1
|
Lei W, Zhiqi H, You P, Peiling T, Yanze G, Qiru L, Mingjie T, Tao L. Based on UHPLC-Q-TOF-MS and bioinformatics strategies, the potential allergens and mechanisms of allergic reactions caused by Danshen injection were explored. Biomed Chromatogr 2024; 38:e5985. [PMID: 39138643 DOI: 10.1002/bmc.5985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
The aim is to investigate the potential allergens and mechanisms underlying allergic-like reactions induced by Danshen injection (DSI). Utilizing ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS), metabolomics, and bioinformatics, we identified the key allergens, targets, and metabolic pathways involved in DSI-induced allergic-like reactions, validating binding efficiency through molecular docking and molecular dynamics. A total of 45 compounds were identified within DSI, with 24 compounds exhibiting strong binding activity to the MrgprX2 activation site. DSI was found to cause changes in 89 endogenous metabolites, including arachidonic acid, prostaglandins, and leukotrienes, primarily affecting pathways such as phenylalanine metabolism and arachidonic acid metabolism. The key allergens identified were Cryptotanshinone, Miltipolone, Neocryptotanshinone, Salvianolic acid B, and Isosalvianolic acid C, which primarily trigger allergic-like reactions by regulating upstream signaling targets such as ALOX5, PTGS1, PPARD, and LTB4R. Validation confirmed the high binding affinity and stability between key allergens and targets. These findings indicate that the allergic components in DSI primarily induce allergic-like reactions by modulating the aforementioned signaling targets, activating the AA metabolic pathway, promoting mast cell degranulation, and releasing downstream endogenous inflammatory mediators, subsequently eliciting allergic-like reactions.
Collapse
Affiliation(s)
- Wu Lei
- School of Pharmacy, Chengdu University, Chengdu, China
| | - He Zhiqi
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Peng You
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Tian Peiling
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Guo Yanze
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Li Qiru
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Tian Mingjie
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Liu Tao
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
2
|
Gallizzi AA, Heinken A, Guéant-Rodriguez RM, Guéant JL, Safar R. A systematic review and meta-analysis of proteomic and metabolomic alterations in anaphylaxis reactions. Front Immunol 2024; 15:1328212. [PMID: 38384462 PMCID: PMC10879545 DOI: 10.3389/fimmu.2024.1328212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
Background Anaphylaxis manifests as a severe immediate-type hypersensitivity reaction initiated through the immunological activation of target B-cells by allergens, leading to the release of mediators. However, the well-known underlying pathological mechanisms do not fully explain the whole variety of clinical and immunological presentations. We performed a systemic review of proteomic and metabolomic studies and analyzed the extracted data to improve our understanding and identify potential new biomarkers of anaphylaxis. Methods Proteomic and metabolomic studies in both human subjects and experimental models were extracted and selected through a systematic search conducted on databases such as PubMed, Scopus, and Web of Science, up to May 2023. Results Of 137 retrieved publications, we considered 12 for further analysis, including seven on proteome analysis and five on metabolome analysis. A meta-analysis of the four human studies identified 118 proteins with varying expression levels in at least two studies. Beside established pathways of mast cells and basophil activation, functional analysis of proteomic data revealed a significant enrichment of biological processes related to neutrophil activation and platelet degranulation and metabolic pathways of arachidonic acid and icosatetraenoic acid. The pathway analysis highlighted also the involvement of neutrophil degranulation, and platelet activation. Metabolome analysis across different models showed 13 common metabolites, including arachidonic acid, tryptophan and lysoPC(18:0) lysophosphatidylcholines. Conclusion Our review highlights the underestimated role of neutrophils and platelets in the pathological mechanisms of anaphylactic reactions. These findings, derived from a limited number of publications, necessitate confirmation through human studies with larger sample sizes and could contribute to the development of new biomarkers for anaphylaxis. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024506246.
Collapse
Affiliation(s)
- Adrienne Astrid Gallizzi
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Almut Heinken
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Rosa-Maria Guéant-Rodriguez
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
- Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Jean-Louis Guéant
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
- Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Ramia Safar
- INSERM, UMR_S1256, NGERE – Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
3
|
Zou F, Du Q, Zhang Y, Zuo L, Sun Z. Pseudo-allergic reactions induced by Chinese medicine injections: a review. Chin Med 2023; 18:149. [PMID: 37953288 PMCID: PMC10642014 DOI: 10.1186/s13020-023-00855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Traditional Chinese medicine injections (TCMIs) is a new dosage form of Chinese medicine, which plays a unique role in rescuing patients with critical illnesses that are difficult to replace. With the rapid development and widespread application of TCMIs in recent years, their adverse events have emerged and attracted much attention. Among them, pseudo-allergic reactions, i.e., the most significant adverse reactions occurring with the first dose without immunoglobulin E mediated conditions. Currently, studies on the types of TCMIs and antibiotic mechanisms that cause pseudo-allergic reactions are incomplete, and standard models and technical guidelines for assessing TCMIs have not been established. First, this review describes the causes of pseudo-allergic reactions, in which the components and structures responsible for pseudo-allergic reactions are summarized. Second, the mechanisms by which pseudo-allergic reactions are discussed, including direct stimulation of mast cells and complement activation. Then, research models of pseudo-allergic reaction diseases are reviewed, including animal models and cellular models. Finally, the outlook and future challenges for the development of pseudo-allergic reactions in traditional Chinese medicine (TCM) are outlined. This shed new light on the assessment and risk prevention of pseudo-allergic reactions in TCM and the prevention of clinical adverse reactions in TCM.
Collapse
Affiliation(s)
- Fanmei Zou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Zhengzhou, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, 450052, Henan Zhengzhou, China
| | - Qiuzheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Zhengzhou, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, 450052, Henan Zhengzhou, China
| | - Yuanyuan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Zhengzhou, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, 450052, Henan Zhengzhou, China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Zhengzhou, China
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, 450052, Henan Zhengzhou, China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Zhengzhou, China.
- Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, 450052, Henan Zhengzhou, China.
| |
Collapse
|
4
|
Zhang C, Ouyang L, Zhang X, Wen W, Xu Y, Li S, Li Y, He F, Liu W, Liu H. Anaphylactoid reactions induced by Shuanghuanglian injection and Shenmai injection and metabolomics analysis. Front Pharmacol 2023; 14:1200199. [PMID: 37484014 PMCID: PMC10358984 DOI: 10.3389/fphar.2023.1200199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction: Shuanghuanglian injection (lyophilized) (SHLI) is commonly used to treat respiratory tract infection. Shenmai injection (SMI) is mainly used to treat cardiovascular diseases. Despite their widespread clinical use, anaphylactoid reactions (ARs) induced by SHLI and SMI have been reported, which have attracted broad attention. However, the impact of ARs on metabolic changes and the underlying mechanisms are still unclear. Methods: ICR mice were used as model animals and were treated with normal saline, C48/80, SHLI and SMI, respectively. The behavior of mice, auricle blue staining and Evans Blue exudation were used as indexes to evaluate the sensitization of SHLI and SMI and determine the optimal sensitization dose. Anaphylactoid mice model was established based on the optimal dose and enzyme-linked immunosorbent assay (ELISA) was used to model verification. Afterwards, plasma samples of administered mice were profiled by LC-MS metabolomics and analyzed to evaluate the changes in metabolites. Results: High doses of both SHLI and SMI can induce severe anaphylactoid reactions while the reaction induced by SMI was weaker. A Partial Least-Squares Discriminant Analysis (PLS-DA) score plot indicated that following administration, significant metabolic changes occurred in mice. 23 distinct metabolites, including deoxycholic acid, histamine, and 5-hydroxytryptophan, were identified in the SHLI groups. 11 distinct metabolites, including androsterone, 17α-hydroxypregnenolone, and 5-hydroxyindoleacetate, were identified in the SMI groups. Meanwhile, different metabolic pathways of SHLI and SMI were predicted by different metabolites. The associated metabolic pathways include steroid hormone biosynthesis, tryptophan metabolism, histidine metabolism, arachidonic acid metabolism, nicotinate and nicotinamide metabolism, and primary bile acid biosynthesis. Conclusion: Study showed that both SHLI and SMI can induce varying degrees of anaphylactoid reactions, a positive correlation between response intensity and dose was observed. Metabolomics showed that SHLI and SMI may promote the simultaneous release of hormones and inflammatory factors by disturbing relevant metabolic pathways, while SMI may also inhibit the release of inflammatory factors in arachidonic acid metabolic pathway, indicating both pro-inflammatory and anti-inflammatory effects. This study will serve as a reference for developing a new approach to evaluate the safety of SHLI and SMI from perspective of susceptible drug varieties. However, ARs mechanism requires further verification.
Collapse
Affiliation(s)
- Chi Zhang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Linqi Ouyang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xili Zhang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wen Wen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yuqin Xu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shan Li
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yingyu Li
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Fuyuan He
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Wenlong Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hongyu Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Anaphylactic Rare Saponins Separated from Panax notoginseng Saponin and a Proteomic Approach to Their Anaphylactic Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7565177. [PMID: 35310026 PMCID: PMC8933111 DOI: 10.1155/2022/7565177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
In recent years, many traditional Chinese medicine injections based on Panax notoginseng saponin (PNS) have been reported to cause anaphylaxis. Previous studies on the anaphylactic saponins of PNS and their mechanism are inadequate. In this study, potential anaphylactic saponins were obtained by the separation of PNS and preparation of each individual component through comprehensive techniques, such as liquid chromatography, preparative chromatography, HPLC, NMR, and MS. The anaphylactic abilities of these saponins were tested using RBL-2H3 cells via a β-hexosaminidase release rate test. The results for the mechanism of anaphylaxis were obtained by a proteomic analysis using RBL-2H3 cells. The results indicate that, among all the saponins prepared, gypenoside LXXV and notoginsenoside T5 showed strong anaphylactic abilities and notoginsenoside ST-4 and ginsenoside Rk3 showed weak anaphylactic abilities. These 4 saponins can induce anaphylaxis via direct stimulation of effector cells. The gene oncology enrichment analysis results showed that, among these saponins, only gypenoside LXXV was related to organelles of the endoplasmic reticulum and Golgi apparatus and biological processes in response to organic cyclic compounds. Four proteins in RBL-2H3 cells with the accession numbers A0A0G2JWQ0, D3ZL85, D4A5G8, and Q8K3F0 were identified as crucial proteins in the anaphylactic process. This research will help traditional Chinese medicine injection manufacturers strengthen their quality control and ensure the safety of anaphylactic saponins.
Collapse
|
6
|
Acute Developmental Toxicity of Panax notoginseng in Zebrafish Larvae. Chin J Integr Med 2022; 29:333-340. [PMID: 35089525 DOI: 10.1007/s11655-022-3302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To evaluate toxicity of raw extract of Panax notoginseng (rPN) and decocted extract of PN (dPN) by a toxicological assay using zebrafish larvae, and explore the mechanism by RNA sequencing assay. METHODS Zebrafish larvae was used to evaluate acute toxicity of PN in two forms: rPN and dPN. Three doses (0.5, 1.5, and 5.0 µ g/mL) of dPN were used to treat zebrafishes for evaluating the developmental toxicity. Behavior abnormalities, body weight, body length and number of vertebral roots were used as specific phenotypic endpoints. RNA sequencing (RNA-seq) assay was applied to clarify the mechanism of acute toxicity, followed by real time PCR (qPCR) for verification. High performance liquid chromatography analysis was performed to determine the chemoprofile of this herb. RESULTS The acute toxicity result showed that rPN exerted higher acute toxicity than dPN in inducing death of larval zebrafishes (P<0.01). After daily oral intake for 21 days, dPN at doses of 0.5, 1.5 and 5.0 µ g/mL decreased the body weight, body length, and vertebral number of larval zebrafishes, indicating developmental toxicity of dPN. No other adverse outcome was observed during the experimental period. RNA-seq data revealed 38 genes differentially expressed in dPN-treated zebrafishes, of which carboxypeptidase A1 (cpa1) and opioid growth factor receptor-like 2 (ogfrl2) were identified as functional genes in regulating body development of zebrafishes. qPCR data showed that dPN significantly down-regulated the mRNA expressions of cpa1 and ogfrl2 (both P<0.01), verifying cpa1 and ogfrl2 as target genes for dPN. CONCLUSION This report uncovers the developmental toxicity of dPN, suggesting potential risk of its clinical application in children.
Collapse
|
7
|
Isosalvianolic acid C-induced pseudo-allergic reactions via the mast cell specific receptor MRGPRX2. Int Immunopharmacol 2019; 71:22-31. [DOI: 10.1016/j.intimp.2019.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/13/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022]
|
8
|
Xu C, Wang W, Wang B, Zhang T, Cui X, Pu Y, Li N. Analytical methods and biological activities of Panax notoginseng saponins: Recent trends. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:443-465. [PMID: 30802611 DOI: 10.1016/j.jep.2019.02.035] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/02/2019] [Accepted: 02/19/2019] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk.) F. H. Chen, also called Sanqi, is a widely used traditional Chinese medicine, which has long history used as herbal medicines. It is currently an important medicinal material in China, holding the first place in the sale volume of the whole patent medicines market in China, and the market size of the single species has exceeded 10 billion yuan. In addition, P. notoginseng is an important constituent part of many famous Chinese patent medicines, such as Compound Danshen Dripping Pills and Yunnan Baiyao. P. notoginseng saponins (PNSs), which are the major active components of P. notoginseng, are a kind of chemical mixture containing different dammarane-type saponins. Many studies show that PNSs have been extensively used in medical research or applications, such as atherosclerosis, diabetes, acute lung injury, cancer, and cardiovascular diseases. In addition, various PNS preparations, such as injections and capsules, have been made commercially available and are widely applied in clinical practice. AIM OF THE REVIEW Since the safety and efficacy of compounds are related to their qualitative and quantitative analyses, this review briefly summarizes the analytic approaches for PNSs and their biological effects developed in the last decade. METHODOLOGY This review conducted a systematic search in electronic databases, such as Pubmed, Google Scholar, SciFinder, ISI Web of Science, and CNKI, since 2009. The information provided in this review is based on peer-reviewed papers and patents in either English or Chinese. RESULTS At present, the chromatographic technique remains the most extensively used approach for the identification or quantitation of PNSs, coupled with different detectors, among which the difference mainly lies in their sensitivity and specificity for analyzing various compounds. It is well-known that PNSs have traditionally strong activity on cardiovascular diseases, such as atherosclerosis, intracerebral hemorrhage, or brain injury. The recent studies showed that PNSs also responded to osteoporosis, cancers, diabetes, and drug toxicity. However, some other studies also showed that some PNSs injections and special PNS components might lead to some biological toxicity under certain dosages. CONCLUSION This review may be used as a basis for further research in the field of quantitative and qualitative analyses, and is expected to provide updated and valuable insights into the potential medicinal applications of PNSs.
Collapse
Affiliation(s)
- Congcong Xu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weiwei Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bing Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ning Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Institute of KPC Pharmaceuticals, Inc., Kunming 650100, China.
| |
Collapse
|
9
|
Chen S, Chen G, Shu S, Xu Y, Ma X. Metabolomics analysis of baicalin on ovalbumin-sensitized allergic rhinitis rats. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181081. [PMID: 30891260 PMCID: PMC6408364 DOI: 10.1098/rsos.181081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/25/2019] [Indexed: 05/10/2023]
Abstract
Allergic rhinitis (AR) is a global health problem that appears in all age groups and affects approximately 15-30% of people. Baicalin has been used for the treatment of various allergic diseases, including AR. However, the metabolic mechanisms of AR and baicalin against AR have not been systematically studied. Here, ovalbumin-sensitized AR rats were used as a model, and animal behaviour, histological analysis, enzyme-linked immunosorbent assay (ELISA) and metabolomics were used to elucidate the mechanism of baicalin for AR. The results indicated that baicalin has a protective effect on AR rats by inhibiting the release of immunoglobulin E (IgE), histamine, interleukin-1 beta (IL-1β), interleukin-4 (IL-4), interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-α). In addition, ovalbumin-induced AR included modulation of arachidonic acid, leukotriene A4 (LTA4), leukotriene B4 (LTB4), α-ketoglutaric acid, phosphatidylcholine PC (20 : 4/0 : 0), PC (16 : 0/0 : 0), citric acid, fumarate, malate, 3-methylhistidine, histamine and other amino acids that are involved in arachidonic acid, histidine metabolism, the TCA cycle and amino acid metabolism. Thus, AR could be alleviated or reversed by baicalin.
Collapse
Affiliation(s)
- Saizhen Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, People's Republic of China
| | - Guirong Chen
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, People's Republic of China
| | - Sheng Shu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, People's Republic of China
| | - Yubin Xu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, People's Republic of China
- Author for correspondence: Yubin Xu e-mail:
| | - Xiande Ma
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, People's Republic of China
| |
Collapse
|
10
|
Yan S, Xiong H, Shao F, Zhang W, Yang F, Qi Z, Chen S, He L, Jiang M, Su Y, Zhu H, Qin S, Zhu Q, Luo X, Xing Q. HLA-C*12:02 is strongly associated with Xuesaitong-induced cutaneous adverse drug reactions. THE PHARMACOGENOMICS JOURNAL 2018; 19:277-285. [PMID: 30237582 DOI: 10.1038/s41397-018-0051-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/19/2018] [Accepted: 08/10/2018] [Indexed: 11/09/2022]
Abstract
Xuesaitong (XST) is mainly used to treat cardiovascular and cerebrovascular diseases, sometimes causing cutaneous adverse drug reactions (cADRs) with unknown mechanisms of pathogenicity or risk factors. We aimed to verify whether human leukocyte antigen (HLA) alleles are associated with XST-related cADRs in Han Chinese population. We carried out an association study including 12 subjects with XST-induced cADRs, 283 controls, and 28 XST-tolerant subjects. Five out of 12 patients with XST-induced cADRs carried HLA-C*12:02, and all of them received XST via intravenous drip. The carrier frequency of HLA-C*12:02 was significantly high compare to that of the control population (Pc = 4.4 × 10-4, odds ratio (OR) = 21.75, 95% CI = 5.78-81.88). Compared with that of the XST-tolerant group, the patients who received XST through intravenous drip presented a higher OR of cADRs (Pc = 0.011, OR = 27.00, 95% CI = 2.58-282.98). The results suggest that HLA-C*12:02 is a potentially predictive marker of XST-induced cADRs in Han Chinese, especially when XST is administered via intravenous drip.
Collapse
Affiliation(s)
- Sijia Yan
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hao Xiong
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan, 450003, China
| | - Wen Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fanping Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zheng Qi
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Shengan Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lin He
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Menglin Jiang
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yu Su
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Huizhong Zhu
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Shengying Qin
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qinyuan Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaoqun Luo
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Qinghe Xing
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Khoo LW, Audrey Kow SF, Maulidiani M, Lee MT, Tan CP, Shaari K, Tham CL, Abas F. Plasma and urine metabolite profiling reveals the protective effect of Clinacanthus nutans in an ovalbumin-induced anaphylaxis model: 1H-NMR metabolomics approach. J Pharm Biomed Anal 2018; 158:438-450. [DOI: 10.1016/j.jpba.2018.06.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/01/2018] [Accepted: 06/21/2018] [Indexed: 01/22/2023]
|
12
|
Xie Y, Xu L, Wang Y, Fan L, Chen Y, Tang M, Luo X, Liu L. Comparative proteomic analysis provides insight into a complex regulatory network of taproot formation in radish ( Raphanus sativus L.). HORTICULTURE RESEARCH 2018; 5:51. [PMID: 30302255 PMCID: PMC6165848 DOI: 10.1038/s41438-018-0057-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/22/2018] [Accepted: 05/30/2018] [Indexed: 05/15/2023]
Abstract
The fleshy taproot of radish is an important storage organ determining its yield and quality. Taproot thickening is a complex developmental process in radish. However, the molecular mechanisms governing this process remain unclear at the proteome level. In this study, a comparative proteomic analysis was performed to analyze the proteome changes at three developmental stages of taproot thickening using iTRAQ approach. In total, 1862 differentially expressed proteins (DEPs) were identified from 6342 high-confidence proteins, among which 256 up-regulated proteins displayed overlapped accumulation in S1 (pre-cortex splitting stage) vs. S2 (cortex splitting stage) and S1 vs. S3 (expanding stage) pairs, whereas 122 up-regulated proteins displayed overlapped accumulation in S1 vs. S3 and S2 vs. S3 pairs. Gene Ontology (GO) and pathway enrichment analysis showed that these DEPs were mainly involved in several processes such as "starch and sucrose metabolism", "plant hormone signal transduction", and "biosynthesis of secondary metabolites". A high concordance existed between iTRAQ and RT-qPCR at the mRNA expression levels. Furthermore, association analysis showed that 187, 181, and 96 DEPs were matched with their corresponding differentially expressed genes (DEGs) in S1 vs. S2, S1 vs. S3, and S2 vs. S3 comparison, respectively. Notably, several functional proteins including cell division cycle 5-like protein (CDC5), expansin B1 (EXPB1), and xyloglucan endotransglucosylase/hydrolase protein 24 (XTH24) were responsible for cell division and expansion during radish taproot thickening process. These results could facilitate a better understanding of the molecular mechanism underlying taproot thickening, and provide valuable information for the identification of critical genes/proteins responsible for taproot thickening in root vegetable crops.
Collapse
Affiliation(s)
- Yang Xie
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 PR China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 PR China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 PR China
| | - Lianxue Fan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 PR China
| | - Yinglong Chen
- The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001 Australia
| | - Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 PR China
| | - Xiaobo Luo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 PR China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 PR China
| |
Collapse
|
13
|
Xu WJ, Chen LM, Wei ZY, Wang PQ, Liu J, Dong JJ, Jia ZX, Yang J, Ma ZC, Su RB, Xiao HB, Liu A. Identifying the molecular targets of Salvia miltiorrhiza (SM) in ox-LDL induced macrophage-derived foam cells based on the integration of metabolomics and network pharmacology. RSC Adv 2018; 8:3760-3767. [PMID: 35542903 PMCID: PMC9077690 DOI: 10.1039/c7ra12725a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/23/2017] [Indexed: 11/29/2022] Open
Abstract
The identification of network targets is one of the core issues used to reveal the molecular mechanism of traditional Chinese medicine (TCM) and is also the grand challenge of modernization of TCM. In this study, a protein–protein interaction (PPI) network was constructed based on the integration of network pharmacology and metabolomics, which was used as an effective approach to elucidate the relationship between disease pathway proteins and the targets of active small-molecule compounds. The intermolecular transfer process of the drug effect of active compounds in Salvia miltiorrhiza (SM) was revealed and visualized using the PPI network. Our study indicates that PTGS2 was the most important disease protein regulated by the active compounds in SM. Furthermore, the drug targets that can be linked to PTGS2 were regarded as direct targets and the direct targets of the active compounds were identified, respectively. Western blot and co-immuno precipitation (Co-IP) were used to verify the results of the network analysis and reveal the intermolecular transfer process of the effect of Tan IIA. Biological validation revealed that Tan IIA-EDN1-PTGS2-anandamide was a major intervention way of Tan IIA on early atherosclerosis (AS). This work provides a new perspective for the discovery of drug targets and the specific approaches regulated by the active compounds in SM on disease pathway proteins, which is beneficial for understanding the mechanism of action of bioactive compounds and expanding their clinical applications. The discovery of drug targets and the specific regulatory manner of active compounds based on a PPI network.![]()
Collapse
|
14
|
Zhang B, Li Q, Shi C, Zhang X. Drug-Induced Pseudoallergy: A Review of the Causes and Mechanisms. Pharmacology 2017; 101:104-110. [PMID: 29136631 DOI: 10.1159/000479878] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/28/2017] [Indexed: 12/11/2022]
Abstract
Adverse drug reactions occur frequently and can trigger pseudoallergy, which has become a serious threat to public health. Pseudoallergy is a typical non-immune anaphylactic reaction characterized by the independence of antigen-specific immune responses. In the clinic, pseudoallergy is often elicited by the first dose of medication, and here lies its unpredictability and occasional lethal outcome. However, the mechanisms of pseudoallergy are not well understood. This review focusses on the causes and mechanisms of pseudoallergy induced by drugs. Two categories of mechanisms will be considered, namely, (1) complement activation-related pseudoallergy and (2) mast cell activation-related pseudoallergy. The factors that induce pseudoallergy include opioid drugs, complement activation-related pseudoallergenic drugs, nonsteroidal anti-inflammatory drugs and traditional Chinese medicine injections.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Pharmacology, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou, PR China
| | | | | | | |
Collapse
|
15
|
Wang L, Zhao Y, Yang Y, Hu Y, Zou X, Yu B, Qi J. Allergens in red ginseng extract induce the release of mediators associated with anaphylactoid reactions. J Transl Med 2017; 15:148. [PMID: 28659175 PMCID: PMC5490175 DOI: 10.1186/s12967-017-1249-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 06/21/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Anaphylactoid reactions induced by preparations containing red ginseng have been reported. The aim of this study is to evaluate the allergenicity and screen potential allergens in red ginseng extract thoroughly. METHODS Red ginseng extract (RGE) and different fractions of RGE were prepared and evaluated by measuring the degranulation and viability of rat basophilic leukemia 2H3 (RBL-2H3) cells. Potential allergens were screened by RBL-2H3 cell extraction and allergenicity verified in RBL-2H3 cells, mouse peritoneal mast cells, Laboratory of Allergic Disease 2 (LAD2) human mast cells and mice, respectively. RESULTS 80% ethanol extract of red ginseng extract induced mast cell degranulation with less cytotoxicity, but 40% ethanol extract could not. Ginsenoside Rd and 20(S)-Rg3 could induce a significant increase in β-hexosaminidase release, histamine release and translocation of phosphatidylserine in RBL-2H3 cells. Ginsenoside Rd and 20(S)-Rg3 also increased β-hexosaminidase release and the intracellular Ca2+ concentration in mouse peritoneal mast cells and LAD2 cells. In addition, histamine levels in serum of mice were elevated dose-dependently. CONCLUSIONS Ginsenoside Rd and 20(S)-Rg3 are potential allergens that induce the release of mediators associated with anaphylactoid reactions. Our study could guide optimization of methods associated with Rd/20(S)-Rg3-containing preparations and establishment of quality standards for safe application of Traditional Chinese Medicines.
Collapse
Affiliation(s)
- Lu Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China
| | - Yazheng Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China
| | - Ye Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiaohan Zou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China. .,Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China.
| | - Jin Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China. .,Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
16
|
Mathematical and Computational Modeling in Complex Biological Systems. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5958321. [PMID: 28386558 PMCID: PMC5366773 DOI: 10.1155/2017/5958321] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/20/2016] [Accepted: 01/16/2017] [Indexed: 12/22/2022]
Abstract
The biological process and molecular functions involved in the cancer progression remain difficult to understand for biologists and clinical doctors. Recent developments in high-throughput technologies urge the systems biology to achieve more precise models for complex diseases. Computational and mathematical models are gradually being used to help us understand the omics data produced by high-throughput experimental techniques. The use of computational models in systems biology allows us to explore the pathogenesis of complex diseases, improve our understanding of the latent molecular mechanisms, and promote treatment strategy optimization and new drug discovery. Currently, it is urgent to bridge the gap between the developments of high-throughput technologies and systemic modeling of the biological process in cancer research. In this review, we firstly studied several typical mathematical modeling approaches of biological systems in different scales and deeply analyzed their characteristics, advantages, applications, and limitations. Next, three potential research directions in systems modeling were summarized. To conclude, this review provides an update of important solutions using computational modeling approaches in systems biology.
Collapse
|
17
|
Yao C, Yang W, Zhang J, Qiu S, Chen M, Shi X, Pan H, Wu W, Guo D. UHPLC–Q‐TOF‐MS‐based metabolomics approach to compare the saponin compositions of Xueshuantong injection and Xuesaitong injection. J Sep Sci 2017; 40:834-841. [DOI: 10.1002/jssc.201601122] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine National Engineering Laboratory for TCM Standardization Technology Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Beijing China
| | - Wenzhi Yang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine National Engineering Laboratory for TCM Standardization Technology Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Jingxian Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine National Engineering Laboratory for TCM Standardization Technology Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Shi Qiu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine National Engineering Laboratory for TCM Standardization Technology Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Ming Chen
- Guangxi Wuzhou Pharmaceutical (Group) Co., Ltd. Wuzhou China
| | - Xiaojian Shi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine National Engineering Laboratory for TCM Standardization Technology Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Huiqin Pan
- Shanghai Research Center for Modernization of Traditional Chinese Medicine National Engineering Laboratory for TCM Standardization Technology Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Beijing China
| | - Wanying Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine National Engineering Laboratory for TCM Standardization Technology Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| | - Dean Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine National Engineering Laboratory for TCM Standardization Technology Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai China
| |
Collapse
|
18
|
Xu Y, Liu C, Dou D, Wang Q. Evaluation of anaphylactoid constituents in vitro and in vivo. Int Immunopharmacol 2017; 43:79-84. [DOI: 10.1016/j.intimp.2016.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
19
|
Suo T, Wang H, Li Z. Application of proteomics in research on traditional Chinese medicine. Expert Rev Proteomics 2016; 13:873-81. [PMID: 27488052 DOI: 10.1080/14789450.2016.1220837] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Chen S, Jiang H, Cao Y, Wang Y, Hu Z, Zhu Z, Chai Y. Drug target identification using network analysis: Taking active components in Sini decoction as an example. Sci Rep 2016; 6:24245. [PMID: 27095146 PMCID: PMC4837341 DOI: 10.1038/srep24245] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/21/2016] [Indexed: 12/13/2022] Open
Abstract
Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.
Collapse
Affiliation(s)
- Si Chen
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Hailong Jiang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Yun Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Ziheng Hu
- School of Pharmacy, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Zhenyu Zhu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| |
Collapse
|
21
|
Lu X, Lian X, zheng J, Ai N, Ji C, Hao C, Fan X. LC-ESI-TOF-MS-based metabolomic analysis of ginsenoside Rd-induced anaphylactoid reaction in mice. RSC Adv 2016. [DOI: 10.1039/c5ra24301g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A ginsenoside Rd-induced anaphylactoid reaction in mice was investigated by LC-ESI-TOF-MS-based metabolomic analysis as well as general toxicological assessments.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Xueping Lian
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Jie zheng
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Ni Ai
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Cai Ji
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Cui Hao
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|