1
|
Sechi B, Dessì A, Dallocchio R, Tsetskhladze N, Chankvetadze B, Pérez-Baeza M, Cossu S, Jibuti G, Mamane V, Peluso P. Unravelling dispersion forces in liquid-phase enantioseparation. Part I: Impact of ferrocenyl versus phenyl groups. Anal Chim Acta 2023; 1278:341725. [PMID: 37709466 DOI: 10.1016/j.aca.2023.341725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Highly ordered chiral secondary structures as well as multiple (tunable) recognition sites are the keys to success of polysaccharide carbamate-based chiral selectors in enantioseparation science. Hydrogen bonds (HBs), dipole-dipole, and π-π interactions are classically considered the most frequent noncovalent interactions underlying enantioselective recognition with these chiral selectors. Very recently, halogen, chalcogen and π-hole bonds were also identified as interactions working in polysaccharide carbamate-based selectors to promote enantiomer distinction. On the contrary, the function of dispersion interactions in this field was not explored so far. RESULTS The enantioseparation of chiral ferrocenes featuring chiral axis or chiral plane as stereogenic elements was performed by comparing five polysaccharide carbamate-based chiral columns, with the aim to identify enantioseparation outcomes that could be reasonably determined by dispersion forces, making available a reliable experimental data set for future theoretical studies to confirm the heuristic hypothesis. The effects of mobile phase polarity and temperature on the enantioseparation were considered, and potential recognition sites on analytes and selectors were evaluated by electrostatic potential (V) analysis and molecular dynamics (MD). In this first part, the enantioseparation of 3,3'-dibromo-5,5'-bis-ferrocenylethynyl-4,4'-bipyridine bearing two ferrocenylethynyl units linked to an axially chiral core was performed and compared to that of the analyte featuring the same structural motif with two phenyl groups in place of the ferrocenyl moieties. The results of this study showed the superiority of the ferrocenyl compared to the phenyl group, as a structural element favouring enantiodifferentiation. SIGNIFICANCE AND NOVELTY Even if dispersion (London) forces have been envisaged acting in liquid-phase enantioseparations, focused studies to explore possible contributions of dispersion forces with polysaccharide carbamate-based selectors are practically missing. This study allowed us to collect experimental information that support the involvement of dispersion forces as contributors to liquid-phase enantioseparation, paving the way to a new picture in this field.
Collapse
Affiliation(s)
- Barbara Sechi
- Istituto di Chimica Biomolecolare ICB-CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100, Sassari, Italy
| | - Alessandro Dessì
- Istituto di Chimica Biomolecolare ICB-CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100, Sassari, Italy
| | - Roberto Dallocchio
- Istituto di Chimica Biomolecolare ICB-CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100, Sassari, Italy
| | - Nutsa Tsetskhladze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179, Tbilisi, Georgia
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179, Tbilisi, Georgia
| | - Mireia Pérez-Baeza
- Departamento de Química Analítica, Universitat de València, Burjassot, València, Spain
| | - Sergio Cossu
- Dipartimento di Scienze Molecolari e Nanosistemi DSMN, Università Ca' Foscari Venezia, Via Torino 155, I-30172, Mestre Venezia, Italy
| | - Giorgi Jibuti
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179, Tbilisi, Georgia
| | - Victor Mamane
- Institut de Chimie de Strasbourg, UMR, CNRS 7177, Equipe LASYROC, 1 Rue Blaise Pascal, 67008, Strasbourg Cedex, France.
| | - Paola Peluso
- Istituto di Chimica Biomolecolare ICB-CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100, Sassari, Italy.
| |
Collapse
|
2
|
Plachká K, Pilařová V, Horáček O, Gazárková T, Vlčková HK, Kučera R, Nováková L. Columns in analytical-scale supercritical fluid chromatography: From traditional to unconventional chemistries. J Sep Sci 2023; 46:e2300431. [PMID: 37568246 DOI: 10.1002/jssc.202300431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Within this review, we thoroughly explored supercritical fluid chromatography (SFC) columns used across > 3000 papers published from the first study carried out under SFC conditions in 1962 to the end of 2022. We focused on the open tubular capillary, packed capillary, and packed columns, their chemistries, dimensions, and trends in used stationary phases with correlation to their specific interactions, advantages, drawbacks, used instrumentation, and application field. Since the 1990s, packed columns with liquid chromatography and SFC-dedicated stationary phases for chiral and achiral separation are predominantly used. These stationary phases are based on silica support modified with a wide range of chemical moieties. Moreover, numerous unconventional stationary phases were evaluated, including porous graphitic carbon, titania, zirconia, alumina, liquid crystals, and ionic liquids. The applications of unconventional stationary phases are described in detail as they bring essential findings required for further development of the supercritical fluid chromatography technique.
Collapse
Affiliation(s)
- Kateřina Plachká
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Veronika Pilařová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Ondřej Horáček
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Taťána Gazárková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Hana Kočová Vlčková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Radim Kučera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
3
|
De Gauquier P, Peeters J, Vanommeslaeghe K, Vander Heyden Y, Mangelings D. Modelling the enantiorecognition of structurally diverse pharmaceuticals on O-substituted polysaccharide-based stationary phases. Talanta 2023; 259:124497. [PMID: 37030098 DOI: 10.1016/j.talanta.2023.124497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
This study aims to develop models to predict the retention, separation and elution sequence of the enantiomers of structurally diverse pharmaceuticals. More specifically, Quantitative Structure Retention Relationships (QSRR) models are built that describe the relationship between molecular descriptors and retention. Eighteen structurally diverse chiral mixtures, each consisting of a pair of enantiomers, were analyzed on two polysaccharide chiral stationary phases, Chiralcel OD-RH (cellulose tris(3,5-dimethylphenylcarbamate)) and Lux amylose-2 (amylose tris(5-chloro-2-methylphenylcarbamate)), applying either a basic or an acidic mobile phase, and their retention factor and elution sequence were determined. Both achiral and, in-house defined, chiral descriptors were used as descriptive variables to build the models. Linear regression techniques, i.e. stepwise multiple linear regression (sMLR) and partial least squares (PLS) regression, were applied to model the retention or separation as a function of the descriptors. In a first step, models were built with only achiral descriptors to model the global retention of both enantiomers of a chiral molecule. Subsequently, models were built with only chiral descriptors to predict the enantioseparation and elution sequence, and finally, models were considered with both descriptor types to predict the retention, the separation and the elution sequence of the enantiomers. The global retention was predicted well by the sMLR models with only achiral descriptors. The models with only chiral descriptors were not found suitable to predict the enantioseparation and elution sequence. Finally, the models containing both chiral and achiral descriptors allowed predicting the retention well, but their ability to predict the elution sequence and separation of the enantiomers differed widely for the chromatographic systems considered.
Collapse
|
4
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
5
|
De Gauquier P, Vanommeslaeghe K, Heyden YV, Mangelings D. Modelling approaches for chiral chromatography on polysaccharide-based and macrocyclic antibiotic chiral selectors: A review. Anal Chim Acta 2022; 1198:338861. [DOI: 10.1016/j.aca.2021.338861] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022]
|
6
|
Xing L, Zhao Y, Gong M, Liu X, Zhang Y, Li D, He Z, Yan P, Yang J. Graphene oxide and Lambda exonuclease assisted screening of L-carnitine aptamers and the site-directed mutagenesis design of C-rich structure aptamer. Biochem Biophys Res Commun 2021; 545:171-176. [PMID: 33556657 DOI: 10.1016/j.bbrc.2021.01.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 01/03/2023]
Abstract
In this study, Graphene Oxide (GO) was used to screen the binding with the aptamers of L-carnitine chiral enantiomers. The ssDNA library was prepared by the method of Lambda exonuclease. In addition, a simple casing device was designed to improve the purification and recovery efficiency of the small ssDNA fragments in the process of screening. Finally, more than 160,000 aptamer sequences were obtained by high-throughput sequencing. We determined the strongest affinity aptamer sequence, CA04, by the Resonance Rayleigh scattering (RRS) technology. We also analyzed the key binding sites (in the 16th position case) of the truncated aptamer sequence CAD10. Interestingly, we found that aptamer CA10 and CA06 were both C-rich bases through sequence alignment and analysis, and the aptamer CA10 was confirmed that the CA10 and CA06 were formed under acidic conditions (pH 4.5) by CD spectrum and ESI-MS analysis. The interaction between gold nanoparticles (AuNPs) and functionalized aptamer CA10 was analyzed. We used Site-directed mutagenesis design and QGRS Mapper to optimize aptamer CA10, where an optimal aptamer CA10-03 were obtained after affinity analysis. It is also proved to be an effective method to obtain stronger affinity aptamer. Meanwhile, Native-PAGE and UV spectrum analysis were performed on the mutation sequences, and the interaction with ThT was analyzed. Finally, it is hoped that my study can provide help for later identification and detection of L-carnitine.
Collapse
Affiliation(s)
- Ligang Xing
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China; Department of Life Science and Technology, Yangtze Normal University, Chongqing, 408100, China
| | - Yanmei Zhao
- Guangyuan China Nuclear Vocational and Technical College, Sichuan, 628000, China
| | - Mingzhu Gong
- Department of Life Science and Technology, Yangtze Normal University, Chongqing, 408100, China
| | - Xia Liu
- Department of Life Science and Technology, Yangtze Normal University, Chongqing, 408100, China
| | - Yuhui Zhang
- School of Chemistry and Environmental Engineering, Chongqing Three Gorges University, Chongqing, 404000, China
| | - Dan Li
- Department of Life Science and Technology, Yangtze Normal University, Chongqing, 408100, China
| | - Zefeng He
- Department of Life Science and Technology, Yangtze Normal University, Chongqing, 408100, China
| | - Ping Yan
- Department of Life Science and Technology, Yangtze Normal University, Chongqing, 408100, China
| | - Jidong Yang
- School of Chemistry and Environmental Engineering, Chongqing Three Gorges University, Chongqing, 404000, China.
| |
Collapse
|
7
|
Gros Q, Molineau J, Noireau A, Duval J, Bamba T, Lesellier E, West C. Characterization of stationary phases in supercritical fluid chromatography including exploration of shape selectivity. J Chromatogr A 2021; 1639:461923. [PMID: 33524935 DOI: 10.1016/j.chroma.2021.461923] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/01/2022]
Abstract
Achiral packed column supercritical fluid chromatography (SFC) has shown an important regain of interest in academic and industrial laboratories in the recent years. In relation to this increased concern, major instrument manufacturers have designed some stationary phases specifically for SFC use. SFC stationary phases have been widely examined over the last two decades, based on the use of linear solvation energy relationships (LSER), which relate analyte retention to its properties and to the interaction capabilities of the chromatographic system. The method provides some understanding on retention mechanisms (normal phase, reversed phase or mixed-mode) and the possibility to compare stationary phases on a rational basis, especially through a spider diagram providing a visual classification. The latter can be used as a primary tool to select complementary stationary phases to be screened for any separation at early stages of method development, before optimization steps. In this context, the characterization of the 14 columns from the Shim-pack UC series (Shimadzu Corporation, Kyoto, Japan), which are dedicated to SFC and more broadly to unified chromatography (UC), was performed, using the LSER methodology. As in previous works, seven descriptors, including five Abraham descriptors (E, S, A, B, V) and two descriptors describing positive and negative charges (D- and D+) were first employed to describe interactions with neutral and charged analytes. Secondly, two more descriptors were introduced, which were previously employed solely for the characterization of enantioselective systems and expressing shape features of the analytes (flexibility F and globularity G). They brought additional insight into the retention mechanisms, showing how spatial insertion of the analytes in some stationary phases is contributing to shape separation capabilities and how folding possibilities in flexible molecules is unfavorable to retention in other stationary phases.
Collapse
Affiliation(s)
- Quentin Gros
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France; Shimadzu France, Le luzard 2, Bat A, Bd Salvador Allende Noisiel, 77448 Marne-la-Vallée, France
| | - Jeremy Molineau
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France
| | - Angeline Noireau
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France
| | - Johanna Duval
- Shimadzu France, Le luzard 2, Bat A, Bd Salvador Allende Noisiel, 77448 Marne-la-Vallée, France
| | - Takeshi Bamba
- Kyushu University, Division of Metabolomics, Medical Institute of Bioregulation, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eric Lesellier
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France
| | - Caroline West
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France.
| |
Collapse
|
8
|
Application of Chiral and Achiral Supercritical Fluid Chromatography in Pesticide Analysis: A Review. J Chromatogr A 2020; 1634:461684. [DOI: 10.1016/j.chroma.2020.461684] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
|
9
|
West C, Khater S. Characterization of retention and separation mechanisms with Pirkle-type enantioselective stationary phases in supercritical fluid chromatography. J Chromatogr A 2020; 1626:461352. [DOI: 10.1016/j.chroma.2020.461352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023]
|
10
|
Method screening strategies of stereoisomers of compounds with multiple chiral centers and a single chiral center. J Chromatogr A 2020; 1624:461244. [DOI: 10.1016/j.chroma.2020.461244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 11/23/2022]
|
11
|
Pandya PA, Shah PA, Shrivastav PS. Analytical separation of four stereoisomers of luliconazole using supercritical fluid chromatography: Thermodynamic aspects and simulation study with chiral stationary phase. J Chromatogr A 2020; 1625:461299. [DOI: 10.1016/j.chroma.2020.461299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 11/16/2022]
|
12
|
Dascalu AE, Speybrouck D, Billamboz M, Corens D, Ghinet A, Lipka E. Analytical and preparative enantioseparations in supercritical fluid chromatography using different brands of immobilized cellulose tris (3,5-dichlorophenylcarbamate) columns: Some differences. J Chromatogr A 2020; 1622:461125. [PMID: 32381300 DOI: 10.1016/j.chroma.2020.461125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/28/2022]
Abstract
The aim of this study was to determine the impact of the origin and the manufacturing processes of the chiral stationary phases (CSPs) on their chromatographic behaviors. Hence, four chiral stationary phases based on immobilized tris (3,5-dichlorophenylcarbamate) derivative of cellulose supplied by four different manufacturers were evaluated. A set of twenty-nine compounds, including commercially available and in-house synthesized compounds, with a broad range of lipophilicity and polarity was chosen. Three main parameters were evaluated on all stationary phases: retention factor, selectivity and loading capacity. This work highlighted that the retention factor strongly varied according to the manufacturer. Regardless of the characteristic of the tested compounds i.e. neutral, acidic or basic, there was a trend in retention ability of the four chiral stationary phases: retention was increasing from CHIRAL ART Cellulose-SC, REFLECT I-Cellulose C, Chiralpak IC to Lux i-Cellulose-5. On the contrary, selectivity did not follow the same trend as retention. The difference in selectivity between each column towards one compound was quite low while the difference in resolution depended on the nature of the compounds investigated and was significant in certain cases. Finally, the four different columns presented similar and high loading capacity.
Collapse
Affiliation(s)
- Anca-Elena Dascalu
- U1167 Inserm RID-AGE, Université de Lille, F-59000 Lille, France; Yncréa Hauts-de-France, Laboratory of Sustainable Chemistry and Health, Health & Environment Department, Team Sustainable Chemistry, Ecole des Hautes Etudes d'Ingénieur (HEI), UCLille, 13 rue de Toul, F-59046 Lille, France; UFR Pharmacie, Laboratoire de Chimie Analytique, BP 83, F-59006 Lille, France; Alexandru Ioan Cuza' University of Iasi, Faculty of Chemistry, Bd. Carol I nr. 11, 700506, Romania
| | - David Speybrouck
- Discovery Sciences, Janssen Research and Development, Campus de Maigremont, F-27106 Val de Reuil, Cedex, France
| | - Muriel Billamboz
- U1167 Inserm RID-AGE, Université de Lille, F-59000 Lille, France; Yncréa Hauts-de-France, Laboratory of Sustainable Chemistry and Health, Health & Environment Department, Team Sustainable Chemistry, Ecole des Hautes Etudes d'Ingénieur (HEI), UCLille, 13 rue de Toul, F-59046 Lille, France
| | - David Corens
- Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Alina Ghinet
- U1167 Inserm RID-AGE, Université de Lille, F-59000 Lille, France; Yncréa Hauts-de-France, Laboratory of Sustainable Chemistry and Health, Health & Environment Department, Team Sustainable Chemistry, Ecole des Hautes Etudes d'Ingénieur (HEI), UCLille, 13 rue de Toul, F-59046 Lille, France; Alexandru Ioan Cuza' University of Iasi, Faculty of Chemistry, Bd. Carol I nr. 11, 700506, Romania
| | - Emmanuelle Lipka
- U1167 Inserm RID-AGE, Université de Lille, F-59000 Lille, France; UFR Pharmacie, Laboratoire de Chimie Analytique, BP 83, F-59006 Lille, France.
| |
Collapse
|
13
|
Jakubec P, Douša M, Nováková L. Supercritical fluid chromatography in chiral separations: Evaluation of equivalency of polysaccharide stationary phases. J Sep Sci 2020; 43:2675-2689. [DOI: 10.1002/jssc.202000085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Pavel Jakubec
- Department of Analytical ChemistryFaculty of Pharmacy in Hradec KrálovéCharles University Hradec Králové Czech Republic
| | - Michal Douša
- Akademika Heyrovského 1203Zentiva k.s. Praha 10 Czech Republic
| | - Lucie Nováková
- Department of Analytical ChemistryFaculty of Pharmacy in Hradec KrálovéCharles University Hradec Králové Czech Republic
| |
Collapse
|
14
|
Raimbault A, Ma CMA, Ferri M, Bäurer S, Bonnet P, Bourg S, Lämmerhofer M, West C. Cinchona-based zwitterionic stationary phases: Exploring retention and enantioseparation mechanisms in supercritical fluid chromatography with a fragmentation approach. J Chromatogr A 2020; 1612:460689. [DOI: 10.1016/j.chroma.2019.460689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022]
|
15
|
Khater S, West C. Characterization of three macrocyclic glycopeptide stationary phases in supercritical fluid chromatography. J Chromatogr A 2019; 1604:460485. [PMID: 31477276 DOI: 10.1016/j.chroma.2019.460485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 11/25/2022]
Abstract
Macrocyclic glycopeptides have been used as chromatographic stationary phases for over twenty years, particularly for their ability to separate enantiomers. While they are mostly used with buffered aqueous liquid mobile phases, they can also be used in supercritical fluid chromatography (SFC) with mobile phases comprising pressurized carbon dioxide and a co-solvent (like methanol), possibly comprising acidic or basic additives. In the present study, we compared three macrocyclic glycopeptide stationary phases (Chirobiotic V2, Chirobiotic T and Chirobiotic TAG) in SFC with carbon dioxide - methanol (90:10) containing no additives. First, the interactions contributing to retention are evaluated with a modified version of the solvation parameter model, comprising five Abraham descriptors (E, S, A, B, V) and two additional descriptors to take account of interactions with ionizable species (D- and D+). Linear solvation energy relationships (LSER) are established based on the retention of 145 achiral analytes. Secondly, the contributions of interactions to enantioseparations are discussed, based on the analysis of 67 racemates. The individual success rate on each phase was observed to be moderate, especially as these phases are known to be more efficient when acidic or basic additives are employed. Chirobiotic TAG proved more successful than the other two phases. Discriminant analyses were computed to gain some insight on retention mechanisms, but only Chirobiotic TAG provided interpretable results. Finally, the effects of a small proportion of acidic or basic additive on enantioseparation with Chirobiotic T stationary phase are briefly discussed.
Collapse
Affiliation(s)
- Syame Khater
- Univ Orleans, CNRS, Institut de Chimie Organique et Analytique (ICOA), UMR 7311, B.P. 6759, rue de Chartres, F-45067 Orléans cedex 2, France
| | - Caroline West
- Univ Orleans, CNRS, Institut de Chimie Organique et Analytique (ICOA), UMR 7311, B.P. 6759, rue de Chartres, F-45067 Orléans cedex 2, France.
| |
Collapse
|
16
|
Ryoki A, Kimura Y, Kitamura S, Maeda K, Terao K. Does local chain conformation affect the chiral recognition ability of an amylose derivative? Comparison between linear and cyclic amylose tris(3,5-dimethylphenylcarbamate). J Chromatogr A 2019; 1599:144-151. [PMID: 31003715 DOI: 10.1016/j.chroma.2019.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 11/30/2022]
Abstract
Coated-type chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC) were prepared from three cyclic amylose tris(3,5-dimethylphenylcarbamate) (cADMPC) samples, of which weight-average molar mass (Mw) ranges from 19 to 91 kg mol-1, and from three linear ADMPC samples ranging in Mw from 25 to 90 kg mol-1. CSPs made of cADMPC showed appreciably different chiral separation ability comparing with those for ADMPC with a mixed eluent of n-hexane and 2-propanol. Local conformation plays an important role for the chiral separation taking into account that the local helical structure of cADMPC in dilute solution is extended comparing with ADMPC. Immobilized-type CSPs were also prepared from enzymatically synthesized linear and cyclic amylose samples with 3-(triethoxysilyl)propylcarbamate linkers (ADMPCi and cADMPCi) of which Mw's are in the range from 18 to 130 kg mol-1. When we choose quite high linker contents, CSPs of cADMPCi were fairly close to those of ADMPCi. This suggests that local conformations of ADMPCi and cADMPCi are similar in the stationary phase since they are crosslinked to the other polymer chains with multiple points on the polymer chain.
Collapse
Affiliation(s)
- Akiyuki Ryoki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Yuto Kimura
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Shinichi Kitamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Katsuhiro Maeda
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Ken Terao
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
17
|
Kozlov O, Kalíková K, Gondová T, Budovská M, Salayová A, Tesařová E. Fast enantioseparation of indole phytoalexins in additive free supercritical fluid chromatography. J Chromatogr A 2019; 1596:209-216. [PMID: 30910386 DOI: 10.1016/j.chroma.2019.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 11/26/2022]
Abstract
A series of chiral indole phytoalexins with potential anticancer and antimicrobial activity were enantioseparated in supercritical fluid chromatography. Two polysaccharide-based chiral stationary phases composed of tris-(3,5-dimethylphenylcarbamate) derivatives of amylose or cellulose coated on 2.5 μm silica particles were successfully used. The influences of the polysaccharide backbone, co-solvent type and co-solvent content in the mobile phase on retention, enantioselectivity and enantioresolution of indole phytoalexins were investigated. Fast baseline separations were achieved for 26 from 27 tested compounds. Amylose-based chiral stationary phase provided higher number of baseline resolutions of the indole phytoalexins than the cellulose-based one. However, certain complementary enantioresolution results towards the studied compounds were observed between the investigated columns. The relationship between structure of the indole phytoalexins and their chromatographic behavior in supercritical fluid chromatography was discussed.
Collapse
Affiliation(s)
- Oleksandr Kozlov
- Department of Analytical Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovak Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague, Czech Republic.
| | - Taťána Gondová
- Department of Analytical Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovak Republic
| | - Mariana Budovská
- Department of Organic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovak Republic
| | - Aneta Salayová
- Department of Organic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovak Republic; Department of Chemistry, Biochemistry and Biophysics, Institute of Pharmaceutical Chemistry, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovak Republic
| | - Eva Tesařová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague, Czech Republic
| |
Collapse
|
18
|
Sun M, Ruiz Barbero S, Johannsen M, Smirnova I, Gurikov P. Retention characteristics of silica materials in carbon dioxide/methanol mixtures studied by inverse supercritical fluid chromatography. J Chromatogr A 2019; 1588:127-136. [PMID: 30658911 DOI: 10.1016/j.chroma.2018.12.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 11/19/2022]
Abstract
In this work, inverse supercritical fluid chromatography was applied to characterize the surface of four silica materials (three commercial Kromasils and one silica aerogel) from chromatographic retention data. Retention factors at various pressures (150-300 bar), temperatures (25-60 °C) and modifier concentrations (5-20 vol.% methanol in CO2) for a set of representative 17 solutes were correlated with the solute properties by the linear solvation energy relationships (LSER). Two types of the LSER models were identified based on different criteria. Firstly, a generally valid model with two descriptors concerning dipolarity/polarizability and solute hydrogen-bonding acceptor ability was constructed. Secondly, a group of specific models for each particular silica material was proposed. According to the statistical analysis of the modeling results, the acid-basic interactions were demonstrated to have a major contribution to the retention for all studied silicas. The intensity of these interactions decreases with increasing methanol concentration in the mobile phase, possibly due to the mixed mechanism of competitive adsorption of the modifier on silanol groups and modification of mobile phase property. Moreover, retention factors measured under constant conditions (p, T, methanol concentration) for a pair of the materials were found to be proportional in logarithmic scale implying the transferability of the adsorption free energies and the adsorption constants across four studied silica materials.
Collapse
Affiliation(s)
- Miaotian Sun
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| | - Sheila Ruiz Barbero
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Monika Johannsen
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Hungary
| | - Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Pavel Gurikov
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
| |
Collapse
|
19
|
Harps LC, Joseph JF, Parr MK. SFC for chiral separations in bioanalysis. J Pharm Biomed Anal 2019; 162:47-59. [DOI: 10.1016/j.jpba.2018.08.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/31/2023]
|
20
|
Kalíková K, Martínková M, Schmid MG, Tesařová E. Cellulose tris-(3,5-dimethylphenylcarbamate)-based chiral stationary phase for the enantioseparation of drugs in supercritical fluid chromatography: comparison with HPLC. J Sep Sci 2018; 41:1471-1478. [DOI: 10.1002/jssc.201701341] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science; Charles University; Prague Czech Republic
| | - Monika Martínková
- Department of Physical and Macromolecular Chemistry, Faculty of Science; Charles University; Prague Czech Republic
| | - Martin G. Schmid
- Institute of Pharmaceutical Sciences; Department of Pharmaceutical Chemistry; University of Graz; Graz Austria
| | - Eva Tesařová
- Department of Physical and Macromolecular Chemistry, Faculty of Science; Charles University; Prague Czech Republic
| |
Collapse
|
21
|
Khater S, Canault B, Azzimani T, Bonnet P, West C. Thermodynamic enantioseparation behavior of phenylthiohydantoin-amino acid derivatives in supercritical fluid chromatography on polysaccharide chiral stationary phases. J Sep Sci 2018; 41:1450-1459. [DOI: 10.1002/jssc.201701196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 11/07/2022]
|
22
|
Zehani Y, Lemaire L, Ghinet A, Millet R, Chavatte P, Vaccher C, Lipka E. Exploring chiral separation of 3-carboxamido-5-aryl isoxazole derivatives by supercritical fluid chromatography on amylose and cellulose tris dimethyl- and chloromethyl phenylcarbamate polysaccharide based stationary phases. J Chromatogr A 2016; 1467:473-481. [DOI: 10.1016/j.chroma.2016.07.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 11/15/2022]
|
23
|
Khater S, Lozac’h MA, Adam I, Francotte E, West C. Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases. J Chromatogr A 2016; 1467:463-472. [DOI: 10.1016/j.chroma.2016.06.060] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
|
24
|
He J, Fan J, Yan Y, Chen X, Wang T, Zhang Y, Zhang W. Triticonazole enantiomers: Separation by supercritical fluid chromatography and the effect of the chromatographic conditions. J Sep Sci 2016; 39:4251-4257. [DOI: 10.1002/jssc.201600820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Jianfeng He
- School of Chemistry and Environment; South China Normal University; Guangzhou China
| | - Jun Fan
- School of Chemistry and Environment; South China Normal University; Guangzhou China
| | - Yilun Yan
- School of Chemistry and Environment; South China Normal University; Guangzhou China
| | - Xiaodong Chen
- Guangdong YanJie Pharmatech Co. Ltd; Guangzhou China
| | - Tai Wang
- Guangdong YanJie Pharmatech Co. Ltd; Guangzhou China
| | - Yaomou Zhang
- Yingde Greatchem Chemicals Co. Ltd; Yingde China
| | - Weiguang Zhang
- School of Chemistry and Environment; South China Normal University; Guangzhou China
| |
Collapse
|
25
|
Scriba GKE. Chiral recognition in separation science - an update. J Chromatogr A 2016; 1467:56-78. [PMID: 27318504 DOI: 10.1016/j.chroma.2016.05.061] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 12/26/2022]
Abstract
Stereospecific recognition of chiral molecules is an important issue in various aspects of life sciences and chemistry including analytical separation sciences. The basis of analytical enantioseparations is the formation of transient diastereomeric complexes driven by hydrogen bonds or ionic, ion-dipole, dipole-dipole, van der Waals as well as π-π interactions. Recently, halogen bonding was also described to contribute to selector-selectand complexation. Besides structure-separation relationships, spectroscopic techniques, especially NMR spectroscopy, as well as X-ray crystallography have contributed to the understanding of the structure of the diastereomeric complexes. Molecular modeling has provided the tool for the visualization of the structures. The present review highlights recent contributions to the understanding of the binding mechanism between chiral selectors and selectands in analytical enantioseparations dating between 2012 and early 2016 including polysaccharide derivatives, cyclodextrins, cyclofructans, macrocyclic glycopeptides, proteins, brush-type selectors, ion-exchangers, polymers, crown ethers, ligand-exchangers, molecular micelles, ionic liquids, metal-organic frameworks and nucleotide-derived selectors. A systematic compilation of all published literature on the various chiral selectors has not been attempted.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Friedrich Schiller University Jena, Department of Pharmaceutical/Medicinal Chemistry, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|
26
|
Landagaray E, Vaccher C, Yous S, Lipka E. Design of experiments for enantiomeric separation in supercritical fluid chromatography. J Pharm Biomed Anal 2016; 120:297-305. [DOI: 10.1016/j.jpba.2015.12.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 11/30/2022]
|
27
|
Exploring the enantioseparation of amino-naphthol analogues by supercritical fluid chromatography. J Chromatogr A 2015; 1387:123-33. [DOI: 10.1016/j.chroma.2015.01.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 11/23/2022]
|
28
|
Development and validation of a supercritical fluid chromatography method for the direct determination of enantiomeric purity of provitamin B5 in cosmetic formulations with mass spectrometric detection. J Pharm Biomed Anal 2015; 102:321-5. [DOI: 10.1016/j.jpba.2014.09.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022]
|
29
|
Khater S, West C. Insights into chiral recognition mechanisms in supercritical fluid chromatography V. Effect of the nature and proportion of alcohol mobile phase modifier with amylose and cellulose tris-(3,5-dimethylphenylcarbamate) stationary phases. J Chromatogr A 2014; 1373:197-210. [DOI: 10.1016/j.chroma.2014.11.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 11/29/2022]
|