxin clearance and upregulated cytokine expression. These data demonstrate that the protection of saturated fats against alcohol-induced liver injury occur via different actions at the gut-liver axis and are chain length dependent.
Collapse
Affiliation(s)
- Wei Zhong
- Center for Translational Biomedical Research and Dept. of Nutrition, Univ. of North Carolina at Greensboro, North Carolina Research Campus, 500 Laureate Way, Suite 4226, Kannapolis, NC 28081.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chronic alcohol ingestion increases mortality and organ injury in a murine model of septic peritonitis. PLoS One 2013; 8:e62792. [PMID: 23717394 PMCID: PMC3661585 DOI: 10.1371/journal.pone.0062792] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/25/2013] [Indexed: 12/13/2022] Open
Abstract
Background Patients admitted to the intensive care unit with alcohol use disorders have increased morbidity and mortality. The purpose of this study was to determine how chronic alcohol ingestion alters the host response to sepsis in mice. Methods Mice were randomized to receive either alcohol or water for 12 weeks and then subjected to cecal ligation and puncture. Mice were sacrificed 24 hours post-operatively or followed seven days for survival. Results Septic alcohol-fed mice had a significantly higher mortality than septic water-fed mice (74% vs. 41%, p = 0.01). This was associated with worsened gut integrity in alcohol-fed mice with elevated intestinal epithelial apoptosis, decreased crypt proliferation and shortened villus length. Further, alcohol-fed mice had higher intestinal permeability with decreased ZO-1 and occludin protein expression in the intestinal tight junction. The frequency of splenic and bone marrow CD4+ T cells was similar between groups; however, splenic CD4+ T cells in septic alcohol-fed mice had a marked increase in both TNF and IFN-γ production following ex vivo stimulation. Neither the frequency nor function of CD8+ T cells differed between alcohol-fed and water-fed septic mice. NK cells were decreased in both the spleen and bone marrow of alcohol-fed septic mice. Pulmonary myeloperoxidase levels and BAL levels of G-CSF and TFG-β were higher in alcohol-fed mice. Pancreatic metabolomics demonstrated increased acetate, adenosine, xanthine, acetoacetate, 3-hydroxybutyrate and betaine in alcohol-fed mice and decreased cytidine, uracil, fumarate, creatine phosphate, creatine, and choline. Serum and peritoneal cytokines were generally similar between alcohol-fed and water-fed mice, and there were no differences in bacteremia, lung wet to dry weight, or pulmonary, liver or splenic histology. Conclusions When subjected to the same septic insult, mice with chronic alcohol ingestion have increased mortality. Alterations in intestinal integrity, the host immune response, and pancreatic metabolomics may help explain this differential response.
Collapse
|