1
|
Sobiak J, Resztak M, Sikora W, Zachwieja J, Ostalska-Nowicka D. Liquid chromatography-tandem mass spectrometry method for mycophenolic acid and its glucuronide determination in saliva samples from children with nephrotic syndrome. Pharmacol Rep 2024; 76:600-611. [PMID: 38485859 PMCID: PMC11126467 DOI: 10.1007/s43440-024-00574-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Saliva sampling is one of the methods of therapeutic drug monitoring for mycophenolic acid (MPA) and its metabolite, mycophenolic acid glucuronide (MPAG). The study describes the liquid chromatography tandem mass spectrometry (LC-MS/MS) method developed for saliva MPA and MPAG determination in children with nephrotic syndrome. METHODS The mobile phase consisted of methanol and water at gradient flow, both with 0.1% formic acid. Firstly, 100 µL of saliva was evaporated at 45 °C for 2 h to dryness, secondly, it was reconstituted in the mobile phase, and finally 10 µL was injected into the LC-MS/MS system. Saliva from ten children with nephrotic syndrome treated with mycophenolate mofetil was collected with Salivette®. RESULTS For MPA and MPAG, within the 2-500 ng/mL range, the method was selective, specific, accurate and precise within-run and between-run. No carry-over and matrix effects were observed. Stability tests showed that MPA and MPAG were stable in saliva samples if stored for 2 h at room temperature, 18 h at 4 °C, and at least 5 months at - 80 °C as well as after three freeze-thaw cycles, in a dry extract for 16 h at 4 °C, and for 8 h at 15 °C in the autosampler. The analytes were not adsorbed onto Salivette® cotton swabs. For concentrations above 500 ng/mL, the samples may be diluted twofold. In children, saliva MPA and MPAG were within the ranges of 4.6-531.8 ng/mL and 10.7-183.7 ng/mL, respectively. CONCLUSIONS The evaluated LC-MS/MS method has met the validation requirements for saliva MPA and MPAG determination in children with nephrotic syndrome. Further studies are needed to explore plasma-saliva correlations and assess their potential contribution to MPA monitoring.
Collapse
Affiliation(s)
- Joanna Sobiak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland.
| | - Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland
| | - Weronika Sikora
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland
| | - Jacek Zachwieja
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | - Danuta Ostalska-Nowicka
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
2
|
Fang L, Zhai Q, Zhang H, Ji P, Chen C, Zhang H. Comparisons of different extraction methods and solvents for saliva samples. Metabolomics 2024; 20:38. [PMID: 38460055 DOI: 10.1007/s11306-024-02105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/19/2024] [Indexed: 03/11/2024]
Abstract
INTRODUCTION Changes in the categories and concentrations of salivary metabolites may be closely related to oral, intestinal or systemic diseases. To study salivary metabolites, the first analytical step is to extract them from saliva samples as much as possible, while reducing interferences to a minimum. Frequently used extraction methods are protein precipitation (PPT), liquid-liquid extraction (LLE) and solid-phase extraction (SPE), with various organic solvents. The types and quantities of metabolites extracted with different methods may vary greatly, but few studies have systematically evaluated them. OBJECTIVES This study aimed to select the most suitable methods and solvents for the extraction of saliva according to different analytical targets. METHODS An untargeted metabolomics approach based on liquid chromatography-mass spectrometry was applied to obtain the raw data. The numbers of metabolites, repeatability of the data and intensities of mass spectrometry signals were used as evaluation criteria. RESULTS PPT resulted in the highest coverage. Among the PPT solvents, acetonitrile displayed the best repeatability and the highest coverage, while acetone resulted in the best signal intensities for the extracted compounds. LLE with the mixture of chloroform and methanol was the most suitable for the extraction of small hydrophobic compounds. CONCLUSION PPT with acetonitrile or acetone was recommended for untargeted analysis, while LLE with the mixture of chloroform and methanol was recommended for small hydrophobic compounds.
Collapse
Affiliation(s)
- Lingli Fang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qiming Zhai
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - Hongmei Zhang
- Department of Pediatric Dentistry, Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Sobiak J, Resztak M, Banasiak J, Zachwieja J, Ostalska-Nowicka D. High-performance liquid chromatography with fluorescence detection for mycophenolic acid determination in saliva samples. Pharmacol Rep 2023; 75:726-736. [PMID: 36905501 PMCID: PMC10007665 DOI: 10.1007/s43440-023-00474-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND For therapeutic drug monitoring (TDM) of mycophenolic acid (MPA), which is frequently proposed, saliva might be a suitable and easy-to-obtain biological matrix. The study aimed to validate an HPLC method with fluorescence detection for determining mycophenolic acid in saliva (sMPA) in children with nephrotic syndrome. METHODS The mobile phase was composed of methanol and tetrabutylammonium bromide with disodium hydrogen phosphate (pH 8.5) at a 48:52 ratio. To prepare the saliva samples, 100 µL of saliva, 50 µL of calibration standards, and 50 µL of levofloxacin (used as an internal standard) were mixed and evaporated to dryness at 45 °C for 2 h. The resulting dry extract was reconstituted in the mobile phase and injected into the HPLC system after centrifugation. Saliva samples from study participants were collected using Salivette® devices. RESULTS The method was linear within the range of 5-2000 ng/mL, was selective with no carry-over effect and met the acceptance criteria for within-run and between-run accuracy and precision. Saliva samples can be stored for up to 2 h at room temperature, for up to 4 h at 4 °C, and for up to 6 months at - 80 °C. MPA was stable in saliva after three freeze-thaw cycles, in dry extract for 20 h at 4 °C, and for 4 h in the autosampler at room temperature. MPA recovery from Salivette® cotton swabs was within the range of 94-105%. The sMPA concentrations in the two children with nephrotic syndrome who were treated with mycophenolate mofetil were within 5-112 ng/mL. CONCLUSIONS The sMPA determination method is specific, selective, and meets the validation requirements for analytic methods. It may be used in children with nephrotic syndrome; however further studies are required to investigate focusing on sMPA and the correlation between sMPA and total MPA and its possible contribution to MPA TDM is required.
Collapse
Affiliation(s)
- Joanna Sobiak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland.
| | - Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland
| | - Joanna Banasiak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806, Poznan, Poland
| | - Jacek Zachwieja
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | - Danuta Ostalska-Nowicka
- Department of Pediatric Nephrology and Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
4
|
Sankowski B, Michorowska S, Raćkowska E, Sikora M, Giebułtowicz J. Saliva as Blood Alternative in Therapeutic Monitoring of Teriflunomide-Development and Validation of the Novel Analytical Method. Int J Mol Sci 2022; 23:ijms23179544. [PMID: 36076939 PMCID: PMC9455247 DOI: 10.3390/ijms23179544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Therapeutic drug monitoring (TDM) is extremely helpful in individualizing dosage regimen of drugs with narrow therapeutic ranges. It may also be beneficial in the case of drugs characterized by serious side effects and marked interpatient pharmacokinetic variability observed with leflunomide and its biologically active metabolite, teriflunomide. One of the most popular matrices used for TDM is blood. A more readily accessible body fluid is saliva, which can be collected in a much safer way comparing to blood. This makes it especially advantageous alternative to blood during life-threatening SARS-CoV-2 pandemic. However, drug’s saliva concentration is not always a good representation of its blood concentration. The aim of this study was to verify whether saliva can be used in TDM of teriflunomide. We also developed and validated the first reliable and robust LC-MS/MS method for quantification of teriflunomide in saliva. Additionally, the effect of salivary flow and swab absorptive material from the collector device on teriflunomide concentration in saliva was evaluated. Good linear correlation was obtained between the concentration of teriflunomide in plasma and resting saliva (p < 0.000016, r = 0.88), and even better between plasma and the stimulated saliva concentrations (p < 0.000001, r = 0.95) confirming the effectiveness of this non-invasive method of teriflunomide’s TDM. The analyzed validation criteria were fulfilled. No significant influence of salivary flow (p = 0.198) or type of swab in the Salivette device on saliva’s teriflunomide concentration was detected. However, to reduce variability the use of stimulated saliva and synthetic swabs is advised.
Collapse
Affiliation(s)
- Bartłomiej Sankowski
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Sylwia Michorowska
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Emilia Raćkowska
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence:
| |
Collapse
|
5
|
Resztak M, Sobiak J, Czyrski A. Recent Advances in Therapeutic Drug Monitoring of Voriconazole, Mycophenolic Acid, and Vancomycin: A Literature Review of Pediatric Studies. Pharmaceutics 2021; 13:1991. [PMID: 34959272 PMCID: PMC8707246 DOI: 10.3390/pharmaceutics13121991] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/02/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023] Open
Abstract
The review includes studies dated 2011-2021 presenting the newest information on voriconazole (VCZ), mycophenolic acid (MPA), and vancomycin (VAN) therapeutic drug monitoring (TDM) in children. The need of TDM in pediatric patients has been emphasized by providing the information on the differences in the drugs pharmacokinetics. TDM of VCZ should be mandatory for all pediatric patients with invasive fungal infections (IFIs). Wide inter- and intrapatient variability in VCZ pharmacokinetics cause achieving and maintaining therapeutic concentration during therapy challenging in this population. Demonstrated studies showed, in most cases, VCZ plasma concentrations to be subtherapeutic, despite the updated dosages recommendations. Only repeated TDM can predict drug exposure and individualizing dosing in antifungal therapy in children. In children treated with mycophenolate mofetil (MMF), similarly as in adult patients, the role of TDM for MMF active form, MPA, has not been well established and is undergoing continued debate. Studies on the MPA TDM have been carried out in children after renal transplantation, other organ transplantation such as heart, liver, or intestine, in children after hematopoietic stem cell transplantation or cord blood transplantation, and in children with lupus, nephrotic syndrome, Henoch-Schönlein purpura, and other autoimmune diseases. MPA TDM is based on the area under the concentration-time curve; however, the proposed values differ according to the treatment indication, and other approaches such as pharmacodynamic and pharmacogenetic biomarkers have been proposed. VAN is a bactericidal agent that requires TDM to prevent an acute kidney disease. The particular group of patients is the pediatric one. For this group, the general recommendations of the dosing may not be valid due to the change of the elimination rate and volume of distribution between the subjects. The other factor is the variability among patients that concerns the free fraction of the drug. It may be caused by both the patients' population and sample preconditioning. Although VCZ, MMF, and VAN have been applied in pediatric patients for many years, there are still few issues to be solve regarding TDM of these drugs to ensure safe and effective treatment. Except for pharmacokinetic approach, pharmacodynamics and pharmacogenetics have been more often proposed for TDM.
Collapse
Affiliation(s)
- Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland; (J.S.); (A.C.)
| | | | | |
Collapse
|
6
|
Cossart AR, Staatz CE, Gorham G, Barraclough KA. Comparison of free plasma versus saliva mycophenolic acid exposure following mycophenolate mofetil administration in adult kidney transplant recipients. Clin Biochem 2021; 100:78-81. [PMID: 34800491 DOI: 10.1016/j.clinbiochem.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 11/24/2022]
Abstract
Therapeutic monitoring (TDM) of mycophenolic acid (MPA) has the potential to improve drug inefficacy and toxicities in kidney transplantation. However, measurement of plasma MPA concentrations is laborious and invasive. This study examined the utility of saliva compared with plasma based TDM of MPA. Paired blood and saliva samples were collected from 47 adult kidney transplant recipients pre- and at 1-, 2-, and 4-hours post mycophenolate mofetil administration. No relationship was observed between saliva MPA concentrations and either total or free plasma MPA concentrations (p > 0.05). This suggests that saliva is a poor direct marker of plasma MPA concentrations and therefore should not be used for MPA TDM.
Collapse
Affiliation(s)
- Amelia R Cossart
- School of Pharmacy, University of Queensland, Brisbane, Queensland, Australia.
| | - Christine E Staatz
- School of Pharmacy, University of Queensland, Brisbane, Queensland, Australia
| | - Gillian Gorham
- Menzies School of Health, Charles Darwin University, Casuarina, Northern Territory, Australia
| | - Katherine A Barraclough
- Department of Nephrology, Royal Melbourne Hospital, Parkville, Victoria, Australia; University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Seyfinejad B, Jouyban A. Overview of therapeutic drug monitoring of immunosuppressive drugs: Analytical and clinical practices. J Pharm Biomed Anal 2021; 205:114315. [PMID: 34399192 DOI: 10.1016/j.jpba.2021.114315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 01/04/2023]
Abstract
Immunosuppressant drugs (ISDs) play a key role in short-term patient survival together with very low acute allograft rejection rates in transplant recipients. Due to the narrow therapeutic index and large inter-patient pharmacokinetic variability of ISDs, therapeutic drug monitoring (TDM) is needed to dose adjustment for each patient (personalized medicine approach) to avoid treatment failure or side effects of the therapy. To achieve this, TDM needs to be done effectively. However, it would not be possible without the proper clinical practice and analytical tools. The purpose of this review is to provide a guide to establish reliable TDM, followed by a critical overview of the current analytical methods and clinical practices for the TDM of ISDs, and to discuss some of the main practical aspects of the TDM.
Collapse
Affiliation(s)
- Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, PO BOX: 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| |
Collapse
|
8
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
9
|
Tahmaz V, Wiesen MHJ, Gehlsen U, Sauerbier L, Stern ME, Holtick U, Gathof B, Scheid C, Müller C, Steven P. Detection of systemic immunosuppressants in autologous serum eye drops (ASED) in patients with severe chronic ocular graft versus host disease. Graefes Arch Clin Exp Ophthalmol 2021; 259:121-128. [PMID: 32812133 PMCID: PMC7790777 DOI: 10.1007/s00417-020-04865-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Chronic graft versus host disease is a major consequence after allogeneic stem cell transplantation (allo-SCT) and has great impact on patients' morbidity and mortality. Besides the skin, liver, and intestines, the eyes are most commonly affected, manifesting as severe ocular surface disease. Treatment protocols include topical steroids, cyclosporine, tacrolimus, and ASED. Since these patients often receive systemic immunosuppressant therapy from their oncologists, a topical re-administration of these drugs via ASED with potentially beneficial or harmful effects is possible. The purpose of the study was to determine whether and to which extent systemic immunosuppressants are detectable in ASED. METHODS A total of 34 samples of ASED from 16 patients with hemato-oncological malignancies after allo-SCT were collected during the manufacturing process and screened for levels of cyclosporine, mycophenolic acid, everolimus, and tacrolimus via liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The study followed the tenets of the Declaration of Helsinki and informed consent was obtained from the subjects after explanation of the nature and possible consequences of the study. RESULTS Cyclosporine was found in 18 ASED samples in concentrations ranging from 6.5-105.0 ng/ml (32.0 ± 22.8 ng/ml, mean ± SD). The concentration range of mycophenolic acid in 19 samples was 0.04-25.0 mg/l (4.0 ± 5.4 mg/l, mean ± SD). Everolimus and tacrolimus concentrations were well below the respective limits of quantification (< 0.6 and < 0.5 ng/ml) of the established LC-MS/MS method in all samples. CONCLUSIONS Our study suggests that orally administered cyclosporine and mycophenolic acid for the treatment of systemic GvHD, but not everolimus and tacrolimus, are distinctly detectable in ASED in relevant concentrations. It is highly likely that these agents affect topical therapy of ocular GvHD. However, the extent of this effect needs to be evaluated in further studies.
Collapse
Affiliation(s)
- Volkan Tahmaz
- Division for Dry-eye disease and ocular GvHD, Department of Ophthalmology, University of Cologne Medical Faculty and University Hospital of Cologne, Cologne, Germany
- Cluster of Excellence: Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Martin H J Wiesen
- Center of Pharmacology, Department of Therapeutic Drug Monitoring, University Hospital of Cologne, Cologne, Germany
| | - Uta Gehlsen
- Division for Dry-eye disease and ocular GvHD, Department of Ophthalmology, University of Cologne Medical Faculty and University Hospital of Cologne, Cologne, Germany
- Cluster of Excellence: Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Laura Sauerbier
- Division for Dry-eye disease and ocular GvHD, Department of Ophthalmology, University of Cologne Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - Michael E Stern
- Division for Dry-eye disease and ocular GvHD, Department of Ophthalmology, University of Cologne Medical Faculty and University Hospital of Cologne, Cologne, Germany
- ImmunEyez LLC., Irvine, CA, USA
| | - Udo Holtick
- Department of Internal Medicine I, University Hospital Cologne, Cologne, Germany
| | - Birgit Gathof
- Institute of Transfusion Medicine, University of Cologne, Cologne, Germany
| | - Christof Scheid
- Department of Internal Medicine I, University Hospital Cologne, Cologne, Germany
| | - Carsten Müller
- Center of Pharmacology, Department of Therapeutic Drug Monitoring, University Hospital of Cologne, Cologne, Germany
| | - Philipp Steven
- Division for Dry-eye disease and ocular GvHD, Department of Ophthalmology, University of Cologne Medical Faculty and University Hospital of Cologne, Cologne, Germany.
- Cluster of Excellence: Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
10
|
Weber S, Tombelli S, Giannetti A, Trono C, O'Connell M, Wen M, Descalzo AB, Bittersohl H, Bietenbeck A, Marquet P, Renders L, Orellana G, Baldini F, Luppa PB. Immunosuppressant quantification in intravenous microdialysate - towards novel quasi-continuous therapeutic drug monitoring in transplanted patients. Clin Chem Lab Med 2020; 59:935-945. [PMID: 33554521 DOI: 10.1515/cclm-2020-1542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/06/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Therapeutic drug monitoring (TDM) plays a crucial role in personalized medicine. It helps clinicians to tailor drug dosage for optimized therapy through understanding the underlying complex pharmacokinetics and pharmacodynamics. Conventional, non-continuous TDM fails to provide real-time information, which is particularly important for the initial phase of immunosuppressant therapy, e.g., with cyclosporine (CsA) and mycophenolic acid (MPA). METHODS We analyzed the time course over 8 h of total and free of immunosuppressive drug (CsA and MPA) concentrations measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in 16 kidney transplant patients. Besides repeated blood sampling, intravenous microdialysis was used for continuous sampling. Free drug concentrations were determined from ultracentrifuged EDTA-plasma (UC) and compared with the drug concentrations in the respective microdialysate (µD). µDs were additionally analyzed for free CsA using a novel immunosensor chip integrated into a fluorescence detection platform. The potential of microdialysis coupled with an optical immunosensor for the TDM of immunosuppressants was assessed. RESULTS Using LC-MS/MS, the free concentrations of CsA (fCsA) and MPA (fMPA) were detectable and the time courses of total and free CsA comparable. fCsA and fMPA and area-under-the-curves (AUCs) in µDs correlated well with those determined in UCs (r≥0.79 and r≥0.88, respectively). Moreover, fCsA in µDs measured with the immunosensor correlated clearly with those determined by LC-MS/MS (r=0.82). CONCLUSIONS The new microdialysis-supported immunosensor allows real-time analysis of immunosuppressants and tailor-made dosing according to the AUC concept. It readily lends itself to future applications as minimally invasive and continuous near-patient TDM.
Collapse
Affiliation(s)
- Susanne Weber
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sara Tombelli
- Institute of Applied Physics "Nello Carrara", National Research Council, Sesto Fiorentino (FI), Italy
| | - Ambra Giannetti
- Institute of Applied Physics "Nello Carrara", National Research Council, Sesto Fiorentino (FI), Italy
| | - Cosimo Trono
- Institute of Applied Physics "Nello Carrara", National Research Council, Sesto Fiorentino (FI), Italy
| | | | - Ming Wen
- Department of Nephrology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ana B Descalzo
- Department of Organic Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Heike Bittersohl
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Andreas Bietenbeck
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Pierre Marquet
- U1248 IPPRITT, INSERM, University of Limoges, Limoges, CHU Limoges, France
| | - Lutz Renders
- Department of Nephrology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Centre for Infection Research (DZIF), Munich, Germany
| | - Guillermo Orellana
- Department of Organic Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Francesco Baldini
- Institute of Applied Physics "Nello Carrara", National Research Council, Sesto Fiorentino (FI), Italy
| | - Peter B Luppa
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
11
|
Alsmadi MM, Alfarah MQ, Albderat J, Alsalaita G, AlMardini R, Hamadi S, Al‐Ghazawi A, Abu‐Duhair O, Idkaidek N. The development of a population physiologically based pharmacokinetic model for mycophenolic mofetil and mycophenolic acid in humans using data from plasma, saliva, and kidney tissue. Biopharm Drug Dispos 2019; 40:325-340. [DOI: 10.1002/bdd.2206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/22/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Jawaher Albderat
- Queen Rania Abdullah Children Hospital, Royal Medical Services Amman Jordan
| | - Ghazi Alsalaita
- Queen Rania Abdullah Children Hospital, Royal Medical Services Amman Jordan
| | - Reham AlMardini
- Queen Rania Abdullah Children Hospital, Royal Medical Services Amman Jordan
| | - Salim Hamadi
- Deparment of Pharmaceutical Technology, Faculty of PharmacyUniversity of Petra Amman Jordan
| | | | - Omar Abu‐Duhair
- Deparment of Pharmaceutical Technology, Faculty of PharmacyUniversity of Petra Amman Jordan
| | - Nasir Idkaidek
- Deparment of Pharmaceutical Technology, Faculty of PharmacyUniversity of Petra Amman Jordan
| |
Collapse
|
12
|
Tacrolimus Concentration in Saliva of Kidney Transplant Recipients: Factors Influencing the Relationship with Whole Blood Concentrations. Clin Pharmacokinet 2019; 57:1199-1210. [PMID: 29330784 DOI: 10.1007/s40262-017-0626-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The objective of this study was to examine the association between tacrolimus concentration in oral fluids and in whole blood and to investigate the various factors that influence this relationship. PATIENTS AND METHODS Forty-six adult kidney transplant recipients were included in the study. Study A (ten patients) included the collection of several paired oral fluid samples by passive drool over a 12-h post-dose period. Study B (36 patients) included the collection of oral fluids pre-dose and at 2 h after the tacrolimus dose under three conditions: un-stimulated, after stimulation with a tart candy, and after mouth rinsing. The tacrolimus concentration in oral fluids was measured by a specially developed sensitive and specific liquid chromatography mass spectrometry method. A salivary transferrin concentration of >1 mg/dL was used as a cut-off value for oral fluid blood contamination. RESULTS Rinsing the oral cavity before sampling proved to provide the most suitable sampling strategy giving a correlation coefficient value of 0.71 (p = 0.001) between the tacrolimus concentration in oral fluids and the tacrolimus concentration in whole blood at trough. Mean and 95% confidence interval of tacrolimus concentration in oral fluids at the pre-dose concentration for samples collected after mouth rinsing was 584 (436, 782) pg/mL. The ratio of the tacrolimus concentration in oral fluids to the tacrolimus concentration in whole blood (*100) was 11% (95% confidence interval 9-13) for all sampling times. Oral fluid pH or weight of a saliva sample did not influence the tacrolimus concentration in oral fluids. Tacrolimus distribution into oral fluids exhibited a delay with a pronounced counter-clockwise hysteresis with respect to the time after dose. A multivariate analysis of variance revealed that the tacrolimus concentration in oral fluids is related to the tacrolimus concentration in whole blood and tacrolimus plasma-binding proteins including albumin and cholesterol. CONCLUSION An optimal sampling strategy for the determination of the tacrolimus concentration in oral fluids was established. Measuring the tacrolimus concentration in oral fluids appears to be a feasible and non-invasive method for predicting the concentration of tacrolimus in whole blood.
Collapse
|
13
|
Brooks E, Tett SE, Isbel NM, McWhinney B, Staatz CE. Investigation of the Association Between Total and Free Plasma and Saliva Mycophenolic Acid Concentrations Following Administration of Enteric-Coated Mycophenolate Sodium in Adult Kidney Transplant Recipients. Clin Drug Investig 2019; 39:1175-1184. [DOI: 10.1007/s40261-019-00844-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Reséndiz-Galván JE, Romano-Aguilar M, Medellín-Garibay SE, Milán-Segovia RDC, Chevaile-Ramos A, Romano-Moreno S. Determination of mycophenolic acid in human plasma by ultra-performance liquid chromatography-tandem mass spectrometry and its pharmacokinetic application in kidney transplant patients. Biomed Chromatogr 2019; 33:e4681. [PMID: 31419321 DOI: 10.1002/bmc.4681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 11/08/2022]
Abstract
To implement and validate an analytical method by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC MS/MS) to quantify mycophenolic acid (MPA) in kidney transplant patients. Quantification of MPA was performed in an ACQUITY UPLC H Class system coupled to a Xevo TQD detector and it was extracted from plasma samples by protein precipitation. The chromatographic separation was achieved through an ACQUITY HSS C18 SB column with 0.1% formic acid and acetonitrile (60:40 vol/vol) as mobile phase. The pharmacokinetic parameters were calculated by non-compartmental analysis of MPA plasma concentrations from 10 kidney transplant patients. The linear range for MPA quantification was 0.2-30 mg/L with a limit of detection of 0.07 mg/L; the mean extraction recovery was 99.99%. The mean intra- and inter-day variability were 2.98% and 3.4% with a percentage of deviation of 8.4% and 6.6%, respectively. Mean maximal concentration of 10 mg/L at 1.5 h, area under the concentration-time curve of 36.8 mg·h/L, elimination half-life of 3.9 h, clearance of 0.32 L/h/kg and volume of distribution of 1.65 L/kg were obtained from MPA pharmacokinetics profiles. A simple, fast and reliable UPLC-MS/MS method to quantify MPA in plasma was validated and has been applied for pharmacokinetic analysis in kidney transplant patients.
Collapse
Affiliation(s)
- Juan Eduardo Reséndiz-Galván
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | - Melissa Romano-Aguilar
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | | | - Rosa Del Carmen Milán-Segovia
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | | | - Silvia Romano-Moreno
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, San Luis Potosi, Mexico
| |
Collapse
|
15
|
A multidrug LC–MS/MS method for the determination of five immunosuppressants in oral fluid. Bioanalysis 2019; 11:1509-1521. [DOI: 10.4155/bio-2019-0143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aim: This study aimed: to develop and validate an LC–MS/MS method for mycophenolic acid, tacrolimus, sirolimus, everolimus and cyclosporin A in oral fluid (OF), as an essential tool to study the usefulness of OF as an alternative matrix for immunossuppressants’ therapeutic drug monitoring; and to find the best OF collector for these analytes. Materials & Methods: Chromatographic separation was achieved using an XBridge® Shield RP18 analytical column maintained at 65ºC, using 2 mM ammonium formate and 0.1% formic acid in water (A) and acetonitrile (B) as mobile phase. OF sample was extracted with solid phase extraction after sonication and protein precipitation. Results & Conclusions: Method validation met all the acceptance criteria. LODs were 0.05–1 ng/ml, and LOQs 0.1–5 ng/ml. Silanized tubes offered the best recoveries. The method was successfully applied to 31 OF specimens, describing everolimus detection in OF for the first time. Conclusion: The proposed method is sensitive enough for the detection of OF trough concentrations in patients receiving immunosuppressants when using an appropriate OF collector.
Collapse
|
16
|
Comparison of plasma and oral fluid concentrations of mycophenolic acid and its glucuronide metabolite by LC-MS in kidney transplant patients. Eur J Clin Pharmacol 2019; 75:553-559. [DOI: 10.1007/s00228-018-02614-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
|
17
|
Russo G, Barbato F, Mita DG, Grumetto L. Simultaneous determination of fifteen multiclass organic pollutants in human saliva and serum by liquid chromatography–tandem ultraviolet/fluorescence detection: A validated method. Biomed Chromatogr 2018; 33:e4427. [DOI: 10.1002/bmc.4427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/28/2018] [Accepted: 10/31/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Giacomo Russo
- Pharm‐Analysis & Bio‐Pharm Laboratory. Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico II Naples Italy
| | - Francesco Barbato
- Pharm‐Analysis & Bio‐Pharm Laboratory. Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico II Naples Italy
| | - Damiano Gustavo Mita
- National Laboratory on Endocrine DisruptorsNational Institute of Biostructures and Biosystems (INBB) Naples Italy
- Institute of Genetics and Biophysics of CNR Naples Italy
- Consorzio Interuniversitario INBB Rome Italy
| | - Lucia Grumetto
- Pharm‐Analysis & Bio‐Pharm Laboratory. Department of Pharmacy, School of Medicine and SurgeryUniversity of Naples Federico II Naples Italy
- Consorzio Interuniversitario INBB Rome Italy
| |
Collapse
|
18
|
Zhang Y, Zhang R. Recent advances in analytical methods for the therapeutic drug monitoring of immunosuppressive drugs. Drug Test Anal 2017; 10:81-94. [DOI: 10.1002/dta.2290] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/12/2017] [Accepted: 08/16/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Yu Zhang
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock TX, 79409, USA
| | - Rui Zhang
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock TX, 79409, USA
| |
Collapse
|
19
|
Łuszczyńska P, Pawiński T, Kunicki PK, Sikorska K, Marszałek R. Free mycophenolic acid determination in human plasma ultrafiltrate by a validated liquid chromatography-tandem mass spectrometry method. Biomed Chromatogr 2017; 31. [DOI: 10.1002/bmc.3976] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 02/17/2017] [Accepted: 03/14/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Paulina Łuszczyńska
- Department of Drug Chemistry, Faculty of Pharmacy; Medical University of Warsaw; Banacha 1, 02-097 Warsaw Poland
| | - Tomasz Pawiński
- Department of Drug Chemistry, Faculty of Pharmacy; Medical University of Warsaw; Banacha 1, 02-097 Warsaw Poland
| | - Paweł K. Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy; Medical University of Warsaw; Banacha 1, 02-097 Warsaw Poland
- Clinical Pharmacology Unit, Department of Medical Biology, (previous name: Department of Clinical Biochemistry); Institute of Cardiology; Alpejska 42, 04-628 Warsaw Poland
| | - Katarzyna Sikorska
- Department of Drug Chemistry, Faculty of Pharmacy; Medical University of Warsaw; Banacha 1, 02-097 Warsaw Poland
| | - Ryszard Marszałek
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy; Medical University of Warsaw; Banacha 1, 02-097 Warsaw Poland
| |
Collapse
|
20
|
Wang L, Qiang W, Li Y, Cheng Z, Xie M. A novel freeze-dried storage and preparation method for the determination of mycophenolic acid in plasma by high-performance liquid chromatography. Biomed Chromatogr 2017; 31. [PMID: 28205247 DOI: 10.1002/bmc.3958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 02/01/2017] [Accepted: 02/11/2017] [Indexed: 11/09/2022]
Abstract
Plasma samples were conventionally stored at freezing conditions until the time of detection. Such a technique, when carried out over an extended period, is energy consuming; in addition, preparation and transportation of stored samples is inconvenient. In this study, a freeze-dried storage and preparation method was proposed to determine the presence of mycophenolic acid (MPA) in plasma. Fresh plasma samples were freeze-dried using a device, and then stored at ambient temperature. After the stored samples were soaked with methanol spiked with the internal standard, high-performance liquid chromatography was conducted to detect MPA. The proposed method was demonstrated to be precise and accurate over the linear range of 0.5-50 μg mL-1 , with both intra- and inter-day precision being <7% and biases <10%. The freeze-dried samples were stable at ambient temperature for at least 40 days. This method was also successfully applied to the pharmacokinetic study of MPA in healthy volunteers. Pharmacokinetic parameters, such as maximum plasma concentration, time point of maximum plasma concentration and elimination half-life, among others, were consistent with the results in the published study. This proposed technique was proved to be simple, reproducible and energy saving. This approach could also simplify the storage and analysis of samples in clinical and scientific drug research.
Collapse
Affiliation(s)
- Lei Wang
- School of Life Sciences, Central South University, Changsha, Hunan, China.,Research Institute of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Wei Qiang
- Research Institute of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Ying Li
- School of Food and Pharmaceutical Engineering, Guiyang College, Guiyang, China
| | - Zeneng Cheng
- Research Institute of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Mengmeng Xie
- Research Institute of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Džodić P, University of Niš, Faculty of Medicine, Department of Pharmacy, Niš, Serbia, Veličković-Radovanović R, Šmelcerović A, Catić-Đorđević A, Stefanović N, Spasić A, Ilić D, Živanović S, Ilijev I. VALIDATION OF HPLC METHOD FOR THE DETERMINATION OF MYCOPHENOLIC ACID IN HUMAN PLASMA OBTAINED FROM RENAL TRANSPLANT RECIPIENTS. ACTA MEDICA MEDIANAE 2016. [DOI: 10.5633/amm.2016.0404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Development and validation of a sensitive and selective LC–MS/MS method for determination of tacrolimus in oral fluids. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1038:136-141. [DOI: 10.1016/j.jchromb.2016.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/28/2016] [Accepted: 10/08/2016] [Indexed: 11/21/2022]
|
23
|
Shipkova M, Valbuena H. Liquid chromatography tandem mass spectrometry for therapeutic drug monitoring of immunosuppressive drugs: Achievements, lessons and open issues. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Zhang D, Chow DSL, Renbarger JL. Simultaneous quantification of mycophenolic acid and its glucuronide metabolites in human plasma by an UPLC-MS/MS assay. Biomed Chromatogr 2016; 30:1648-55. [DOI: 10.1002/bmc.3736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Daping Zhang
- Department of Pharmacological and Pharmaceutical Sciences; University of Houston College of Pharmacy; Houston TX 77030 USA
| | - Diana S-L. Chow
- Department of Pharmacological and Pharmaceutical Sciences; University of Houston College of Pharmacy; Houston TX 77030 USA
| | - Jamie L. Renbarger
- Department of Medicine; Indiana University School of Medicine; Indianapolis IN 46202 USA
| |
Collapse
|
25
|
Syed M, Srinivas NR. A comprehensive review of the published assays for the quantitation of the immunosuppressant drug mycophenolic acid and its glucuronidated metabolites in biological fluids. Biomed Chromatogr 2016; 30:721-48. [DOI: 10.1002/bmc.3682] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Muzeeb Syed
- Department of Pharmacy, Faculty of Health and Medical Sciences; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | | |
Collapse
|
26
|
Alternative matrices for therapeutic drug monitoring of immunosuppressive agents using LC-MS/MS. Bioanalysis 2016; 7:1037-58. [PMID: 25966013 DOI: 10.4155/bio.15.35] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immunosuppressive drugs used in solid organ transplants typically have narrow therapeutic windows and high intra- and intersubject variability. To ensure satisfactory exposure, therapeutic drug monitoring (TDM) plays a pivotal role in any successful posttransplant maintenance therapy. Currently, recommendations for optimum immunosuppressant concentrations are based on blood/plasma measurements. However, they introduce many disadvantages, including poor prediction of allograft survival and toxicity, a weak correlation with drug concentrations at the site of action and the invasive nature of the sample collection. Thus, alternative matrices have been investigated. This paper reviews tandem-mass spectrometry (LC-MS/MS) methods used for the quantification of immunosuppressant drugs utilizing nonconventional matrices, namely oral fluids, fingerprick blood and intracellular and intratissue sampling. The advantages, disadvantages and clinical application of such alternative mediums are discussed. Additionally, sample extraction techniques and basic chromatography information regarding these methods are presented in tabulated form.
Collapse
|
27
|
Mika A, Stepnowski P. Current methods of the analysis of immunosuppressive agents in clinical materials: A review. J Pharm Biomed Anal 2016; 127:207-31. [PMID: 26874932 DOI: 10.1016/j.jpba.2016.01.059] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/08/2016] [Accepted: 01/28/2016] [Indexed: 12/24/2022]
Abstract
More than 100000 solid organ transplantations are performed every year worldwide. Calcineurin (cyclosporine A, tacrolimus), serine/threonine kinase (sirolimus, everolimus) and inosine monophosphate dehydrogenase inhibitor (mycophenolate mofetil), are the most common drugs used as immunosuppressive agents after solid organ transplantation. Immunosuppressive therapy, although necessary after transplantation, is associated with many adverse consequences, including the formation of secondary metabolites of drugs and the induction of their side effects. Calcineurin inhibitors are associated with nephrotoxicity, cardiotoxicity and neurotoxicity; moreover, they increase the risk of many diseases after transplantation. The review presents a study of the movement of drugs in the body, including the processes of absorption, distribution, localisation in tissues, biotransformation and excretion, and also their accompanying side effects. Therefore, there is a necessity to monitor immunosuppressants, especially because these drugs are characterised by narrow therapeutic ranges. Their incorrect concentrations in a patient's blood could result in transplant rejection or in the accumulation of toxic effects. Immunosuppressive pharmaceuticals are macrolide lactones, peptides, and high molecular weight molecules that can be metabolised to several metabolites. Therefore the two main analytical methods used for their determination are high performance liquid chromatography with various detection methods and immunoassay methods. Despite the rapid development of new analytical methods of analysing immunosuppressive agents, the application of the latest generation of detectors and increasing sensitivity of such methods, there is still a great demand for the development of highly selective, sensitive, specific, rapid and relatively simple methods of immunosuppressive drugs analysis.
Collapse
Affiliation(s)
- Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
28
|
Liang Q, Liu H, Zhang T, Jiang Y, Xing H, Zhang AH. Metabolomics-based screening of salivary biomarkers for early diagnosis of Alzheimer's disease. RSC Adv 2015. [DOI: 10.1039/c5ra19094k] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Early diagnosis of Alzheimer's disease (AD) is an attractive strategy to increase the survival rate of patients.
Collapse
Affiliation(s)
- Qun Liang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Han Liu
- Simon Fraser University (SFU)
- Burnaby
- Canada
| | - Tianyu Zhang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Yan Jiang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Haitao Xing
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Ai-hua Zhang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| |
Collapse
|
29
|
Nguyen Thi MT, Capron A, Mourad M, Wallemacq P. Mycophenolic acid quantification in human peripheral blood mononuclear cells using liquid chromatography–tandem mass spectrometry. Clin Biochem 2013; 46:1909-11. [DOI: 10.1016/j.clinbiochem.2013.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
|
30
|
Upadhyay V, Trivedi V, Shah G, Yadav M, Shrivastav PS. Determination of mycophenolic acid in human plasma by ultra performance liquid chromatography tandem mass spectrometry. J Pharm Anal 2013; 4:205-216. [PMID: 29403884 PMCID: PMC5761118 DOI: 10.1016/j.jpha.2013.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/03/2013] [Indexed: 11/16/2022] Open
Abstract
A simple, sensitive and high throughput ultra performance liquid chromatography tandem mass spectrometry method has been developed for the determination of mycophenolic acid in human plasma. The method involved simple protein precipitation of MPA along with its deuterated analog as an internal standard (IS) from 50 µL of human plasma. The chromatographic analysis was done on Acquity UPLC C18 (100 mm×2.1 mm, 1.7 µm) column under isocratic conditions using acetonitrile and 10 mM ammonium formate, pH 3.00 (75:25, v/v) as the mobile phase. A triple quadrupole mass spectrometer operating in the positive ionization mode was used for quantitation. In-source conversion of mycophenolic glucuronide metabolite to the parent drug was selectively controlled by suitable optimization of cone voltage, cone gas flow and desolvation temperature. The method was validated over a wide concentration range of 15-15000 ng/mL. The mean extraction recovery for the analyte and IS was >95%. Matrix effect expressed as matrix factors ranged from 0.97 to 1.02. The method was successfully applied to support a bioequivalence study of 500 mg mycophenolate mofetil tablet in 72 healthy subjects.
Collapse
Affiliation(s)
- Vivek Upadhyay
- Chemistry Department, Kadi Sarva Vishwavidyalaya, Gandhinagar 382015, India
| | - Vikas Trivedi
- Chemistry Department, Kadi Sarva Vishwavidyalaya, Gandhinagar 382015, India
| | - Gaurang Shah
- Chemistry Department, Kadi Sarva Vishwavidyalaya, Gandhinagar 382015, India
| | - Manish Yadav
- Chemistry Department, Kadi Sarva Vishwavidyalaya, Gandhinagar 382015, India
| | - Pranav S. Shrivastav
- Chemistry Department, Kadi Sarva Vishwavidyalaya, Gandhinagar 382015, India
- Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad 380009, India
- Corresponding author at: Department of Chemistry, School of Sciences, Gujarat University, Navrangpura, Ahmedabad 380009, India. Tel.: +91 079 2630 0969; fax: +91 079 2630 8545.
| |
Collapse
|
31
|
Woods AG, Ngounou Wetie AG, Sokolowska I, Russell S, Ryan JP, Michel TM, Thome J, Darie CC. Mass spectrometry as a tool for studying autism spectrum disorder. J Mol Psychiatry 2013; 1:6. [PMID: 25408899 PMCID: PMC4223881 DOI: 10.1186/2049-9256-1-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/13/2012] [Indexed: 12/04/2022] Open
Abstract
Autism spectrum disorders (ASDs) are increasing in incidence but have an incompletely understood etiology. Tools for uncovering clues to the cause of ASDs and means for diagnoses are valuable to the field. Mass Spectrometry (MS) has been a useful method for evaluating differences between individuals with ASDs versus matched controls. Different biological substances can be evaluated using MS, including urine, blood, saliva, and hair. This technique has been used to evaluate relatively unsupported hypotheses based on introduction of exogenous factors, such as opiate and heavy metal excretion theories of ASDs. MS has also been used to support disturbances in serotonin-related molecules, which have been more consistently observed in ASDs. Serotonergic system markers, markers for oxidative stress, cholesterol system disturbances, peptide hypo-phosphorylation and methylation have been measured using MS in ASDs, although further analyses with larger numbers of subjects are needed (as well as consideration of behavioral data). Refinements in MS and data analysis are ongoing, allowing for the possibility that future studies examining body fluids and specimens from ASD subjects could continue to yield novel insights. This review summarizes MS investigations that have been conducted to study ASD to date and provides insight into future promising applications for this technique, with focus on proteomic studies.
Collapse
Affiliation(s)
- Alisa G Woods
- Biochemistry and Proteomics Group Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Armand G Ngounou Wetie
- Biochemistry and Proteomics Group Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Izabela Sokolowska
- Biochemistry and Proteomics Group Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| | - Stefanie Russell
- Department of Psychology, State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, NY 12901 USA
| | - Jeanne P Ryan
- Department of Psychology, State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, NY 12901 USA
| | - Tanja Maria Michel
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Johannes Thome
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany ; College of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP UK
| | - Costel C Darie
- Biochemistry and Proteomics Group Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810 USA
| |
Collapse
|