1
|
Labíková M, Svoboda J, Tůma J, Lindner W, Kohout M. Chiral recognition without π-π-interactions: Highly efficient chiral strong cation exchangers lacking an aromatic unit in the molecular structure. J Chromatogr A 2024; 1719:464729. [PMID: 38387150 DOI: 10.1016/j.chroma.2024.464729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Current state-of-the-art chiral stationary phases (CSPs) enable chiral resolution of almost any racemic mixture of choice. The exceptions represent ionizable and ionized substances that fail at any attempts to resolve on commercially available CSPs. These compounds, however, can be efficiently separated on chiral ion exchangers. Commercially available Cinchona alkaloids-based chiral weak ion-exchangers are typically used for chiral resolution of organic acids, while zwitterion ion-exchangers are efficient in the resolution of acids, bases, and zwitterions. The latter possess in their structure a cation exchange unit, which alone can serve as a cornerstone of chiral strong cation exchangers facilitating chiral separation of various basic racemic mixtures. Although chiral strong cation exchangers (cSCX) are efficient CSPs, their structural variations have not been thoroughly studied so far. It was assumed that the mechanism of chiral recognition of basic compounds by cSCX is based predominantly on π-π-interactions, hydrogen bonding and steric interactions (CSP I). To verify this assumption, we aimed in our study on the design and synthesis of cSCX first lacking lateral polar substituents on the aromatic unit in the selector's structure (CSP II), and second, to replace the aromatic unit by a cyclohexane ring (CSP III and IV), thereby to omit completely the π-π-interactions. We hypothesized that this structural change should lead to a partial or complete loss of enantiorecognition power of the selectors. Surprisingly, the non-aromatic cSCXs have shown chiral recognition capability comparable to that of previously described chiral cation exchange-type CSPs: from 16 analytes screened, 11 analytes were baseline resolved and 5 partially resolved on CSP I, while non-aromatic CSP III resolved 10 analytes baseline and 6 partially. We discuss the structural motifs of the known cSCX and the novel non-aromatic selectors in a relationship with their chromatographic performance using a set of basic analytes. Moreover, we present a theory of an effective chiral recognition mechanism by two novel non-aromatic cSCXs based on the chromatographic results and quantum mechanical calculations.
Collapse
Affiliation(s)
- Magdaléna Labíková
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jiří Svoboda
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jiří Tůma
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Wolfgang Lindner
- Institute of Analytical Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Michal Kohout
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
2
|
Daneshvar Tarigh G. Enantioseparation/Recognition based on nano techniques/materials. J Sep Sci 2023:e2201065. [PMID: 37043692 DOI: 10.1002/jssc.202201065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]
Abstract
Enantiomers show different behaviors in interaction with the chiral environment. Due to their identical chemical structure and their wide application in various industries, such as agriculture, medicine, pesticide, food, and so forth, their separation is of great importance. Today, the term "nano" is frequently encountered in all fields. Technology and measuring devices are moving towards miniaturization, and the usage of nanomaterials in all sectors is expanding substantially. Given that scientists have recently attempted to apply miniaturized techniques known as nano-liquid chromatography/capillary-liquid chromatography, which were originally accomplished in 1988, as well as the widespread usage of nanomaterials for chiral resolution (back in 1989), this comprehensive study was developed. Searching the terms "nano" and "enantiomer separation" on scientific websites such as Scopus, Google Scholar, and Web of Science yields articles that either use miniaturized instruments or apply nanomaterials as chiral selectors with a variety of chemical and electrochemical detection techniques, which are discussed in this article.
Collapse
Affiliation(s)
- Ghazale Daneshvar Tarigh
- Department of Analytical Chemistry, University College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Miao P, Xi Y, Feng Z, Zhang J, Du Y, Chen C. Enhanced enantioseparation of drugs by capillary electrochromatography with a L-cysteine functionalized gold nanoparticle based stationary phase. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1982-1987. [PMID: 35531858 DOI: 10.1039/d2ay00414c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticles, which have unique properties, have attracted growing attention in enantiomeric separation nowadays. In this paper, an L-cysteine functionalized gold nanoparticle (L-Cys-GNP) based capillary column was prepared and applied in separating drug enantiomers in capillary electrochromatography (CEC) with lactobionic acid (LA) as a chiral selector. Compared with bare fused-silica capillary columns, the capillary columns modified with L-Cys-GNPs showed excellent chiral separation performance. A series of parameters affecting the enantiomeric separation were systematically investigated.
Collapse
Affiliation(s)
- Pandeng Miao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, P. R. China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ying Xi
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, P. R. China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zijie Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, P. R. China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, P. R. China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, P. R. China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Cheng Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, No. 24 Tongjiaxiang, Nanjing 210009, Jiangsu, P. R. China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
4
|
Advancements in the preparation and application of monolithic silica columns for efficient separation in liquid chromatography. Talanta 2021; 224:121777. [PMID: 33379011 DOI: 10.1016/j.talanta.2020.121777] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 01/23/2023]
Abstract
Fast and efficient separation remains a big challenge in high performance liquid chromatography (HPLC). The need for higher efficiency and resolution in separation is constantly in demand. To achieve that, columns developed are rapidly moving towards having smaller particle sizes and internal diameters (i.d.). However, these parameters will lead to high back-pressure in the system and will burden the pumps of the HPLC instrument. To address this limitation, monolithic columns, especially silica-based monolithic columns have been introduced. These columns are being widely investigated for fast and efficient separation of a wide range of molecules. The present article describes the current methods developed to enhance the column efficiency of particle packed columns and how silica monolithic columns can act as an alternative in overcoming the low permeability of particle packed columns. The fundamental processes behind the fabrication of the monolith including the starting materials and the silica sol-gel process will be discussed. Different monolith derivatization and end-capping processes will be further elaborated and followed by highlights of the performance such monolithic columns in key applications in different fields with various types of matrices.
Collapse
|
5
|
Alwera V, Sehlangia S, Alwera S. Enantioseparation of racemic amino alcohols using green micellar liquid chromatography and confirmation of absolute configuration with elution order. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1819826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Vijay Alwera
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India
| | - Suman Sehlangia
- School of Basic Science, Indian Institute of Technology Mandi, Mandi, India
| | - Shiv Alwera
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, India
| |
Collapse
|
6
|
Şarkaya K, Aşir S, Göktürk I, Ektirici S, Yilmaz F, Yavuz H, Denizli A. Separation of histidine enantiomers by capillary electrochromatography with molecularly imprinted monolithic columns. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.201900101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Koray Şarkaya
- Department of ChemistryHacettepe University Ankara Turkey
| | - Süleyman Aşir
- Department of Materials Science and Nanotechnology EngineeringNear East University Mersin Turkey
| | - Ilgım Göktürk
- Department of ChemistryHacettepe University Ankara Turkey
| | - Sisem Ektirici
- Department of ChemistryHacettepe University Ankara Turkey
| | - Fatma Yilmaz
- Department of Chemistry TechnolgyBolu Abant İzzet Baysal University Bolu Turkey
| | - Handan Yavuz
- Department of ChemistryHacettepe University Ankara Turkey
| | - Adil Denizli
- Department of ChemistryHacettepe University Ankara Turkey
| |
Collapse
|
7
|
Şarkaya K, Aşir S, Göktürk I, Yilmaz F, Yavuz H, Denizli A. Electrochromatographic separation of hydrophobic amino acid enantiomers by molecularly imprinted capillary columns. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Luo R, Han H, Liu J, Xu D, Wang Q, Fanali S, Jiang Z. Preparation and application of teicoplanin functionalized polymeric monolith for enantioseparation of chiral drugs. J Pharm Biomed Anal 2020; 182:113129. [PMID: 32036299 DOI: 10.1016/j.jpba.2020.113129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
Abstract
A novel chiral stationary phase (CSP), based on a monolithic organic polymer chemically modified with teicoplanin, was fabricated within a 100 μm I.D. fused silica capillary. The teicoplanin was firstly derivatized with 2-isocyanatoethyl methacrylate (ICNEML) and then thermally co-polymerized with the crosslinker ethylene dimethacrylate (EDMA) in presence of porogens (methanol and dimethylsulfoxide). The optimal experimental conditions (e.g., concentration and ratio of the reagents), considering enantioresolution and permeability, were systematically investigated. The prepared monolith was evaluated using scanning electron microscopy, and the column exhibited quite good morphology. In order to further evaluate the enantioresolving power of the poly(ICNEML-teicoplanin-co-EDMA) monolith, a series of basic and acidic chiral compounds were analyzed using an isocratic mode of polar organic solvents (methanol and acetonitrile) or the same solvents in combination with water (reversed-phase) by nano-liquid chromatography. Five mandelic acids and six derivatized amino acids were enantioresolved under reversed-phase mode (Rs = 1.22-3.47 and α = 1.43-6.33). This monolithic teicoplanin-CSP was also effective in the enantioseparations of 17 amino alcohol drugs employing polar-organic phase mode (MeOH/ACN/TEA/HOAc (80/20/0.03/0.055, v/v/v/v)). Ten of them were baseline enantioresolved (alprenolol, betaxolol, clenbuterol, isoproterenol, metoprolol, pindolol, propranolol, salbutamol, sotalol, tertatolol) (Rs = 1.55-2.48 and α = 1.21-1.55), while the others were partially enantioseparated (Rs = 1.14-1.48).
Collapse
Affiliation(s)
- Rongying Luo
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Hai Han
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jia Liu
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Dongsheng Xu
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871, Alcalá de Henares (Madrid), Spain
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Salvatore Fanali
- Ph.D. School in Natural Science and Engineering, University of Verona, Strada Le Grazie, 15-37129, Verona, Italy
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
9
|
|
10
|
Determination of l-norvaline and l-tryptophan in dietary supplements by nano-LC using an O-[2-(methacryloyloxy)-ethylcarbamoyl]-10,11-dihydroquinidine-silica hybrid monolithic column. J Pharm Anal 2020; 10:70-77. [PMID: 32123601 PMCID: PMC7037541 DOI: 10.1016/j.jpha.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/19/2019] [Accepted: 10/19/2019] [Indexed: 11/23/2022] Open
Abstract
An analytical methodology based on an O-[2-(methacryloyloxy)-ethylcarbamoyl]-10,11-dihydroquinidine (MQD)-silica hybrid monolithic column was developed for the enantioseparation of 9-fluorenylmethoxycarbonyl (FMOC) derivatized amino acids by nano-liquid chromatography. The mobile phase was optimized including the apparent pH, content of ACN, and concentration of the buffer to obtain a satisfactory enantioresolution performance. 27 FMOC derivatized amino acids including 19 protein and 8 non-protein amino acids were tested, and 19 out of them were enantiomerically discriminated obtaining baseline separation for 11 of them. Analytical characteristics of the method were evaluated for norvaline and tryptophan in terms of linearity, precision, accuracy, limits of detection (LOD) and quantitation (LOQ) showing good performance to be applied to the enantiomeric determination of these amino acids in dietary supplements. LOD and LOQ values were 9.3 and 31 μM for norvaline enantiomers and 7.5 and 25 μM for tryptophan enantiomers, respectively. The contents of d-norvaline and d-tryptophan were below their respective LODs in all the analyzed samples. Quantitation of l-tryptophan and l-norvaline showed good agreement with the labeled contents except for one sample which did not show presence of l-norvaline, contrary to the label indication. A method was developed for the enantiomeric separation of amino acids by nano-LC. A novel quinidine-silica hybrid monolith was employed as chiral column. 19 protein and non-protein FMOC-amino acids were enantiomerically discriminated. Analytical characteristics of the developed method were evaluated. Norvaline and tryptophan were enantiomerically determined in dietary supplements.
Collapse
|
11
|
Recent advances in preparation and applications of monolithic chiral stationary phases. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115774] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Liu S, Fu X, Löffler R, Lämmerhofer M. In-situ photopolymerized polyhedral oligomeric silsesquioxane-derived monolithic capillary columns with quinidine functionality for enantioseparation by nano-liquid chromatography. Electrophoresis 2019; 40:3132-3139. [PMID: 31591731 DOI: 10.1002/elps.201900316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023]
Abstract
The successful fabrication of monolithic capillary columns for enantiomer separations was achieved within vinylized fused silica capillaries via fast "one-pot" photo-initiated free radical polymerization reaction. A mixture consisting of polyhedral oligomeric silsesquioxane, O-[2-(methacryloyloxy)ethylcarbamoyl]-10,11-dihydroquinidine was copolymerized in the presence of n-butanol, ethylene glycol and photo-initiator 2,2-dimethoxy-2-phenylacetophenone. The morphology of the resultant polymeric hybrid inorganic-organic material and its permeability as well as porosity can be controlled by adjusting the composition of the monomers and binary porogenic solvent. The chromatographic characteristics of the columns have been investigated. Separation factors of N-acetyl-phenylalanine (Ac-Phe) and dichlorprop dropped with decrease of chiral functional monomer. Permeability was better when the macroporogen ethyleneglycol was present at higher concentrations during the polymerization. In general, the chiral compounds were well separated (dichlorprop: α = 1.53, Rs up to 4.14; Ac-Phe: α = 1.36, Rs up to 2.69) by nano-HPLC with an optimized enantioselective monolithic capillary column which can be prepared within a few minutes.
Collapse
Affiliation(s)
- Siyao Liu
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Xinyue Fu
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| | - Ronny Löffler
- Center for Light-Matter Interaction, Sensors & Analytics (LISA+), University of Tübingen, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Gao L, Xue Y, Zhang Z, Tian Y. Enantioseparation of
N‐
acetyl‐glutamine enantiomers by LC–MS/MS and its application to a plasma protein binding study. Biomed Chromatogr 2019; 33:e4559. [DOI: 10.1002/bmc.4559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Lei Gao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing China
- Key Laboratory of Drug Consistency EvaluationChina Pharmaceutical University Nanjing China
| | - Yunwen Xue
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing China
- Key Laboratory of Drug Consistency EvaluationChina Pharmaceutical University Nanjing China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing China
- Key Laboratory of Drug Consistency EvaluationChina Pharmaceutical University Nanjing China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing China
- Key Laboratory of Drug Consistency EvaluationChina Pharmaceutical University Nanjing China
| |
Collapse
|
14
|
Fouad A, Ibrahim D, Adly FG, Ghanem A. An insight into chiral monolithic stationary phases for enantioselective high-performance liquid chromatography applications. J Sep Sci 2019; 42:2303-2340. [PMID: 31050176 DOI: 10.1002/jssc.201900159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 02/02/2023]
Abstract
In this review, three main classes of chiral monolithic stationary phases, namely silica-, organic polymer-, and hybrid-based monolithic stationary phases, are covered. Their preparations, applications, and advantages compared with the conventional-packed and open-tubular capillary columns are discussed. A detailed description of the different types and techniques used for the introduction of chiral selectors into the monolithic matrices such as immobilization, functionalization, coating, encapsulation, and bonding. Special emphasis is given to the recent developments of chiral selectors in HPLC monolithic stationary phases during the past 18 years.
Collapse
Affiliation(s)
- Ali Fouad
- Chirality Program, School of Science, Faculty of Science and Technology, University of Canberra, ACT, Australia.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Diana Ibrahim
- Chirality Program, School of Science, Faculty of Science and Technology, University of Canberra, ACT, Australia
| | - Frady G Adly
- Chirality Program, School of Science, Faculty of Science and Technology, University of Canberra, ACT, Australia
| | - Ashraf Ghanem
- Chirality Program, School of Science, Faculty of Science and Technology, University of Canberra, ACT, Australia
| |
Collapse
|
15
|
Xu D, Wang Q, Sánchez-López E, Jiang Z, Marina ML. Preparation of an O-[2-(methacryloyloxy)-ethylcarbamoyl]-10,11-dihydroquinidine-silica hybrid monolithic column for the enantioseparation of amino acids by nano-liquid chromatography. J Chromatogr A 2019; 1593:63-72. [DOI: 10.1016/j.chroma.2019.01.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/16/2022]
|
16
|
Ma S, Wang Y, Zhang H, Li Y, Ou J, Wei Y, Ye M. One-step fabrication of cinchona-based hybrid monolithic chiral stationary phases via photo-initiated thiol-ene polymerization for cLC enantioseparation. Talanta 2019; 198:432-439. [PMID: 30876583 DOI: 10.1016/j.talanta.2019.02.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/29/2019] [Accepted: 02/09/2019] [Indexed: 12/23/2022]
Abstract
Although various click polymerization reactions (thiol-ene, thiol-yne, thiol-Michael, thiol-epoxy and amine-epoxy) have been utilized to prepare either hybrid or organic monolithic columns with homogeneous network structures, there were few reports on fabrication of monolithic CSPs via click polymerization. Herein, a fast and robust approach was explored to fabricate cinchona-based monolithic hybrid CSPs via photo-initiated thiol-ene polymerization within 10 min in one step. A self-synthesized octakis(3-mercaptopropyl) octasilsesquioxane (POSS-SH) was polymerized with phenylisocyanate cinchonidine (PCD) and (+)-N,N'-diallyl-L-tartardiamide (DATDA) or 1,2,4-trivinylcyclohexane (TVCH). The resulting two kinds of as-synthesized monolithic CSPs, poly(POSS-co-DATDA-co-PCD) and poly(POSS-co-TVCH-co-PCD), were evaluated for cLC enantioseparation of acidic racemates. It was found that they exhibited different enantioseparation ability due to using different multivinyl crosslinkers. The influence of ACN content in mobile phase on the enantioseparation of acidic racemates was investigated. The separation mechanism was also discussed on the basis of a comparison of enantioseparation on two kinds of hybrid monolithic CSPs.
Collapse
Affiliation(s)
- Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Haiyang Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Ya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
17
|
Wu P, Hu F, Wang R, Gao L, Huang T, Xin Y, He H. Colorimetric chiral recognition of D/L-phenylalanine based on triangular silver nanoplates. Amino Acids 2018; 50:1269-1278. [PMID: 29961142 DOI: 10.1007/s00726-018-2604-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
A new colorimetric analysis approach for chiral recognition of D- and L-forms of phenylalanine (phe) was developed based on triangular silver nanoplates (TAg-NPs). The TAg-NPs could be used as chiral colorimetric probes for D- and L-forms of phe. Upon addition of D-phe to TAg-NPs solution, a color change from blue to purple to pink could be observed, while no obvious color change was found on addition of L-phe. L-phe could prevent the TAg-NPs from being etched to small size particles while the protective effect of D-phe was weak. Moreover, the enantiomeric excess of D-phe could be determined using the proposed chiral assay in the percentage of L-phe from 0 to 100% with a correlation coefficient of 0.9855. The phenomenon could be monitored by bare eyes and quantified analysis by UV-Vis spectrophotometry. The developed approach had several advantages, such as simplicity, visualization, short analysis time and low cost. This study presented a fast visualization analysis method of chiral D/L-phenylalanine and may lay the foundation for the development of visualization chiral recognition of other target analytes.
Collapse
Affiliation(s)
- Pinping Wu
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China
| | - Fan Hu
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China
| | - Ruya Wang
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China
| | - Lingxuan Gao
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China
| | - Tao Huang
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China
| | - Yufu Xin
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
18
|
Ilisz I, Bajtai A, Lindner W, Péter A. Liquid chromatographic enantiomer separations applying chiral ion-exchangers based on Cinchona alkaloids. J Pharm Biomed Anal 2018; 159:127-152. [PMID: 29980014 DOI: 10.1016/j.jpba.2018.06.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
Abstract
As the understanding of the various biological actions of compounds with different stereochemistry has grown, the necessity to develop methods for the analytical qualification and quantification of chiral products has become particularly important. The last quarter of the century has seen a vast growth of diverse chiral technologies, including stereocontrolled synthesis and enantioselective separation and analysis concepts. By the introduction of covalently bonded silica-based chiral stationary phases (CSPs), the so-called direct liquid chromatographic (LC) methods of enantiomer separation became the state-of-the-art methodology. Although a large number of CSPs is available nowadays, the design and development of new chiral selectors and CSPs are still needed since it is obvious that in practice one needs a good portfolio of different CSPs and focused "chiral columns" to tackle the challenging tasks. This review discusses and summarizes direct enantiomer separations of chiral acids and ampholytes applying anionic and zwitterionic ion-exchangers derived from Cinchona alkaloids with emphasis on literature data published in the last 10 years. Our aim is to provide an overview of practical solutions, while focusing on the integration of molecular recognition and methodological variables.
Collapse
Affiliation(s)
- István Ilisz
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; Institute of Pharmaceutical Analysis, University of Szeged, Somogyi utca 4, H-6720 Szeged, Hungary.
| | - Attila Bajtai
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Wolfgang Lindner
- Department of Analytical Chemistry, University of Vienna, Währinger Strasse 83, 1090 Vienna, Austria
| | - Antal Péter
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| |
Collapse
|
19
|
Ruan M, Wang Q, Wu H, Wang Y, Han H, Jiang Z. Preparation and evaluation oftert-leucine derivative functionalized polymeric monoliths for micro-liquid chromatography. Electrophoresis 2017; 38:3020-3028. [DOI: 10.1002/elps.201700176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Meng Ruan
- Institute of Pharmaceutical Analysis, College of Pharmacy; Jinan University; Guangzhou P. R. China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy; Jinan University; Guangzhou P. R. China
- Integrated Chinese and Western Medicine Postdoctoral research station; Jinan University; Guangzhou P. R. China
| | - Huihui Wu
- Institute of Pharmaceutical Analysis, College of Pharmacy; Jinan University; Guangzhou P. R. China
| | - Yuqiang Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy; Jinan University; Guangzhou P. R. China
| | - Hai Han
- Institute of Pharmaceutical Analysis, College of Pharmacy; Jinan University; Guangzhou P. R. China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy; Jinan University; Guangzhou P. R. China
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research; Jinan University; Guangzhou P. R. China
| |
Collapse
|
20
|
Lin Y, Guo J, Lin H, Wang J, Somsen GW, Crommen J, Jiang Z. Effect of fabrication strategy on the enantioseparation performance of β-cyclodextrin-functionalized polymethacrylate monoliths: A comparative evaluation. J Sep Sci 2017; 40:3754-3762. [DOI: 10.1002/jssc.201700424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/12/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Yuanjing Lin
- Institute of Pharmaceutical Analysis; College of Pharmacy, Jinan University; Guangzhou China
| | - Jialiang Guo
- School of Stomatology and Medicine; Foshan University; Foshan China
| | - Hang Lin
- Institute of Pharmaceutical Analysis; College of Pharmacy, Jinan University; Guangzhou China
| | - Jincai Wang
- Institute of Pharmaceutical Analysis; College of Pharmacy, Jinan University; Guangzhou China
| | - Govert W. Somsen
- Institute of Pharmaceutical Analysis; College of Pharmacy, Jinan University; Guangzhou China
- Division of Bioanalytical Chemistry; AIMMS Research Group Biomolecular Analysis, Vrije Universiteit Amsterdam; Amsterdam The Netherlands
| | - Jacques Crommen
- Institute of Pharmaceutical Analysis; College of Pharmacy, Jinan University; Guangzhou China
- Laboratory of Analytical Pharmaceutical Chemistry; Department of Pharmaceutical Sciences; CIRM, University of Liege; Liege Belgium
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis; College of Pharmacy, Jinan University; Guangzhou China
| |
Collapse
|
21
|
Fouad A, Ghanem A. Immobilized Chiral Selectors on Monolithic High-Performance Liquid Chromatography Columns. ADVANCES IN CHROMATOGRAPHY 2017. [DOI: 10.1201/9781315116372-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Wolter M, Lämmerhofer M. In-situ functionalized monolithic polysiloxane-polymethacrylate composite materials from polythiol-ene double click reaction in capillary column format for enantioselective nano-high-performance liquid chromatography. J Chromatogr A 2017; 1497:172-179. [DOI: 10.1016/j.chroma.2017.03.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/10/2017] [Accepted: 03/23/2017] [Indexed: 01/07/2023]
|
23
|
Wang Q, Peng K, Chen W, Cao Z, Zhu P, Zhao Y, Wang Y, Zhou H, Jiang Z. Development of double chain phosphatidylcholine functionalized polymeric monoliths for immobilized artificial membrane chromatography. J Chromatogr A 2017; 1479:97-106. [DOI: 10.1016/j.chroma.2016.11.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
|
24
|
Guo J, Xiao Y, Lin Y, Crommen J, Jiang Z. Effect of the crosslinker type on the enantioseparation performance of β -cyclodextrin functionalized monoliths prepared by the one-pot approach. J Chromatogr A 2016; 1467:288-296. [DOI: 10.1016/j.chroma.2016.05.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 01/03/2023]
|
25
|
Ilisz I, Péter A, Lindner W. State-of-the-art enantioseparations of natural and unnatural amino acids by high-performance liquid chromatography. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Guo J, Xiao Y, Lin Y, Zhang Q, Chang Y, Crommen J, Jiang Z. Influence of the linking spacer length and type on the enantioseparation ability of β-cyclodextrin functionalized monoliths. Talanta 2016; 152:259-68. [DOI: 10.1016/j.talanta.2016.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 11/26/2022]
|
27
|
Wang Q, Zhu P, Ruan M, Wu H, Peng K, Han H, Somsen GW, Crommen J, Jiang Z. Chiral separation of acidic compounds using an O-9-(tert-butylcarbamoyl)quinidine functionalized monolith in micro-liquid chromatography. J Chromatogr A 2016; 1444:64-73. [DOI: 10.1016/j.chroma.2016.03.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|
28
|
Enantioseparation of N -derivatized amino acids by micro-liquid chromatography/laser induced fluorescence detection using quinidine-based monolithic columns. J Pharm Biomed Anal 2016; 121:244-252. [DOI: 10.1016/j.jpba.2015.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/06/2015] [Accepted: 12/09/2015] [Indexed: 11/23/2022]
|
29
|
Ma Y, Tanaka N, Vaniya A, Kind T, Fiehn O. Ultrafast Polyphenol Metabolomics of Red Wines Using MicroLC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:505-12. [PMID: 26698107 PMCID: PMC8168920 DOI: 10.1021/acs.jafc.5b04890] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The taste and quality of red wine are determined by its highly complex mixture of polyphenols and many other metabolites. No single method can fully cover the full metabolome, but even for polyphenols and related compounds, current methods proved inadequate. We optimized liquid chromatography resolution and sensitivity using 1 mm i.d. columns with microLC pumps and compared data-dependent to data-independent (SWATH) MS/MS acquisitions. A high-throughput microLC-MS method was developed with a 4 min gradient at 0.05 mL/min flow rate on a Kinetex C18 column and Sciex TripleTOF mass spectrometry. Using the novel software MS-DIAL, we structurally annotated 264 compounds including 165 polyphenols in six commercial red wines by accurate mass MS/MS matching. As proof of concept, multivariate statistics revealed the difference in the metabolite profiles of the six red wines, and regression analysis linked the polyphenol contents to the taste of the red wines.
Collapse
Affiliation(s)
- Yan Ma
- UC Davis Genome Center – Metabolomics, University of California, Davis, California 95616, United States
| | - Nobuo Tanaka
- UC Davis Genome Center – Metabolomics, University of California, Davis, California 95616, United States
- GL Sciences Inc., Iruma, Saitama 358-0032, Japan
| | - Arpana Vaniya
- UC Davis Genome Center – Metabolomics, University of California, Davis, California 95616, United States
| | - Tobias Kind
- UC Davis Genome Center – Metabolomics, University of California, Davis, California 95616, United States
| | - Oliver Fiehn
- UC Davis Genome Center – Metabolomics, University of California, Davis, California 95616, United States
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Corresponding Author: (O.F.) . Phone: (530) 754-8258. Fax: (530) 754-9658
| |
Collapse
|
30
|
Peng K, Wang Q, Chen W, Xia D, Zhou Z, Wang Y, Jiang Z, Wu F. Phosphatidic acid-functionalized monolithic stationary phase for reversed-phase/cation-exchange mixed mode chromatography. RSC Adv 2016. [DOI: 10.1039/c6ra21504a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A reversed-phase and cation-exchange mixed-mode poly(MDPA-co-EDMA) monolith was successfully prepared and applied to the separation of a wide range of analytes, such as small peptides, phenols, vitamins B, pharmaceutical compounds.
Collapse
Affiliation(s)
- Kun Peng
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
- School of Public Health
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis
- College of Pharmacy
- Jinan University
- Guangzhou
- China
| | - Weijia Chen
- Institute of Pharmaceutical Analysis
- College of Pharmacy
- Jinan University
- Guangzhou
- China
| | - Donghai Xia
- Institute of Pharmaceutical Analysis
- College of Pharmacy
- Jinan University
- Guangzhou
- China
| | - Zhengyin Zhou
- Institute of Pharmaceutical Analysis
- College of Pharmacy
- Jinan University
- Guangzhou
- China
| | - Yuqiang Wang
- Institute of Pharmaceutical Analysis
- College of Pharmacy
- Jinan University
- Guangzhou
- China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis
- College of Pharmacy
- Jinan University
- Guangzhou
- China
| | - Fuhai Wu
- School of Public Health
- Guangdong Pharmaceutical University
- Guangzhou 510006
- PR China
| |
Collapse
|
31
|
Separation of N-derivatized di- and tri-peptide stereoisomers by micro-liquid chromatography using a quinidine-based monolithic column – Analysis of l-carnosine in dietary supplements. J Chromatogr A 2016; 1428:176-84. [DOI: 10.1016/j.chroma.2015.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/02/2015] [Accepted: 09/05/2015] [Indexed: 02/04/2023]
|
32
|
Zhang Q, Gil V, Sánchez-López E, García MÁ, Jiang Z, Marina ML. Evaluation of the potential of a quinidine-based monolithic column on the enantiomeric separation of herbicides by nano-liquid chromatography. Microchem J 2015. [DOI: 10.1016/j.microc.2015.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|