1
|
Liang LL, Zhao XJ, Lu Y, Zhu SH, Tang Q, Zuo MT, Liu ZY. An efficient method for the preparative isolation and purification of alkaloids from Gelsemium by using high speed counter-current chromatography and preparative HPLC. Prep Biochem Biotechnol 2024; 54:1205-1215. [PMID: 38592940 DOI: 10.1080/10826068.2024.2336990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
We established an efficient method using high-speed countercurrent chromatography (HSCCC) combined with preparative high-performance liquid chromatography (prep-HPLC) for isolating and purifying Gelsemium elegans (G. elegans) alkaloids. First, the two-phase solvent system composed of 1% triethylamine aqueous solution/n-hexane/ethyl acetate/ethanol (volume ratio 4:2:3:2) was employed to separate the crude extract (350 mg) using HSCCC. Subsequently, the mixture that resulted from HSCCC was further separated by Prep-HPLC, resulting in seven pure compounds including: 14-hydroxygelsenicine (1, 12.1 mg), sempervirine (2, 20.8 mg), 19-(R)-hydroxydihydrogelelsevirine (3, 10.1 mg), koumine (4, 50.5 mg), gelsemine (5, 32.2 mg), gelselvirine (6, 50.5 mg), and 11-hydroxyhumanmantenine (7, 12.5 mg). The purity of these seven compounds were 97.4, 98.9, 98.5, 99, 99.5, 96.8, and 85.5%, as determined by HPLC. The chemical structures of the seven compounds were analyzed and confirmed by electrospray ionization mass spectrometry (ESI-MS), 1H-nuclear magnetic resonance (1H NMR), and 13 C-nuclear magnetic resonance (13 C NMR) spectra. The results indicate that the HSCCC-prep-HPLC method can effectively separate the major alkaloids from the purified G. elegans, holding promising prospects for potential applications in the separation and identification of other traditional Chinese medicines.
Collapse
Affiliation(s)
- Ling-Ling Liang
- College of Veterinary Medicine, Hunan Agricultural University, Furong District, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Furong District, Changsha, Hunan, China
| | - Xue-Jiao Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Furong District, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Furong District, Changsha, Hunan, China
| | - Ying Lu
- College of Horticulture architecture, Hunan Agricultural University, Furong District, Changsha, Hunan, China
| | - Shi-Hao Zhu
- College of Horticulture architecture, Hunan Agricultural University, Furong District, Changsha, Hunan, China
| | - Qi Tang
- College of Horticulture architecture, Hunan Agricultural University, Furong District, Changsha, Hunan, China
| | - Meng-Ting Zuo
- College of Veterinary Medicine, Hunan Agricultural University, Furong District, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Furong District, Changsha, Hunan, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Furong District, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Furong District, Changsha, Hunan, China
| |
Collapse
|
2
|
Lu Y, Liu Y, Che F, Gao M, Li A, Wei Y. Optimisation of isolation of polyphenols from Malus pumila Mill. Leaves by high-speed countercurrent chromatography using response surface methodology. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124230. [PMID: 38981203 DOI: 10.1016/j.jchromb.2024.124230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Considering comprehensive utilization of natural products, isolation and activity determination processes of bioactive compounds are essential. In this study, a combined high-speed countercurrent chromatography (HSCCC) with preparative HPLC method was developed to isolate the five antioxidant polyphenols from 75% ethanol extract of Malus pumila Mill. leaves. The HSCCC conditions were optimized by response surface methodology (RSM) considering two response indexes including retention of stationary phase and analysis time. The optimal HSCCC conditions were flow rate of 2.11 mL/min, revolution speed of 717 rpm, and temperature of 25℃, with a solvent system of ethyl acetate/methanol/water (10:1:10, v/v/v). The unseparated fractions obtained from HSCCC were subjected to preparative HPLC for further isolation. As a result, phloridzin (15.3 mg), isoquercitrin (2.1 mg), quercetin 3-O-xyloside (1.9 mg), quercetin-3-O-arabinoside (4.0 mg), and quercitrin (2.0 mg) were isolated from 200.0 mg extracts. The purities of these compounds were all above 92%. Their chemical structures were identified by mass spectrometer and nuclear magnetic resonance. The five isolated compounds were further investigated for their rat hippocampal neuroprotective effects against hydrogen peroxide-induced oxidative stress. No cytotoxicity was observed in all tested concentrations. While all five compounds except phloridzin showed significantly neurogenic activities and neuroprotective effects, especially at the concentration of 0.5 mg/L. These results demonstrate that RSM is a suitable technique for optimisation of HSCCC and the isolated polyphenols can be used as antioxidants in pharmaceutical and food products.
Collapse
Affiliation(s)
- Yanzhen Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Department of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui 230601, China
| | - Yuanyuan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fenfang Che
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengyao Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Aoxin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Wang W, Liu Y, Che F, Li H, Liu J, Wu N, Gu Y, Wei Y. Isolation and purification of flavonoids from Euonymus alatus by high-speed countercurrent chromatography and neuroprotective effect of rhamnazin-3-O-rutinoside in vitro. J Sep Sci 2021; 44:4422-4430. [PMID: 34670011 DOI: 10.1002/jssc.202100607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/04/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022]
Abstract
The flavonoids from Euonymus alatus exhibit many biological activities including significant antioxidant, anti-inflammatory, anti-cancer. In this work, a high-speed countercurrent chromatography method for the isolation and purification of flavonoids from crude extracts of Euonymus alatus was established. The effects of several solvent systems on the separation efficiency of target compounds in the extract of Euonymus alatus were studied. The solvent system composed of n-hexane-ethyl acetate-methanol-water at a volume ratio of (3:5:3:5, v/v) was chosen, in which the lower phase was used as the mobile phase at the rotation speed of 800 rpm and flow rate of 2.0 mL/min. The three flavonoids were obtained and identified as patuletin-3-O-rutinoside, rhamnazin-3-O-rutinoside, and dehydrodicatechin A by mass spectroscopy and nuclear magnetic resonance, and the quantities of patuletin-3-O-rutinoside, rhamnazin-3-O-rutinoside, and dehydrodicatechin A were 2.2, 9.7, and 1.8 mg, respectively. The results indicated that high-speed countercurrent chromatography was a simple and efficient method for the isolation and purification of flavonoids from the crude extracts of Euonymus alatus. The cellular antioxidant activity experimental result indicated that rhamnazin-3-O-rutinoside could alleviate H2 O2 -induced oxidative stress.
Collapse
Affiliation(s)
- Wenjuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yuanyuan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Fenfang Che
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Hao Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Jiangang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Nan Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yanxiang Gu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
4
|
Yang Y, Khan BM, Zhang X, Zhao Y, Cheong KL, Liu Y. Advances in Separation and Purification of Bioactive Polysaccharides through High-speed Counter-Current Chromatography. J Chromatogr Sci 2021; 58:992-1000. [PMID: 32901274 DOI: 10.1093/chromsci/bmaa063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/20/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
Polysaccharides, with an extensive distribution in natural products, represent a group of natural bioactive substances having widespread applications in health-care food products and as biomaterials. Devising an efficient system for the separation and purification of polysaccharides from natural sources, hence, is of utmost importance in the widespread applicability and feasibility of research for the development of polysaccharide-based products. High-speed counter-current chromatography (HSCCC) is a continuous liquid-liquid partitioning chromatography with the ability to support a high loading amount and crude material treatment. Due to its flexible two-phase solvent system, HSCCC has been successfully used in the separation of many natural products. Based on HSCCC unique advantages over general column chromatography and its enhanced superiority in this regard when coupled to aqueous two-phase system (ATPS), this review summarizes the separation and purification of various bioactive polysaccharides through HSCCC and its coupling to ATPS as an aid in future research in this direction.
Collapse
Affiliation(s)
- Yu Yang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Daxue Road, Jinping District, Shantou, Guangdong 515063, PR China
| | - Bilal Muhammad Khan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Daxue Road, Jinping District, Shantou, Guangdong 515063, PR China
| | - Xiping Zhang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Daxue Road, Jinping District, Shantou, Guangdong 515063, P.R. China
| | - Yongjie Zhao
- Department of Mechanical Engineering, College of Engineering, Shantou University, Daxue Road, Jinping District, Shantou, Guangdong 515063, P.R. China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Daxue Road, Jinping District, Shantou, Guangdong 515063, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Daxue Road, Jinping District, Shantou, Guangdong 515063, PR China
| |
Collapse
|
5
|
The Bioavailability, Extraction, Biosynthesis and Distribution of Natural Dihydrochalcone: Phloridzin. Int J Mol Sci 2021; 22:ijms22020962. [PMID: 33478062 PMCID: PMC7835879 DOI: 10.3390/ijms22020962] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/17/2022] Open
Abstract
Phloridzin is an important phytochemical which was first isolated from the bark of apple trees. It is a member of the dihydrochalcones and mainly distributed in the plants of the Malus genus, therefore, the extraction method of phloridzin was similar to those of other phenolic substances. High-speed countercurrent chromatography (HSCCC), resin adsorption technology and preparative high-performance liquid chromatography (HPLC) were used to separate and purify phloridzin. Many studies showed that phloridzin had multiple pharmacological effects, such as antidiabetic, anti-inflammatory, antihyperglycaemic, anticancer and antibacterial activities. Besides, the physiological activities of phloridzin are cardioprotective, neuroprotective, hepatoprotective, immunomodulatory, antiobesity, antioxidant and so on. The present review summarizes the biosynthesis, distribution, extraction and bioavailability of the natural compound phloridzin and discusses its applications in food and medicine.
Collapse
|
6
|
Giacomeli R, de Gomes MG, Reolon JB, Haas SE, Colomé LM, Jesse CR. Chrysin loaded lipid-core nanocapsules ameliorates neurobehavioral alterations induced by β-amyloid 1-42 in aged female mice. Behav Brain Res 2020; 390:112696. [PMID: 32417280 DOI: 10.1016/j.bbr.2020.112696] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a clinically and progressive loss of cognitive function, neuropsychiatric and behavioral disorders. Some studies showed that chrysin has antioxidant and anti-inflammatory properties. However, your bioavailability is relatively low. Therefore, the present study was designed to investigate the effects of chrysin loaded lipid-core nanocapsules (LNCs) on neurochemical and behavioral changes in a model of AD induced by β-amyloid1-42 (Aβ1-42) peptide in aged female mice. For this purpose, aged female mice received free chrysin (FC) (5 mg/kg, per oral, p.o.) or chrysin loaded LNCs (C1-LNC and C5-LNC) (1 or 5 mg/kg, p.o.) for 14 days after Aβ1-42 administration (400 pmol, i.c.v.). Aβ1-42 induced significant impairments on memory and learning (morris water maze task, object recognition and step-down-type passive avoidance), also caused oxidative stress, reduced the levels of brain-derived neurotrophic factor (BDNF), increased neuroinflammation in prefrontal cortex and hippocampus of aged animals. Thus, C1-LNC and C5-LNC displayed significant effect against Aβ₁-₄2, via attenuation of oxidative stress and neuroinflammation, modulation of neurochemical and behavioral changes in a model of AD. These results point to chrysin loaded LNCs (mainly C5-LNC) can be a promising biomedical tool and a new therapeutic approach for treatment and prevention of AD.
Collapse
Affiliation(s)
- Renata Giacomeli
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil.
| | - Marcelo Gomes de Gomes
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| | - Jéssica Brandão Reolon
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| | - Sandra Elisa Haas
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| | - Letícia Marques Colomé
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| | - Cristiano Ricardo Jesse
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, RS 97500-970, Brazil
| |
Collapse
|
7
|
Offline preparative 2-D polar-copolymerized reversed-phase chromatography × zwitterionic hydrophilic interaction chromatography for effective purification of polar compounds from Caulis Polygoni Multiflori. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119:70-77. [DOI: 10.1016/j.jchromb.2019.04.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022]
|
8
|
Guo K, Tong C, Fu Q, Xu J, Shi S, Xiao Y. Identification of minor lignans, alkaloids, and phenylpropanoid glycosides in Magnolia officinalis by HPLC‒DAD‒QTOF-MS/MS. J Pharm Biomed Anal 2019; 170:153-160. [PMID: 30925272 DOI: 10.1016/j.jpba.2019.03.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Abstract
An effective strategy based on high-speed counter-current chromatography (HSCCC) knockout combination with HPLC-DAD-QTOF-MS/MS analysis were developed to identify minor lignans, alkaloids, and phenylpropanoid glycosides in M. officinalis. Petroleum ether/ethyl acetate/methanol/water (8:4:7:5, v/v/v/v) as solvent system was firstly selected to separate the crude extract of M. officinalis. Two major lignans, honokiol and magnolol were knocked out, and minor components were enriched. Then, five standards (honokiol, magnolol, magnocurarine, magnoflorine and acteoside) were used as examples to discuss their fragmentation patterns for structural identification. By comprehensive screening, sixteen lignans, nine alkaloids, six phenylpropanoid glycosides were unambiguously or tentatively identified by comparing their retention time, UV spectra, accurate mass and fragmentation patterns with standards or reported components. Eight of them, as far as was known, were discovered from M. officinalis for the first time. The proposed method might provide a model for the effective identification of minor components from complex herbs. Additionally, this study laid a foundation for the study of quality control, and clinical applications of M. officinalis.
Collapse
Affiliation(s)
- Keke Guo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, PR China
| | - Qiachi Fu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Jinju Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, PR China.
| | - Yecheng Xiao
- Lianyuan Kanglu Biotech Co., Ltd., Lianyuan, 417100, PR China
| |
Collapse
|
9
|
Zhao HW, Geng YL, Zhu H, Yang P, Yu JQ. Preparative separation of flavanones and terpenoids from olibanum by high-speed counter-current chromatography. ACTA CHROMATOGR 2019. [DOI: 10.1556/1326.2017.00323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- H. W. Zhao
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Jinan, 250014, P. R. China
| | - Y. L. Geng
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Jinan, 250014, P. R. China
| | - H. Zhu
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Jinan, 250014, P. R. China
| | - P. Yang
- Senkang Sanfeng Biological Engineering Technology Co. Ltd., Jinan, 250014, P. R. China
| | - J. Q. Yu
- Shandong Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Jinan, 250014, P. R. China
| |
Collapse
|
10
|
Yang X, Wang N, Shen C, Li H, Zhao J, Chen T, Li Y. An effective method based on medium-pressure liquid chromatography and recycling high-speed counter-current chromatography for enrichment and separation of three minor components with similar polarity from Dracocephalum tanguticum. J Sep Sci 2018; 42:684-690. [PMID: 30488652 DOI: 10.1002/jssc.201800812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/20/2018] [Accepted: 11/18/2018] [Indexed: 01/08/2023]
Abstract
The separation of minor compounds, especially those with similar polarities from a complex sample, remains challenging. In the proposed study, an effective method based on medium-pressure liquid chromatography and recycling high-speed counter-current chromatography was developed for the enrichment and separation of three minor components from Dracocephalum tanguticum. The crude extract was directly introduced to medium-pressure liquid chromatography for the enrichment of the three minor components. Based on high-performance liquid chromatography analysis, the total content of these three compounds increased from 0.48% in the crude extract to 85.3% in the medium-pressure liquid chromatography fraction. In addition, high-speed counter-current chromatography was employed to separate the enriched compounds using the solvent system hexane/ethyl acetate/methanol/water (1.18:8.82:1.18:8.82, v/v/v/v). As a result, compound 3 and a mixture of compounds 1 and 2 were obtained. In order to improve the resolution of compounds 1 and 2 while saving separation time, a recycling and heart-cut mode was used. Finally, compounds 1 and 2 were obtained after five cycles. These compounds were identified as 3-phenylethyl β-d-glucopyranoside (1), tazettoside E (2), and cirsiliol-4'-glucoside (3). Compounds 1 and 2 were primarily separated from D. tanguticum. Moreover, the developed method provided a reference for the separation of minor components from the complex sample.
Collapse
Affiliation(s)
- Xue Yang
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Chinese Academy of Science, Northwest Institute of Plateau Biology, Xining, P. R. China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Nana Wang
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Chinese Academy of Science, Northwest Institute of Plateau Biology, Xining, P. R. China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Cheng Shen
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Chinese Academy of Science, Northwest Institute of Plateau Biology, Xining, P. R. China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Hongmei Li
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Chinese Academy of Science, Northwest Institute of Plateau Biology, Xining, P. R. China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Jingyang Zhao
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Chinese Academy of Science, Northwest Institute of Plateau Biology, Xining, P. R. China
| | - Tao Chen
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Chinese Academy of Science, Northwest Institute of Plateau Biology, Xining, P. R. China
| | - Yulin Li
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Chinese Academy of Science, Northwest Institute of Plateau Biology, Xining, P. R. China
| |
Collapse
|
11
|
Liu M, Huang X, Liu Q, Chen M, Liao S, Zhu F, Shi S, Yang H, Chen X. Rapid screening and identification of antioxidants in the leaves of Malus hupehensis
using off-line two-dimensional HPLC-UV-MS/MS coupled with a 1,1′-diphenyl-2-picrylhydrazyl assay. J Sep Sci 2018; 41:2536-2543. [DOI: 10.1002/jssc.201800007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/24/2018] [Accepted: 04/05/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Minzhuo Liu
- College of Chemistry and Chemical Engineering; Central South University; Changsha P. R. China
| | - Xueqian Huang
- College of Chemistry and Chemical Engineering; Central South University; Changsha P. R. China
| | - Qi Liu
- College of Chemistry and Chemical Engineering; Central South University; Changsha P. R. China
| | - Miao Chen
- College of Chemistry and Chemical Engineering; Central South University; Changsha P. R. China
| | - Sen Liao
- College of Chemistry and Chemical Engineering; Central South University; Changsha P. R. China
| | - Fawei Zhu
- College of Chemistry and Chemical Engineering; Central South University; Changsha P. R. China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering; Central South University; Changsha P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering; Central South University; Changsha P. R. China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering; Central South University; Changsha P. R. China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources; Central South University; Changsha P. R. China
| |
Collapse
|
12
|
Comprehensive profiling of minor tyrosinase inhibitors from Gastrodia elata using an off-line hyphenation of ultrafiltration, high-speed countercurrent chromatography, and high-performance liquid chromatography. J Chromatogr A 2017; 1529:63-71. [DOI: 10.1016/j.chroma.2017.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 10/18/2017] [Accepted: 11/04/2017] [Indexed: 12/14/2022]
|
13
|
Lu Y, Wu N, Fang Y, Shaheen N, Wei Y. An automatic on-line 2,2-diphenyl-1-picrylhydrazyl-high performance liquid chromatography method for high-throughput screening of antioxidants from natural products. J Chromatogr A 2017; 1521:100-109. [DOI: 10.1016/j.chroma.2017.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/09/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022]
|
14
|
Gao D, Wang DD, Fu QF, Wang LJ, Zhang KL, Yang FQ, Xia ZN. Preparation and evaluation of magnetic molecularly imprinted polymers for the specific enrichment of phloridzin. Talanta 2017; 178:299-307. [PMID: 29136826 DOI: 10.1016/j.talanta.2017.09.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/13/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
Abstract
In present study, magnetic molecularly imprinted polymers (MMIPs) were successfully prepared for specific recognition and selective enrichment of phloridzin from the leaves of Malus doumeri (Bois) A. Chev and rats' plasma. The magnetic Fe3O4 were prepared by the solvothermal reaction method and followed by the modification of TEOS and functionalization with APTES. Using functionalized Fe3O4 particles as the magnetic cores, phloridzin as template, ethylene glycol dimethacrylate (EGDMA) as cross-linker and 2,2-azobisisobutyonnitrile (AIBN) as initiator, the MMIPs were prepared through APTES to associate the template on the surface of the magnetic substrate. The structural features and morphological characterizations of MMIPs were performed by FT-IR, SEM, TEM, XRD, TGA and VSM. The adsorption experiments revealed that the MMIPs presented high selective recognition property to phloridzin. The selectivity experiment indicated that the adsorption capacity and selectivity of polymers to phloridzin was higher than that of baicalin and 2,3,5,4'-ttrahydroxy stilbene-2-O-β-D-glucoside. Furthermore, the MMIPs were employed as adsorbents for extraction and enrichment of phloridzin from the leaves of M. doumeri and rats' plasma. The recoveries of phloridzin in the leaves of M. doumeri ranged from 81.45% to 90.27%. The maximum concentration (Cmax) of phloridzin in rats' plasma was detected as 12.19 ± 0.84μg/mL at about 15min after oral administration of phloridzin (200mg/kg). These results demonstrate that the prepared MMIPs are suitable for the selective adsorption of phloridzin from complex samples such as natural medical plants and biological samples.
Collapse
Affiliation(s)
- Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Dan-Dan Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qi-Feng Fu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lu-Jun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kai-Lian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Zhi-Ning Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
15
|
Gao Q, Ma R, Chen L, Shi S, Cai P, Zhang S, Xiang H. Antioxidant profiling of vine tea (Ampelopsis grossedentata): Off-line coupling heart-cutting HSCCC with HPLC–DAD–QTOF-MS/MS. Food Chem 2017; 225:55-61. [DOI: 10.1016/j.foodchem.2016.11.122] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022]
|
16
|
Li H, Chen T, Sun J, Wang W, Li Y. Separation of six xanthones from Swertia franchetiana
by high-speed countercurrent chromatography. J Sep Sci 2017; 40:2515-2521. [DOI: 10.1002/jssc.201601134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/14/2017] [Accepted: 03/16/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Hongmei Li
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining P.R. China
- Savaid Medical School; University of Chinese Academy of Sciences; Beijing P.R. China
| | - Tao Chen
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining P.R. China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining P.R. China
| | - Weiqing Wang
- Qinghai Province Product Quality Supervision and Inspection Center; Xining P.R. China
| | - Yulin Li
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining P.R. China
| |
Collapse
|
17
|
Isolation and Purification of Phenolic Acids from Sugarcane (Saccharum officinarum L.) Rinds by pH-Zone-Refining Counter-Current Chromatography and Their Antioxidant Activity Evaluation. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0824-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Cen Y, Xiao A, Chen X, Liu L. Isolation of α-Amylase Inhibitors from Kadsura longipedunculata Using a High-Speed Counter-Current Chromatography Target Guided by Centrifugal Ultrafiltration with LC-MS. Molecules 2016; 21:molecules21091190. [PMID: 27617987 PMCID: PMC6274455 DOI: 10.3390/molecules21091190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 01/06/2023] Open
Abstract
In this study, a high-speed counter-current chromatography (HSCCC) separation method target guided by centrifugal ultrafiltration with high-performance liquid chromatography-mass spectrometry (CU-LC-MS) was proposed. This method was used to analyze α-amylase inhibitors from Kadsura longipedunculata extract. According to previous screening with CU-LC-MS, two screened potential α-amylase inhibitors was successfully isolated from Kadsura longipedunculata extract using HSCCC under the optimized experimental conditions. The isolated two target compounds (with purities of 92.3% and 94.6%) were, respectively, identified as quercetin-3-O-rhamnoside (1) and protocatechuic acid (2) based on the MS, UV, and ¹H-NMR spectrometry data. To verify the inhibition of screened compounds, the inhibitory activities of quercetin-3-O-rhamnoside (1) and protocatechuic acid (2) on α-amylase were tested, and it demonstrated that the experimental IC50 values of quercetin-3-O-rhamnoside (1) and protocatechuic acid (2) were 28.8 and 12.5 μmol/L. These results proved that the hyphenated technique using CU-LC-MS and HSCCC was a rapid, competent, and reproductive method to screen and separate potential active compounds, like enzyme inhibitors from the extract of herbal medicines.
Collapse
Affiliation(s)
- Yin Cen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China.
| | - Aiping Xiao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan, China.
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China.
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan, China.
| |
Collapse
|
19
|
Wen L, Zheng G, You L, Abbasi AM, Li T, Fu X, Liu RH. Phytochemical profiles and cellular antioxidant activity of Malus doumeri (bois) chevalier on 2,2′-azobis (2-amidinopropane) dihydrochloride (ABAP)-induced oxidative stress. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
20
|
Song H, Lin J, Zhu X, Chen Q. Developments in high-speed countercurrent chromatography and its applications in the separation of terpenoids and saponins. J Sep Sci 2016; 39:1574-91. [DOI: 10.1002/jssc.201501199] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/13/2016] [Accepted: 02/14/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Hua Song
- Department of Pharmacy, School of Pharmaceutical Science; Xiamen University; Xiamen China
| | - Jianhong Lin
- Department of Pharmacy, School of Pharmaceutical Science; Xiamen University; Xiamen China
| | - Xuan Zhu
- Department of Pharmacy, School of Pharmaceutical Science; Xiamen University; Xiamen China
| | - Qing Chen
- Department of Pharmacy, School of Pharmaceutical Science; Xiamen University; Xiamen China
| |
Collapse
|
21
|
Peng MJ, Zhang YP, Shi SY. Separation of polar antioxidants from Rhizoma Polygonatum Odorati by high-speed counter-current chromatography with a hydrophilic solvent system. J LIQ CHROMATOGR R T 2016. [DOI: 10.1080/10826076.2016.1141298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mi-Jun Peng
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University, Zhangjiajie, P. R. China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Yu-Ping Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| | - Shu-Yun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, P. R. China
| |
Collapse
|
22
|
Recent Development in Counter-current Chromatography. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60908-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Sensitive characterization of polyphenolic antioxidants in Polygonatum odoratum by selective solid phase extraction and high performance liquid chromatography–diode array detector–quadrupole time-of-flight tandem mass spectrometry. J Pharm Biomed Anal 2015; 112:15-22. [DOI: 10.1016/j.jpba.2015.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 01/07/2023]
|
24
|
Analysis and improved characterization of minor antioxidants from leaves of Malus doumeri using a combination of major constituents’ knockout with high-performance liquid chromatography–diode array detector–quadrupole time-of-flight tandem mass spectrometry. J Chromatogr A 2015; 1398:57-65. [DOI: 10.1016/j.chroma.2015.04.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 12/30/2022]
|