1
|
Wang L, Wu H, Wang C, Ma Y, Xiang Z. Triple-template surface imprinted magnetic polymers for wide-coverage extraction of steroid hormones from human serum. ANAL SCI 2025; 41:151-163. [PMID: 39527176 DOI: 10.1007/s44211-024-00690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
In this study, novel triple-template magnetic nanospheres by surface imprinting, called triple-template magnetic molecularly imprinted polymers (tri-MMIPs), were prepared for the detection of steroid hormones in human serum. The polymers were constructed by Fe3O4 as support, estrone (E1), progesterone (PROG), and estradiol (E2) as triple templates, acrylic acid (AA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker. The resulting tri-MMIPs were further characterized and applied as sorbents in human serum pretreatment. Coupled with ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) profiling after derivatization, 15 steroids (E1, 6-ketoE1, 4-OHE1, 16α-OHE1, DHEA, 4-MeOE1, PROG, PREG, 17-OHPROG, 7-DHE2, E2, 2-OHE2, 16-epiE3, E3, 2-MeOE2) were successfully quantified. The developed method exhibited a good recovery (78.9-114%) and low limit of quantitation (LLOQ, 5-10 pg/mL), which indicates a great potential for application in the analysis of multiple steroid hormones in complex biological samples.
Collapse
Affiliation(s)
- Li Wang
- Medical School, Hangzhou City University, Hangzhou, 310015, China
| | - Hongyu Wu
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Caihong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yunfei Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zheng Xiang
- Medical School, Hangzhou City University, Hangzhou, 310015, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Liu Y, Dang X, Chen H. A molecularly imprinted polymer monolithic column with dual template and bifunctional monomers for selective extraction and simultaneous determination of eight phenolics from polycarbonate cups. Anal Chim Acta 2023; 1273:341493. [PMID: 37423657 DOI: 10.1016/j.aca.2023.341493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
A molecularly imprinted polymer (MIP) monolithic column was prepared in situ in a pipette tip using phenol and bisphenol A as dual templates, 4-vinyl pyridine and β-cyclodextrin as bifunctional monomers. It was used for the selective and simultaneous solid phase extraction of eight phenolics, including phenol, m-cresol, p-tert-butylphenol, bisphenol A, bisphenol B, bisphenol E, bisphenol Z, and bisphenol AP. The MIP monolithic column was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and nitrogen adsorption experiment. The results of selective adsorption experiments showed that the MIP monolithic column can selective recognize the phenolics and have excellent adsorption property. The imprinting factor for bisphenol A can be as high as 4.31, and the maximum adsorption capacity for bisphenol Z can reach 201.66 mg g-1. Under the optimal extraction conditions, a selective and simultaneous extraction and determination method for eight phenolics was established based on the MIP monolithic column and high-performance liquid chromatography with ultraviolet detection. The linear ranges (LRs) of the eight phenolics were 0.5-200 μg L-1, the limits of quantification (LOQs) and detection (LODs) were 0.5-2.0 μg L-1 and 0.15-0.67 μg L-1. The method was applied to detect the migration quantity of the eight phenolics from polycarbonate cups and had satisfactory recovery. The method has the advantages of simple synthesis, short extraction time, as well as good repeatability and reproducibility, which provides a sensitive and reliable strategy for extracting and detecting phenolics from food contact material.
Collapse
Affiliation(s)
- Yang Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xueping Dang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Huaixia Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| |
Collapse
|
3
|
Suzaei FM, Daryanavard SM, Abdel-Rehim A, Bassyouni F, Abdel-Rehim M. Recent molecularly imprinted polymers applications in bioanalysis. CHEMICAL PAPERS 2023; 77:619-655. [PMID: 36213319 PMCID: PMC9524737 DOI: 10.1007/s11696-022-02488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022]
Abstract
Molecular imprinted polymers (MIPs) as extraordinary compounds with unique features have presented a wide range of applications and benefits to researchers. In particular when used as a sorbent in sample preparation methods for the analysis of biological samples and complex matrices. Its application in the extraction of medicinal species has attracted much attention and a growing interest. This review focus on articles and research that deals with the application of MIPs in the analysis of components such as biomarkers, drugs, hormones, blockers and inhibitors, especially in biological matrices. The studies based on MIP applications in bioanalysis and the deployment of MIPs in high-throughput settings and optimization of extraction methods are presented. A review of more than 200 articles and research works clearly shows that the superiority of MIP techniques lies in high accuracy, reproducibility, sensitivity, speed and cost effectiveness which make them suitable for clinical usage. Furthermore, this review present MIP-based extraction techniques and MIP-biosensors which are categorized on their classes based on common properties of target components. Extraction methods, studied sample matrices, target analytes, analytical techniques and their results for each study are described. Investigations indicate satisfactory results using MIP-based bioanalysis. According to the increasing number of studies on method development over the last decade, the use of MIPs in bioanalysis is growing and will further expand the scope of MIP applications for less studied samples and analytes.
Collapse
Affiliation(s)
- Foad Mashayekhi Suzaei
- Toxicology Laboratories, Monitoring the Human Hygiene Condition & Standard of Qeshm (MHCS Company), Qeshm Island, Iran
| | - Seyed Mosayeb Daryanavard
- grid.444744.30000 0004 0382 4371Department of Chemistry, Faculty of Science, University of Hormozgan, Bandar-Abbas, Iran
| | - Abbi Abdel-Rehim
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK
| | - Fatma Bassyouni
- grid.419725.c0000 0001 2151 8157Chemistry of Natural and Microbial Products Department, Pharmaceutical industry Research Division, National Research Centre, Cairo, 12622 Egypt
| | - Mohamed Abdel-Rehim
- grid.5037.10000000121581746Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, Sweden and Med. Solutions, Stockholm, Sweden
| |
Collapse
|
4
|
Recent advances in solid phase extraction methods for the determination of bisphenol A and its analogues in environmental matrices: an updated review. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Chafi S, Ballesteros E. A sensitive, robust method for determining natural and synthetic hormones in surface and wastewaters by continuous solid-phase extraction-gas chromatography-mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53619-53632. [PMID: 35290579 PMCID: PMC9343308 DOI: 10.1007/s11356-022-19577-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/02/2022] [Indexed: 05/29/2023]
Abstract
Over recent decades, steroidal estrogens have become an emerging and very serious issue as they pose a serious threat to living organisms, soil, plants, and water resources in general. Estrogens have therefore been the subject of considerable scientific attention in order to develop new methodologies for its determination, being able of detecting them at very low concentrations. Those procedures minimize or eliminate the consumption of organic solvents and reagents that may be incompatible with the environment. In this respect, we developed a sensitive, selective method for the simultaneous determination of thirteen natural and synthetic hormones present at the nanogram-per-liter level in various types of water by using continuous solid-phase extraction in combination with gas chromatography and mass spectrometry (GC-MS). The target analytes were preferentially sorbed on an Oasis HLB sorbent column (80 mg) and eluted with acetone (600 µL) for derivatization with a mixture of 70 µL of N,O-bis(trimethylsilyl) trifluoroacetamide and trimethylchlorosilane and 35 µL of petroleum ether in a household microwave oven at 200 W for 4 min. Under optimum conditions, the ensuing method exhibited good linearity (r ≥ 0.998), good precision (RSD ≤ 7%), high recoveries (92-103%), and low detection limits (0.01-0.3 ng L-1). The method outperforms existing alternatives in robustness, sensitivity, throughput, flexibility-it allows both estrogens, progestogens, and androgens to be determined simultaneously-and compliance with the principles of Green Chemistry. It was successfully used to analyze various types of water samples (mineral, tap, well, pond, swimming pool, river, and waste) that were found to contain four estrogens (estrone, 17β-estradiol, 17α-ethinylestradiol, and hexestrol), two progestogens (testosterone, dihydrotestosterone), and one progestogen (progesterone) at concentrations ranging from 3.0 to 110 ng L-1.
Collapse
Affiliation(s)
- Safae Chafi
- Department of Physical and Analytical Chemistry, E.P.S of Linares, University of Jaén, Avenida de La Universidad, 23700, Linares, Jaén, Spain
| | - Evaristo Ballesteros
- Department of Physical and Analytical Chemistry, E.P.S of Linares, University of Jaén, Avenida de La Universidad, 23700, Linares, Jaén, Spain.
| |
Collapse
|
6
|
Preparation of Magnetic Metal-Organic Frameworks@Molecularly Imprinted Nanoparticles for Specific Extraction and Enrichment of Bisphenol A in Food. Foods 2022; 11:foods11101408. [PMID: 35626978 PMCID: PMC9141622 DOI: 10.3390/foods11101408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Metal-organic frameworks (MOFs) with systematically tailored structures have been suggested as promising precursors to the preparation of diverse functional materials. Herein, a facile and versatile layer-by-layer strategy without any special surface modifications has been proposed for the preparation of magnetic metal-organic frameworks (MMOFs) supported molecularly imprinted polymer nanoparticles (MMOFs@MIP), which are based on a magnetically susceptible core conjugated with an imidazole-derived self-assembled layer and a silane-based imprinted shell. The obtained MMOFs@MIPs, which integrated the advantages of Fe3O4, MOFs, and MIPs, were characterized and exhibited good magnetic properties, a rapid mass transfer rate, and an excellent adsorption selectivity as well as capacity for the targeted molecular - bisphenol A (BPA). Moreover, the MMOFs@MIPs were employed as adsorbents in magnetic solid phase extraction (MSPE) to selectively bind and rapidly separate BPA from real samples with satisfactory recoveries ranging from 88.3% to 92.3%. More importantly, the desirable reusability of MMOFs@MIP was also evaluated, and the recoveries still maintained above 88.0% even after five re-use cycles. Furthermore, combined with high-performance liquid chromatography (HPLC) analysis, a novel MSPE-HPLC method was developed, enabling the highly selective and sensitive detection of BPA in a wide linear range of 0.5–5000 μg L−1 with a low limit of detection (LOD) of 0.1 μg L−1. This work contributes a promising method for constructing various functional nanoparticles @MOFs@MIP hybrid materials for applications in many different fields.
Collapse
|
7
|
Ma H, Yang M, Wang X, Yang B, Zhang F, Zhang F, Li Y, Liu T, He M, Wang Q. Sulfonamide-Selective Ambient Mass Spectrometry Ion Source Obtained by Modification of an Iron Sheet with a Hydrophilic Molecularly Imprinted Polymer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15425-15433. [PMID: 34898196 DOI: 10.1021/acs.jafc.1c06623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We have described a sulfonamide-selective ambient ion source coupled with electrospray ionization mass spectrometry (ESI-MS) for selective extraction and determination of trace sulfonamide antibiotics. It is obtained by modifying an iron sheet with a sulfadiazine-templated hydrophilic molecularly imprinted polymer (SF-HMIP). It behaves as both an online extractor and a MS ion source. Five sulfonamide antibiotics, including sulfamethoxazole (SMZ), sulfamerazine (SMR), sulfisoxazole (SIZ), sulfathiazole (ST), and sulfameter (SMD), were chosen to evaluate SF-HMIP coupled with ESI-MS, which showed good linearity in the range of 0.2-1000 ng/mL with correlation coefficient values (R2) over 0.9946. The limits of detection (LODs) for analysis of pure water and honey were in the range of 0.1-0.2 and 0.2-1.5 ng/mL, respectively. Limits of quantitation (LOQs) for analysis of pure water and honey were in the range of 0.3-0.5 and 1.0-5.0 ng/mL, respectively. The results demonstrated that SF-HMIP combined with ESI-MS could be applied for the direct analysis of five trace sulfonamide compounds in honey and pure water with recoveries ranging from 76 to 129%.
Collapse
Affiliation(s)
- Hongyue Ma
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Bingcheng Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feifang Zhang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Yinlong Li
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Muyi He
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Qian Wang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Synergistic recognition of transferrin by using performance dual epitope imprinted polymers. Anal Chim Acta 2021; 1186:339117. [PMID: 34756250 DOI: 10.1016/j.aca.2021.339117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022]
Abstract
Transferrin (Trf) is a new type of active drug targeting carrier and disease biomarker that regulates the balance of iron ions in human body. The recognition and isolation of Trf is of great significance for disease diagnosis and treatment. Thus, a new type of magnetic dual affinity epitope molecularly imprinted polymer coated on Fe3O4 nanoparticles (Fe3O4@DEMIP) was successfully prepared for specific recognition of Trf. C-terminal nonapeptide and Trf glycan were selected as bi-epitope templates for metal chelation and boron affinity immobilization, respectively. 4-vinylphenylboric acid (4-VP), N-isopropyl acrylamide (NIPAM) and zinc acrylic were used as functional monomers. Results showed that Fe3O4@DEMIP exhibited excellent specific recognition ability adsorption capacity toward Trf, with an adsorption of 43.96 mg g-1 (RSD = 3.28%) and a more satisfactory imprinting factor (about 6.60) than that of other reported imprinting methods. In addition, Fe3O4@DEMIP displayed pH, temperature and magnetic sensitivity properties to realize temperature and pH-controlled recognition and release of target proteins and magnetic rapid separation. Furthermore, the Fe3O4@DEMIP coupled with high-performance liquid chromatography (HPLC) analysis was successfully used for specific recognition of Trf in biosamples. This study provides a reliable protocol for preparing metal chelation and boron affinity dual affinity bi-epitope molecularly imprinted polymers for synergistic and efficient recognition of biomacromolecules in the complex biological systems.
Collapse
|
9
|
Shen R, Huang L, Liu R, Shuai Q. Determination of sulfonamides in meat by monolithic covalent organic frameworks based solid phase extraction coupled with high-performance liquid chromatography-mass spectrometric. J Chromatogr A 2021; 1655:462518. [PMID: 34509690 DOI: 10.1016/j.chroma.2021.462518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/07/2023]
Abstract
In this work, hierarchical porous covalent organic frameworks (HP-COFs) foam, named as HP-TpBD, was prepared by using 1,3,5-trimethylphloroglucinol (Tp) and benzidine (BD) as building blocks under the assistant of NaCl template. Its potential application as the sorbent for solid phase extraction (SPE) of sulfonamides (SAs) in meat products were explored by coupling with high performance liquid chromatography-mass spectrum (HPLC-MS) analysis. The key factors affecting extraction efficiency were well studied. Under the optimum conditions, the proposed method exhibited high preconcentration factors of 100, low limit of detection (0.10-0.23 μg/kg), and wide linear ranges (0.5-200 μg/kg). In addition, the determination of SAs in real samples were realized with satisfactory recoveries (82.8-119.9%), demonstrating the applicability of the proposed method. The easy operation, superior extraction affinity and good recycle performance demonstrated the resulting HP-COF foam is a promising adsorbent for the preconcentration of trace organic compounds from complex matrix.
Collapse
Affiliation(s)
- Rujia Shen
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China.
| | - Ruiqi Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| |
Collapse
|
10
|
Recent Advances in Solid-Phase Extraction (SPE) Based on Molecularly Imprinted Polymers (MIPs) for Analysis of Hormones. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Steroid hormones are active substances that are necessary in the normal functioning of all physiological activities in the body, such as sexual characteristics, metabolism, and mood control. They are also widely used as exogenous chemicals in medical and pharmaceutical applications as treatments and at times growth promoters in animal farming. The vast application of steroid hormones has resulted in them being found in different matrices, such as food, environmental, and biological samples. The presence of hormones in such matrices means that they can easily come into contact with humans and animals as exogenous compounds, resulting in abnormal concentrations that can lead to endocrine disruption. This makes their determination in different matrices a vital part of pollutant management and control. Although advances in analytical instruments are constant, it has been determined that these instruments still require some sample preparation steps to be able to determine the occurrence of pollutants in the complex matrices in which they occur. Advances are still being made in sample preparation to ensure easier, selective, and sensitive analysis of complex matrices. Molecularly imprinted polymers (MIPs) have been termed as advanced solid-phase (SPE) materials for the selective extraction and preconcentration of hormones in complex matrices. This review explores the preparation and application of MIPs for the determination of steroid hormones in different sample types.
Collapse
|
11
|
Liu Y, Liu Y, Liu Z, Hill JP, Alowasheeir A, Xu Z, Xu X, Yamauchi Y. Ultra-durable, multi-template molecularly imprinted polymers for ultrasensitive monitoring and multicomponent quantification of trace sulfa antibiotics. J Mater Chem B 2021; 9:3192-3199. [PMID: 33885623 DOI: 10.1039/d1tb00091h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traditional analysis methods are susceptible to interference caused by the complexity of sample matrices, and detector surface fouling arising from nonspecific adsorption of microorganisms (in biological samples) which leads in particular to a gradual loss of sensitivity. Imprinted materials can be used to effectively reduce interference originating in the matrices. However, the poor reproducibility and multicomponent quantification of trace antibiotics represent significant challenges to the detection process. Meanwhile, the high biological risk presented by bacterial antibiotic immunity and the persistence of antibiotics in foodstuffs, especially meat, both caused by the overuse of sulfonamide antibiotics, remain urgent issues. Here, we present the first example of a method for the accurate quantification of trace sulfa antibiotics (SAs) based on multi-template imprinted polymers (MMIPs). Levels of multiple SAs have been simultaneously successfully quantified by applying MMIP extraction coupled with UPLC-MS/MS analysis. This method shows excellent linearity of detection in the range of 0.1-500 μg L-1, and ultrasensitivity with low limits of detection of 0.03 μg L-1. The maximum SA residue recovered from sample tissues by using MMIPs was 5.48 μg g-1. MMIP-coupled UPLC-MS/MS quantification of SAs is an accurate and repeatable method for the monitoring of SA accumulation in mouse tissue samples. It also provides an effective strategy for the tracking and quantification of drugs in other biological samples.
Collapse
Affiliation(s)
- Yuanchen Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Overview of Sample Preparation and Chromatographic Methods to Analysis Pharmaceutical Active Compounds in Waters Matrices. SEPARATIONS 2021. [DOI: 10.3390/separations8020016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the environment, pharmaceutical residues are a field of particular interest due to the adverse effects to either human health or aquatic and soil environment. Because of the diversity of these compounds, at least 3000 substances were identified and categorized into 49 different therapeutic classes, and several actions are urgently required at multiple steps, the main ones: (i) occurrence studies of pharmaceutical active compounds (PhACs) in the water cycle; (ii) the analysis of the potential impact of their introduction into the aquatic environment; (iii) the removal/degradation of the pharmaceutical compounds; and, (iv) the development of more sensible and selective analytical methods to their monitorization. This review aims to present the current state-of-the-art sample preparation methods and chromatographic analysis applied to the study of PhACs in water matrices by pinpointing their advantages and drawbacks. Because it is almost impossible to be comprehensive in all PhACs, instruments, extraction techniques, and applications, this overview focuses on works that were published in the last ten years, mainly those applicable to water matrices.
Collapse
|
13
|
Zhao W, Jing X, Tian Y, Feng C. Magnetic Fe3O4 @ porous activated carbon effervescent tablet-assisted deep eutectic solvent-based dispersive liquid–liquid microextraction of phenolic endocrine disrupting chemicals in environmental water. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105416] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Hydrophilic magnetic molecularly imprinted nanobeads for efficient enrichment and high performance liquid chromatographic detection of 17beta-estradiol in environmental water samples. Talanta 2020; 220:121367. [DOI: 10.1016/j.talanta.2020.121367] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022]
|
15
|
Hasan CK, Ghiasvand A, Lewis TW, Nesterenko PN, Paull B. Recent advances in stir-bar sorptive extraction: Coatings, technical improvements, and applications. Anal Chim Acta 2020; 1139:222-240. [DOI: 10.1016/j.aca.2020.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
|
16
|
Liu L, Yang M, He M, Liu T, Chen F, Li Y, Feng X, Zhang Y, Zhang F. Magnetic solid phase extraction sorbents using methyl-parathion and quinalphos dual-template imprinted polymers coupled with GC-MS for class-selective extraction of twelve organophosphorus pesticides. Mikrochim Acta 2020; 187:503. [PMID: 32812169 DOI: 10.1007/s00604-020-04465-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/25/2020] [Indexed: 11/26/2022]
Abstract
A novel magnetic dual-template molecularly imprinted polymer (DMIP) was prepared with methyl-parathion and quinalphos as templates. For comparison, a series of single-template polymers with only methyl-parathion (MPMIP) or quinalphos (QPMIP) as template as well as a non-imprinted polymer (NIP) in the absence of the template, were synthesized using the same procedure of DMIP. The obtained MIPs were characterized by scanning electron microscopy(SEM), Fourier transform infrared (FT-IR) spectroscopy, vibrating sample magnetometer (VSM), and X-ray diffraction (XRD). The properties including kinetic effect, thermodynamic effect, selectivity, and reusability of MIPs were investigated . Only DMIP possessed high affinity and good recognition for all twelve OPPs including quinalphos, isazophos, chlorpyrifos-methyl, chlorpyrifos, methidathion, triazophos, profenofos, fenthion, fenitrothion, methyl-parathion, parathion, and paraoxon in comparison to MPMIP, QPMIP, or NIP. Moreover, DMIP was used as magnetic solid phase extraction (MSPE) sorbent for the pre-concentration of twelve OPPs in cabbage samples. The developed DMIP-MSPE-GC-MS method showed high sensitivity, low LODs (1.62-13.9 ng/g), fast adsorption equilibrium (10 min), and acceptable spiked recoveries (81.5-113.4%) with relative standard deviations (RSD) in the range 0.05-7.0% (n = 3). The calibration plots were linear in the range 10-800 ng/mL with coefficients of determination (R2) better 0.99 for all twelve compounds. These results suggest that the DMIP is applicable for rapid determination and high throughput analysis of multi-pesticide residues. Graphical abstract.
Collapse
Affiliation(s)
- Lixia Liu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China
- School of Pharmacy, China Medical University, Shenyang, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China
| | - Muyi He
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China
| | - Fengming Chen
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China
| | - Yinlong Li
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China
| | - Xuesong Feng
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, China.
| |
Collapse
|
17
|
Liu Y, Liu Y, Liu Z, Zhao X, Wei J, Liu H, Si X, Xu Z, Cai Z. Chiral molecularly imprinted polymeric stir bar sorptive extraction for naproxen enantiomer detection in PPCPs. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122251. [PMID: 32109790 DOI: 10.1016/j.jhazmat.2020.122251] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/22/2019] [Accepted: 02/05/2020] [Indexed: 05/14/2023]
Abstract
Chiral micropollutant analysis in pharmaceuticals and personal care products (PPCPs) is interesting but challenging. We firstly developed a series of chiral molecularly imprinted polymeric (CMIP) stir bar sorptive extraction coatings by combining a chiral template with chiral functional monomers via a click reaction for naproxen enantiomer analysis in PPCPs. Heterochiral selectivity was observed in the molecule recognition of the CMIP coatings, which demonstrated good adsorption capability for the chiral template and its structurally similar chiral compounds. The coatings also exhibited excellent enrichment capability for chiral analytes in an aqueous matrix. The surface morphology and pore structure of the CMIP coatings were characterized. The molecular interactions between the chiral template and chiral functional monomer were investigated through UV-vis spectroscopy and theoretical calculations to prove the effective interactions existing in the heterochiral MIPs. The CMIP coatings were used to enrich naproxen enantiomers in chiral drug and environmental water samples, and satisfactory recoveries (83.98 %-118.88 %) with a relative standard deviation of 3.49 %-13.08 % were achieved. The heterochiral imprinted coating-based method provided a sensitive, selective, and effective enrichment strategy for chiral micropollutant analysis in PPCPs. This technique is critical for chiral molecule recognition and enantiomer analysis in complex samples.
Collapse
Affiliation(s)
- Yujian Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, PR China
| | - Yuanchen Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, PR China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, PR China
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, PR China.
| | - Xingchen Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, PR China
| | - Juntong Wei
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, PR China
| | - Hongcheng Liu
- Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Science, Kunming, 650223, PR China
| | - Xiaoxi Si
- R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, 650231, PR China
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, PR China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, PR China.
| |
Collapse
|
18
|
Yuan Y, Zheng X, Lin H, Li Y, Yang M, Liu X, Deng C, Fan Z. Development of a hydrophilic magnetic amino-functionalized metal-organic framework for the highly efficient enrichment of trace bisphenols in river water samples. Talanta 2020; 211:120713. [DOI: 10.1016/j.talanta.2020.120713] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/28/2022]
|
19
|
Azizi A, Bottaro CS. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J Chromatogr A 2020; 1614:460603. [DOI: 10.1016/j.chroma.2019.460603] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 01/05/2023]
|
20
|
Fan W, He M, You L, Chen B, Hu B. Spiral stir bar sorptive extraction with polyaniline‐polydimethylsiloxane sol‐gel packings for the analysis of trace estrogens in environmental water and animal‐derived food samples. J Sep Sci 2020; 43:1137-1144. [DOI: 10.1002/jssc.201900819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Wenying Fan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)Department of ChemistryWuhan University Wuhan P. R. China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)Department of ChemistryWuhan University Wuhan P. R. China
| | - Linna You
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)Department of ChemistryWuhan University Wuhan P. R. China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)Department of ChemistryWuhan University Wuhan P. R. China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)Department of ChemistryWuhan University Wuhan P. R. China
| |
Collapse
|
21
|
Shi Z, Huai Q, Li X, Ma H, Zhou C, Chu X, Zhang H. Combination of Counter Current Salting-Out Homogenous Liquid-Liquid Extraction with Dispersive Liquid-Liquid Microextraction for the High-Performance Liquid Chromatographic Determination of Environmental Estrogens in Water Samples. J Chromatogr Sci 2020; 58:171-177. [PMID: 31687739 DOI: 10.1093/chromsci/bmz080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 02/21/2019] [Accepted: 08/27/2019] [Indexed: 01/12/2023]
Abstract
In this paper, counter current salting-out homogenous liquid-liquid extraction was combined with dispersive liquid-liquid microextraction for the determination of environmental estrogens in water samples by high-performance liquid chromatography. In this method, initially, sodium chloride was filled into a syringe and a mixture of water sample and acetonitrile was driven to pass through the syringe. Due to salting-out effect, fine droplets of acetonitrile went up through the remaining mixture and aggregated as a separated layer on the top. Then, the collected organic phase (acetonitrile) was removed with a syringe and mixed with carbon tetrachloride (extraction solvent). In the second step, the mixed organic phase was rapidly injected into 5 mL of distilled water to further enrich the analytes. Good linearity was obtained in the concentration range of 2.0~200 ng/mL for diethylstilbestrol (DES) and 8.0~200 ng/mL for octylphenol (OP), respectively. Limits of detection were 0.09 ng/mL for DES and 0.20 ng/mL for OP, respectively. Relative standard deviations for intra- and inter-day precisions were less than 2.1 and 3.1%, respectively. Finally, the established method was successfully applied to determine DES and OP in river water, well water, bottled water and campus drinking water samples with recoveries in the range from 81.0 to 105.9%.
Collapse
Affiliation(s)
- Zhihong Shi
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, 180 Wusi East Road, Lianchi District, Baoding, Hebei Province, 071002, China
| | - Qingru Huai
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, 180 Wusi East Road, Lianchi District, Baoding, Hebei Province, 071002, China
| | - Xinye Li
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, 180 Wusi East Road, Lianchi District, Baoding, Hebei Province, 071002, China
| | - Hongyu Ma
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, 180 Wusi East Road, Lianchi District, Baoding, Hebei Province, 071002, China
| | - Can Zhou
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, 180 Wusi East Road, Lianchi District, Baoding, Hebei Province, 071002, China
| | - Xiaoxue Chu
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, 180 Wusi East Road, Lianchi District, Baoding, Hebei Province, 071002, China
| | - Hongyi Zhang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, 180 Wusi East Road, Lianchi District, Baoding, Hebei Province, 071002, China
| |
Collapse
|
22
|
Liu J, Qiu H, Zhang F, Li Y. Zeolitic imidazolate framework-8 coated Fe 3O 4@SiO 2 composites for magnetic solid-phase extraction of bisphenols. NEW J CHEM 2020. [DOI: 10.1039/d0nj00006j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new magnetic composite material ZIF-8 coated Fe3O4@SiO2 was employed for preconcentration and detection of trace BPs in water and plastic products.
Collapse
Affiliation(s)
- Jinfei Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University)
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
- Tianjin
| | - Huijiao Qiu
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University)
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
- Tianjin
| | - Fei Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University)
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
- Tianjin
| | - Yan Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University)
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
- Tianjin
| |
Collapse
|
23
|
Li S, Si H, Li J, Jia M, Hou X. Metal organic framework/chitosan foams functionalized with polyethylene oxide as a sorbent for enrichment and analysis of bisphenols in beverages and water. NEW J CHEM 2020. [DOI: 10.1039/c9nj05196a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MIL-53(Al)/CS/PEO foam as a sorbent for the vortex assisted solid phase extraction of a trace amount of five bisphenols in beverages and water.
Collapse
Affiliation(s)
- Shuo Li
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Huizhong Si
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Jianshu Li
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| | - Mengtian Jia
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang
- P. R. China
| |
Collapse
|
24
|
Asadi Atoi P, Talebpour Z, Fotouhi L. Introduction of electropolymerization of pyrrole as a coating method for stir bar sorptive extraction of estradiol followed by gas chromatography. J Chromatogr A 2019; 1604:460478. [DOI: 10.1016/j.chroma.2019.460478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 01/01/2023]
|
25
|
Liu Y, Liu Y, Liu Z, Du F, Qin G, Li G, Hu X, Xu Z, Cai Z. Supramolecularly imprinted polymeric solid phase microextraction coatings for synergetic recognition nitrophenols and bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:358-364. [PMID: 30685724 DOI: 10.1016/j.jhazmat.2019.01.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
We herein firstly presented supramolecularly imprinted polymeric (SMIP) solid phase microextraction (SPME) coatings which showed synergetic recognition for nitrophenols and bisphenol A. A series of β-cyclodextrins (β-CD) with different substituents were successfully designed and synthesized. It was employed as supramolecular functional monomers for SMIPs. The orderly assembling structures settled down under the molecular imprinting process. The four of SMIPs solid phase microextraction coatings showed good selectivity for the template and could be used to extract 4-NP in real water samples. Furthermore, the inclusion effects of derived β-CDs with the 4-NP were investigated by measuring the UV-vis spectra and the theoretical calculations. The strongest intermolecular force is come from the supramolecular complex of 4-NP and β-CD-4 which shows the strongest UV-vis spectra absorption value. Meanwhile, the difference of the theoretical calculations value coming from the system of derived β-CDs and 4-NP is the largest, revealing the strongest electronic interactions between derived β-CD-4 and 4-NP. Therefore, these polymers possess inclusion interactions from β-cyclodextrin cavities and hydrogen-bonding interactions from molecular imprinting. Multiple adsorptions triggered off a synergetic recognition for target analytes. The SMIPs also performed highly selective recognition in complex real water sample with sensitive detection limits.
Collapse
Affiliation(s)
- Yuanchen Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, PR China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Yujian Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Fuyou Du
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Guiping Qin
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Gongke Li
- School of Chemistry, SunYat-Sen University, Guangzhou 510275, PR China
| | - Xianzhi Hu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, PR China.
| |
Collapse
|
26
|
Wang X, Huang P, Ma X, Du X, Lu X. Enhanced in-out-tube solid-phase microextraction by molecularly imprinted polymers-coated capillary followed by HPLC for Endocrine Disrupting Chemicals analysis. Talanta 2019; 194:7-13. [DOI: 10.1016/j.talanta.2018.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 11/24/2022]
|
27
|
Dummy-template molecularly imprinted micro-solid-phase extraction coupled with high-performance liquid chromatography for bisphenol A determination in environmental water samples. Microchem J 2019. [DOI: 10.1016/j.microc.2018.10.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Magnetic covalent organic frameworks based on magnetic solid phase extraction for determination of six steroidal and phenolic endocrine disrupting chemicals in food samples. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Affiliation(s)
- Joseph J. BelBruno
- Dartmouth College, Department of Chemistry, Hanover, New Hampshire 03755, United States
| |
Collapse
|
30
|
Tang J, Wang J, Shi S, Hu S, Yuan L. Determination of β-Agonist Residues in Animal-Derived Food by a Liquid Chromatography-Tandem Mass Spectrometric Method Combined with Molecularly Imprinted Stir Bar Sorptive Extraction. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:9053561. [PMID: 30046508 PMCID: PMC6036788 DOI: 10.1155/2018/9053561] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/24/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
A novel clenbuterol molecularly imprinted polymer (MIP)-coated stir bar was prepared and applied to the determination of six β-agonists in animal-derived food. Characterization and various parameters affecting adsorption and desorption behaviours were investigated. The extraction capacities of clenbuterol, salbutamol, ractopamine, mabuterol, brombuterol, and terbutaline for MIP coating were 3.8, 2.9, 3.1, 3.5, 3.2, and 3.3 times higher, respectively, than those of the NIP coating, respectively. The method of MIP-coated SBSE coupled with HPLC-MS/MS was developed. The recoveries in pork and liver samples were 75.8-97.9% with RSD from 2.6 to 5.3%. Limits of detection (LODs) and limits of quantification (LOQs) were 0.05-0.15 μg/kg and 0.10-0.30 μg/kg, respectively. Good linearities were obtained for six β-agonists with correlation coefficients (R2) higher than 0.994. These results indicated the superiority of the proposed method in the analysis of β-agonists in a complex matrix.
Collapse
Affiliation(s)
- Jiwang Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Hunan Testing Institute Product and Commodity Supervison, Changsha 410007, China
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shengqiang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Liejiang Yuan
- Hunan Testing Institute Product and Commodity Supervison, Changsha 410007, China
| |
Collapse
|
31
|
Zhang S, Yao W, Fu D, Zhang C, Zhao H. Fabrication of magnetic zinc adeninate metal-organic frameworks for the extraction of benzodiazepines from urine and wastewater. J Sep Sci 2018; 41:1864-1870. [DOI: 10.1002/jssc.201701226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Suling Zhang
- College of Materials and Environmental Engineering; Hangzhou Dianzi University; Hangzhou China
| | - Weixuan Yao
- Department of Criminal Science and Technology; Zhejiang Police College; Hangzhou China
| | - Defeng Fu
- Zhejiang Key Laboratory of Forensic Science and Technology; Hangzhou China
| | - Chunxiao Zhang
- College of Materials and Environmental Engineering; Hangzhou Dianzi University; Hangzhou China
| | - Hongting Zhao
- College of Materials and Environmental Engineering; Hangzhou Dianzi University; Hangzhou China
| |
Collapse
|
32
|
Chang T, Yan X, Liu S, Liu Y. Magnetic Dummy Template Silica Sol–Gel Molecularly Imprinted Polymer Nanospheres as Magnetic Solid-Phase Extraction Material for the Selective and Sensitive Determination of Bisphenol A in Plastic Bottled Beverages. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0969-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Zhang Z, Zhang J, Wang Y, Tong Y, Zhang L. Controlled synthesis of hollow porous carbon spheres for enrichment and simultaneous determination of nine bisphenols from real samples. Talanta 2017; 167:428-435. [DOI: 10.1016/j.talanta.2017.02.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/10/2017] [Accepted: 02/17/2017] [Indexed: 12/01/2022]
|
34
|
|
35
|
Yang K, Wang GN, Liu HZ, Liu J, Wang JP. Preparation of dual-template molecularly imprinted polymer coated stir bar based on computational simulation for detection of fluoroquinolones in meat. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1046:65-72. [DOI: 10.1016/j.jchromb.2017.01.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/15/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
|
36
|
Dai Y, Kan X. From non-electroactive to electroactive species: highly selective and sensitive detection based on a dual-template molecularly imprinted polymer electrochemical sensor. Chem Commun (Camb) 2017; 53:11755-11758. [DOI: 10.1039/c7cc06329f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A selective and sensitive detection of non-electroactive and electroactive molecules has been achieved on a dual-template imprinted electrochemical sensor. And the proposed dual-signal strategy can be used for highly sensitive detection of electroactive analytes.
Collapse
Affiliation(s)
- Yunlong Dai
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-Biosensing, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University
- Wuhu 241000
- P. R. China
| | - Xianwen Kan
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-Biosensing, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University
- Wuhu 241000
- P. R. China
| |
Collapse
|
37
|
Long Z, Xu W, Peng Y, Lu Y, Luo Q, Qiu H. Highly selective coextraction of rhodamine B and dibenzyl phthalate based on high-density dual-template imprinted shells on silica microparticles. J Sep Sci 2016; 40:506-513. [DOI: 10.1002/jssc.201601071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Zerong Long
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute; Urumqi P.R. China
- School of Chinese Pharmacy; Xinjiang Medical University; Urumqi P.R. China
| | - Weiwei Xu
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute; Urumqi P.R. China
| | - Yumei Peng
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute; Urumqi P.R. China
- School of Chinese Pharmacy; Xinjiang Medical University; Urumqi P.R. China
| | - Yi Lu
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute; Urumqi P.R. China
| | - Qian Luo
- Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute; Urumqi P.R. China
| | - Hongdeng Qiu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics; Chinese Academy of Science; Lanzhou 730000 P.R. China
| |
Collapse
|
38
|
Bunkoed O, Nurerk P, Wannapob R, Kanatharana P. Polypyrrole‐coated alginate/magnetite nanoparticles composite sorbent for the extraction of endocrine‐disrupting compounds. J Sep Sci 2016; 39:3602-9. [DOI: 10.1002/jssc.201600647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/14/2016] [Accepted: 07/17/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Opas Bunkoed
- Trace Analysis and Biosensor Research CenterPrince of Songkla University Hat Yai Songkhla Thailand
- Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of SciencePrince of Songkla University Hat Yai Songkhla Thailand
| | - Piyaluk Nurerk
- Trace Analysis and Biosensor Research CenterPrince of Songkla University Hat Yai Songkhla Thailand
- Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of SciencePrince of Songkla University Hat Yai Songkhla Thailand
| | - Rodtichoti Wannapob
- Trace Analysis and Biosensor Research CenterPrince of Songkla University Hat Yai Songkhla Thailand
- Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of SciencePrince of Songkla University Hat Yai Songkhla Thailand
| | - Proespichaya Kanatharana
- Trace Analysis and Biosensor Research CenterPrince of Songkla University Hat Yai Songkhla Thailand
- Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of SciencePrince of Songkla University Hat Yai Songkhla Thailand
| |
Collapse
|
39
|
Zhang J, Li F, Wang XH, Xu D, Huang YP, Liu ZS. Preparation and characterization of dual-template molecularly imprinted monolith with metal ion as pivot. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
He G, Tang Y, Hao Y, Shi J, Gao R. Preparation and application of magnetic molecularly imprinted nanoparticles for the selective extraction of osthole inLibanotis Buchtomensisherbal extract. J Sep Sci 2016; 39:2313-20. [DOI: 10.1002/jssc.201600266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Gaiyan He
- Institute of Analytical Science, School of Science; Xi'an Jiaotong University; Xi'an China
- School of Pharmacy; Xi'an Jiaotong University; Xi'an China
| | - Yuhai Tang
- Institute of Analytical Science, School of Science; Xi'an Jiaotong University; Xi'an China
- School of Pharmacy; Xi'an Jiaotong University; Xi'an China
| | - Yi Hao
- Institute of Analytical Science, School of Science; Xi'an Jiaotong University; Xi'an China
- School of Pharmacy; Xi'an Jiaotong University; Xi'an China
| | - Juan Shi
- School of Pharmacy; Xi'an Jiaotong University; Xi'an China
| | - Ruixia Gao
- Institute of Analytical Science, School of Science; Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
41
|
Barbell-shaped stir bar sorptive extraction using dummy template molecularly imprinted polymer coatings for analysis of bisphenol A in water. Anal Bioanal Chem 2016; 408:5329-35. [DOI: 10.1007/s00216-016-9628-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/03/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022]
|
42
|
Yang T, Feng S, Lu Y, Yin C, Wang J. Dual-template magnetic molecularly imprinted particles with multi-hollow structure for the detection of dicofol and chlorpyrifos-methyl. J Sep Sci 2016; 39:2388-95. [DOI: 10.1002/jssc.201600258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Tao Yang
- Key Laboratory of Oil Gas Fine Chemicals, Ministry of Education Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering; Xinjiang University; Urumqi China
- Xinjiang Product Quality Supervision and Inspection Research Institute; Urumqi China
| | - Shun Feng
- Key Laboratory of Oil Gas Fine Chemicals, Ministry of Education Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering; Xinjiang University; Urumqi China
| | - Yi Lu
- Xinjiang Product Quality Supervision and Inspection Research Institute; Urumqi China
| | - Chao Yin
- Xinjiang Product Quality Supervision and Inspection Research Institute; Urumqi China
| | - Jide Wang
- Key Laboratory of Oil Gas Fine Chemicals, Ministry of Education Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering; Xinjiang University; Urumqi China
| |
Collapse
|
43
|
Kopperi M, Riekkola ML. Non-targeted evaluation of selectivity of water-compatible class selective adsorbents for the analysis of steroids in wastewater. Anal Chim Acta 2016; 920:47-53. [DOI: 10.1016/j.aca.2016.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/16/2016] [Accepted: 03/19/2016] [Indexed: 10/22/2022]
|
44
|
Hu X, Wu X, Yang F, Wang Q, He C, Liu S. Novel surface dummy molecularly imprinted silica as sorbent for solid-phase extraction of bisphenol A from water samples. Talanta 2016; 148:29-36. [DOI: 10.1016/j.talanta.2015.10.057] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/17/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
|
45
|
Locatelli M, Sciascia F, Cifelli R, Malatesta L, Bruni P, Croce F. Analytical methods for the endocrine disruptor compounds determination in environmental water samples. J Chromatogr A 2016; 1434:1-18. [PMID: 26805600 DOI: 10.1016/j.chroma.2016.01.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
Abstract
The potential risk of exposure to different xenobiotics, which can modulate the endocrine system and represent a treat for the wellness of an increasing number of people, has recently drawn the attention of international environmental and health agencies. Several agents, characterized by structural diversity, may interfer with the normal endocrine functions that regulate cell growth, homeostasis and development. Substances such as pesticides, herbicides, plasticizers, metals, etc. having endocrine activity (EDCs) are used in agriculture and industry and are also used as drugs for humans and animals. A difficulty in the analytical determination of these substances is the complexity of the matrix in which they are present. In fact, the samples most frequently analyzed consist of groundwater and surface water, including influent and effluent of wastewater treatment plants and drinking water. In this review, several sample pretreatment protocols, assays and different instrumental techniques recently used in the EDCs determination have been considered. This review concludes with a paragraph in which the most recent hyphenated-instrument techniques are treated, highlighting their sensitivity and selectivity for the analyses of environmental water samples.
Collapse
Affiliation(s)
- Marcello Locatelli
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, via dei Vestini 31, 66100 Chieti (CH), Italy; Interuniversity Consortium of Structural and Systems Biology INBB, Viale Medaglie d'oro 305, 00136 Roma, Italy.
| | - Francesco Sciascia
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, via dei Vestini 31, 66100 Chieti (CH), Italy
| | - Roberta Cifelli
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, via dei Vestini 31, 66100 Chieti (CH), Italy
| | - Luciano Malatesta
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, via dei Vestini 31, 66100 Chieti (CH), Italy
| | - Pantaleone Bruni
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, via dei Vestini 31, 66100 Chieti (CH), Italy
| | - Fausto Croce
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, via dei Vestini 31, 66100 Chieti (CH), Italy
| |
Collapse
|
46
|
ESKANDARI H, SHAHBAZI-RAZ M. Ionic liquid based microextraction combined with derivatization for efficient enrichment/determination of asulam and sulfide. Turk J Chem 2016. [DOI: 10.3906/kim-1512-37] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
47
|
Shang J, Song Y, Rong C, Wang Y, Wang L, Zhang Y, Yu K. Preparation and selective adsorption of organic pollutants by an inorganic molecular imprinted polymer. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:1193-1201. [PMID: 27642839 DOI: 10.2166/wst.2016.244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel inorganic molecular imprinted polymer (MIP) was synthesized by adding Al(3+) to the Fe/SiO2 gel with Acid Orange II (AO II) as the template. The MIP was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and nitrogen adsorption-desorption measurement. Compared with the non-imprinted polymer (NIP), the MIP enhanced the adsorption capacity of the target pollutants AO II. The selective adsorption capacity study indicated that the MIP adsorbed more AO II than the interferent Bisphenol A (BPA), which also has the structure of a benzene ring, thus proving the selective adsorption capacity of the MIP for template molecules AO II. In addition, the adsorption of AO II over MIP belonged to the Langmuir type and pseudo-second adsorption kinetics, and Dubinin-Radushkevich model indicates that the adsorption process of AO II over MIP and NIP are both given priority to chemical adsorption. The MIP reusability in performance was demonstrated in at least six repeated cycles.
Collapse
Affiliation(s)
- Jiaobo Shang
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail:
| | - Yanqun Song
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail:
| | - Chuan Rong
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail:
| | - Yinghui Wang
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail: ; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China
| | - Liwei Wang
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail: ; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China
| | - Yuanyuan Zhang
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail: ; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- School of Marine Sciences, Guangxi University, Nanning 530004, China E-mail: ; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
48
|
Hashemi SH, Kaykhaii M, Tabehzar F. Molecularly imprinted stir bar sorptive extraction coupled with high-performance liquid chromatography for trace analysis of naphthalene sulfonates in seawater. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-015-0785-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Wang X, Deng C. Preparation of magnetic graphene @polydopamine @Zr-MOF material for the extraction and analysis of bisphenols in water samples. Talanta 2015; 144:1329-35. [DOI: 10.1016/j.talanta.2015.08.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/31/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
|
50
|
Vanillin-molecularly targeted extraction of stir bar based on magnetic field induced self-assembly of multifunctional Fe3O4@Polyaniline nanoparticles for detection of vanilla-flavor enhancers in infant milk powders. J Colloid Interface Sci 2015; 442:22-9. [DOI: 10.1016/j.jcis.2014.11.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 11/23/2022]
|