1
|
Ozalp O, Soylak M. Microextraction Methods for the Separation-Preconcentration and Determination of Food Dyes: A Minireview. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2175212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Ozgur Ozalp
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Crucello J, de Oliveira AM, Sampaio NMFM, Hantao LW. Miniaturized systems for gas chromatography: Developments in sample preparation and instrumentation. J Chromatogr A 2022; 1685:463603. [DOI: 10.1016/j.chroma.2022.463603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
3
|
Li Y, Man S, Ye S, Liu G, Ma L. CRISPR-Cas-based detection for food safety problems: Current status, challenges, and opportunities. Compr Rev Food Sci Food Saf 2022; 21:3770-3798. [PMID: 35796408 DOI: 10.1111/1541-4337.13000] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022]
Abstract
Food safety is one of the biggest public issues occurring around the world. Microbiological, chemical, and physical hazards can lead to food safety issues, which may occur at all stages of the supply chain. In order to tackle food safety issues and safeguard consumer health, rapid, accurate, specific, and field-deployable detection methods meeting diverse requirements are one of the imperative measures for food safety assurance. CRISPR-Cas system, a newly emerging technology, has been successfully repurposed in biosensing and has demonstrated huge potential to establish conceptually novel detection methods with high sensitivity and specificity. This review focuses on CRISPR-Cas-based detection and its current status and huge potential specifically for food safety inspection. We firstly illustrate the pending problems in food safety and summarize the popular detection methods. We then describe the potential applications of CRISPR-Cas-based detection in food safety inspection. Finally, the challenges and futuristic opportunities are proposed and discussed. Generally speaking, the current food safety detection methods are still unsatisfactory in some ways such as being time-consuming, displaying unmet sensitivity and specificity standards, and there is a comparative paucity of multiplexed testing and POCT. Recent studies have shown that CRISPR-Cas-based biosensing is an innovative and fast-expanding technology, which could make up for the shortcomings of the existing methods or even replace them. To sum up, the implementation of CRISPR-Cas and the integration of CRISPR-Cas with other techniques is promising and desirable, which is expected to provide "customized" and "smart" detection methods for food safety inspection in the coming future.
Collapse
Affiliation(s)
- Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shengying Ye
- Pharmacy Department, The 983th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Tianjin, China
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
4
|
Maciel EVS, Lanças FM. A cartridge-based device for automated analyses of solid matrices by online sample prep-capillary LC-MS/MS. Anal Bioanal Chem 2022; 414:2725-2737. [PMID: 35106613 DOI: 10.1007/s00216-022-03916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Sample preparation is an essential step focused on eliminating interfering compounds while pre-concentrating the analytes. However, its multiple steps are laborious, time-consuming, and a source of errors. Currently, automated approaches represent a promising alternative to overcome these drawbacks. Similarly, miniaturisation has been considered an ideal strategy for creating greener analytical workflows. The combination of these concepts is currently highly desired by analytical chemists. However, most automated and miniaturised sample preparation techniques are primarily concerned with liquid samples, while solids are frequently overlooked. We present an approach based on a cartridge packed with solids (soil samples) coupled with a capillary LC-MS, combining sample preparation and analytical steps into a unique platform. As a proof-of-concept, nine pesticides used in sugarcane crops were extracted and analysed by our proposed method. For optimisation, a fractional factorial design (25-1) was performed with the following variables: aqueous dilution of the sample (V1), extraction strength (V2), matrix washing time (V3), extraction flow (V4), and analytical flow (V5). After, the most influential ones (V1, V2, and V3) were taken into a central composite design (23) to select their best values. Under optimised conditions, the method reported linear ranges between 10 and 125 ng g-1 with R2 > 0.985. Accuracy and precision were in accordance with the values established by the International Council for Harmonisation (Q2(R1)). Therefore, the proposed approach was effective in extracting and analysing selected pesticides in soil samples. Also, we carried out initial qualitative tests for pesticides in honeybees to see if there is the possibility to apply our method in other solids.
Collapse
Affiliation(s)
- Edvaldo Vasconcelos Soares Maciel
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, Av. Trabalhador São-Carlense, 400, São Carlos, SP, Postal Code: 13566590, Brazil
| | - Fernando Mauro Lanças
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, Av. Trabalhador São-Carlense, 400, São Carlos, SP, Postal Code: 13566590, Brazil.
| |
Collapse
|
5
|
Dong MY, Wu HL, Long WJ, Wang T, Yu RQ. Simultaneous and rapid screening and determination of twelve azo dyes illegally added into food products by using chemometrics-assisted HPLC-DAD strategy. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Shi MZ, Yu YL, Zhu SC, Gu YX, Yue ZX, Yan TC, Zheng H, Cao J. Boron nitride nanosheet-assisted matrix solid-phase dispersion microextraction of alkaloids from lotus plumule by high-performance liquid chromatography coupled with ultraviolet detection and ion mobility quadrupole time-of-flight mass spectrometry. Electrophoresis 2021; 43:581-589. [PMID: 34755364 DOI: 10.1002/elps.202100286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/08/2022]
Abstract
A boron nitride nanosheet (BNNS)-assisted matrix solid-phase dispersion method was established to microextract alkaloids from medicinal plants. The target compounds were identified by high-performance liquid chromatography coupled with ultraviolet detection and ion mobility quadrupole time-of-flight mass spectrometry. During the experimental process, several important parameters, including the type of dispersant, the amount of dispersant, the grinding time, and the type of elution solvent, were optimized. Finally, the BNNSs were chosen as the best dispersant, and their microcosmic morphologies were identified by scanning electron microscopy and transmission electron microscopy. Because of the special property of BNNSs, the cost of this experiment was greatly reduced, especially in elution volume, sample amount (50 mg), and extraction time (2 min). Under the best conditions, 50 mg of sample powder was dispersed with 50 mg of BNNSs, the grinding time was 120 s, the mixed powder was eluted with 200 μL of methanol, and good linearity (r2 > 0.9993) and satisfactory recoveries (80-100%) were obtained. The inter- and intraday precisions were acceptable, with RSDs lower than 2.01 and 4.84%, respectively. The limits of detection ranged from 2.54 to 15.00 ng/mL, and the limits of quantitation were 8.47 to 50.00 ng/mL. The proposed method was successfully applied for the determination of liensinine, isoliensinine, and neferine in lotus plumule.
Collapse
Affiliation(s)
- Min-Zhen Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| | - Ya-Ling Yu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| | - Si-Chen Zhu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| | - Yu-Xin Gu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| | - Zi-Xuan Yue
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| | - Tian-Ci Yan
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| | - Hui Zheng
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, P. R. China
| |
Collapse
|
7
|
Zhou Q, Zhao K, Wu Y, Li S, Guo J, Zhou B, Zhao J, Guo L, Chen C. Rapid magnetic enrichment and sensitive detection of Sudan pollutants with nanoscale zero valent iron-based nanomaterials in combination with liquid chromatography-ultraviolet detector. CHEMOSPHERE 2021; 281:130900. [PMID: 34044305 DOI: 10.1016/j.chemosphere.2021.130900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
In present work, we reported a new nanomaterial nano Fe0 decorated with SiO2 and dopamine by self-assembly method (Fe@SiO2@PDA). A sensitive method for determination of Sudan pollutants in aqueous samples was developed using Fe@SiO2@PDA as magnetic solid phase extraction adsorbents prior to high-performance liquid chromatography with variable wavelength detector. The possible parameters which would affect the enrichment have been optimized. The best parameters were as follows: elutent, 4.5 mL methanol; adsorbent dosage, 30 mg; adsorption time, 20 min; elution time, 18 min; sample pH 7; sample volume, 40 mL. The experimental results demonstrated that Fe@SiO2@PDA exhibited good adsorption properties to Sudan Red dyes. The established method provided excellent linear ranges over 0.01-50 μg L-1 and detection limits ranged from 2.0 to 5.1 ng L-1 for Sudan red I-IV. The developed method was also evaluated with real water samples and the results demonstrated that it was of applicative value owing to its merits including robustness, easy operation, fastness, cheapness and high enrichment efficiency, and had great prospect in environmental fields.
Collapse
Affiliation(s)
- Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Kuifu Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yalin Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China; Beijing Municipal Research Institute of Environmental Protection, Beijing, 10037, China
| | - Shuangying Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jinghan Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Boyao Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jingyi Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Libing Guo
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan, 450002, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
8
|
Zhou Q, Lei M, Wu Y, Li S, Tong Y, Li Z, Liu M, Guo L, Chen C. Magnetic and thermal dual-sensitive core-shell nanoparticles for highly preconcentration and measurement of Sudan red pollutants. CHEMOSPHERE 2021; 279:130584. [PMID: 33887597 DOI: 10.1016/j.chemosphere.2021.130584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Recently, thermal-sensitive polymers absorbed much more concerns, and the goal of present work was to modify magnetic nanoparticles with N-isopropylacrylamide (NIPAM) and methyl 3,3-dimethylacrylate (DMMA) for obtaining thermal and magnetic dual-sensitive nanoparticles based on silica coated nanoscale zero valent iron and thermal-sensitive polymers (Fe@p(NIPAM-co-DMMA)). Fe@p(NIPAM-co-DMMA) nanoparticles were fabricated and possessed excellent adsorption ability for Sudan pollutants in aqueous samples. A rapid extraction and separation approach utilizing synthesized dual-sensitive nanomaterials was designed and developed before analysis by liquid chromatography (HPLC). Upon the enrichment factors as their optimal values, the established method gained wonderful linearity over the range of 0.05-500 μg L-1. The precisions of proposed method were all lower than 3.87%. The validating experiments ensured that this developed method provided with satisfied recoveries in the range of 97.4-102.6% from spiked real water samples, which affirmed that this method was a reliable monitoring tool for Sudan pollutants in water and food samples, etc.
Collapse
Affiliation(s)
- Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Man Lei
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yalin Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China; Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Shuangying Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yayan Tong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Zhi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Menghua Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Libin Guo
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan, 450002, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
9
|
Mohamed SH, Salim AI, Issa YM, Atwa MA, Nassar RH. Evaluation of Different Sudan Dyes in Egyptian Food Samples Utilizing Liquid Chromatography/Tandem Mass Spectrometry. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02036-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Chen S, Zheng Y, Shen Z, Li J, Zhu X. Magnetic solid phase extraction based on amino acid ionic liquids magnetic graphene oxide nanomaterials-high performance liquid chromatography for the simultaneous determination of Sudan I–IV. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1856138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Songqing Chen
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| | - Yan Zheng
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| | - Zijin Shen
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| | - Jiawei Li
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| | - Xiashi Zhu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
- College of Guangling, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
11
|
Non-destructive fluorescence spectroscopy combined with second-order calibration as a new strategy for the analysis of the illegal Sudan I dye in paprika powder. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Sun L, Tang W, Zhu T, Row KH. Efficient Adsorptive Separation and Determination of Phenolic Acids from Orange Peels Using Hyper-Crosslinked Polymer Based Zeolitic Imidazolate Framework-8 (ZIF-8) Composites. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1751180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Liping Sun
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| | - Weiyang Tang
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| | - Tao Zhu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| |
Collapse
|
13
|
Yu X, Lee JK, Liu H, Yang H. Synthesis of magnetic nanoparticles to detect Sudan dye adulteration in chilli powders. Food Chem 2019; 299:125144. [PMID: 31323440 DOI: 10.1016/j.foodchem.2019.125144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/22/2022]
Abstract
Magnetic nanoparticles were synthesised to extract Sudan dyes from chilli powders. The adsorbents used were magnetic ferroferric oxide nanoparticles coated with polystyrene. The extraction procedures for Sudan dyes comprised liquid-solid extraction and magnetic solid phase extraction. The conditions were optimised to achieve efficient magnetic solid phase extraction, including extraction and desorption time, type and volume of the desorption solvent, and the mass of the adsorbents. Repeatability tests showed satisfactory recovery rates of 80.2-115.8%, with a relative standard deviation <3.8%. The results suggested that the proposed extraction method was effective and efficient to extract Sudan dyes from chilli powders. The extraction process was simpler compared with traditional approaches because the adsorbents can be rapidly removed from the sample matrix using a permanent magnet. The use of recyclable adsorbents decreased the cost greatly. Chilli powder samples collected from local markets in Singapore were tested using the proposed method under optimum conditions.
Collapse
Affiliation(s)
- Xi Yu
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Jun Kang Lee
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, PR China
| | - Hongshun Yang
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
14
|
Switchable fatty acid based CO2-effervescence ameliorated emulsification microextraction prior to high performance liquid chromatography for efficient analyses of toxic azo dyes in foodstuffs. Food Chem 2019; 286:185-190. [DOI: 10.1016/j.foodchem.2019.01.197] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/04/2023]
|
15
|
Recent Advances and Trends in Applications of Solid-Phase Extraction Techniques in Food and Environmental Analysis. Chromatographia 2019. [DOI: 10.1007/s10337-019-03726-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Non-destructive Raman spectroscopy as a tool for measuring ASTA color values and Sudan I content in paprika powder. Food Chem 2019; 274:187-193. [DOI: 10.1016/j.foodchem.2018.08.129] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 02/01/2023]
|
17
|
Immobilization of functionalized gold nanoparticles in a well-organized silicon-based microextracting chip followed by online thermal desorption-gas chromatography. Microchem J 2018. [DOI: 10.1016/j.microc.2018.07.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Tu X, Chen W. A Review on the Recent Progress in Matrix Solid Phase Dispersion. Molecules 2018; 23:molecules23112767. [PMID: 30366403 PMCID: PMC6278504 DOI: 10.3390/molecules23112767] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 01/01/2023] Open
Abstract
Matrix solid phase dispersion (MSPD) has proven to be an efficient sample preparation method for solid, semi-solid, and viscous samples. Applications of MSPD have covered biological, food, and environmental samples, including both organic and inorganic analytes. This review presents an update on the development of MSPD in the period 2015~June 2018. In the first part of this review, we focus on the latest development in MSPD sorbent, including molecularly imprinted polymers, and carbon-based nanomaterials etc. The second part presents the miniaturization of MSPD, discussing the progress in both micro-MSPD and mini-MSPD. The on-line/in-line techniques for improving the automation and sample throughput are also discussed. The final part summarizes the success in the modification of original MSPD procedures.
Collapse
Affiliation(s)
- Xijuan Tu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- MOE Engineering Research Center of Bee Products Processing and Application, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenbin Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- MOE Engineering Research Center of Bee Products Processing and Application, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
19
|
Wei M, Liu C, Zhang H, Jiang L, Yan J, Chu C. Molecular-sieve-based matrix solid-phase extraction combined with field-amplified sample stacking in capillary electrophoresis for the determination of three organic acids in a complex solid matrix. J Sep Sci 2018; 41:3742-3750. [DOI: 10.1002/jssc.201800703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Mengmeng Wei
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Caijing Liu
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Huan Zhang
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Luyi Jiang
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Jizhong Yan
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Chu Chu
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| |
Collapse
|
20
|
Wang C, Hu L, Zhao K, Deng A, Li J. Multiple signal amplification electrochemiluminescent immunoassay for Sudan I using gold nanorods functionalized graphene oxide and palladium/aurum core-shell nanocrystallines as labels. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
21
|
Shi XR, Chen XL, Hao YL, Li L, Xu HJ, Wang MM. Magnetic metal-organic frameworks for fast and efficient solid-phase extraction of six Sudan dyes in tomato sauce. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1086:146-152. [DOI: 10.1016/j.jchromb.2018.04.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022]
|
22
|
Centrifugeless dispersive liquid-liquid microextraction based on salting-out phenomenon followed by high performance liquid chromatography for determination of Sudan dyes in different species. Food Chem 2018; 244:1-6. [DOI: 10.1016/j.foodchem.2017.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 06/21/2017] [Accepted: 10/03/2017] [Indexed: 11/24/2022]
|
23
|
Abstract
Food authenticity and food safety are of high importance to organizations as well as to the food industry to ensure an accurate labeling of food products. Respective analytical methods should provide a fast screening and a reliable cost-efficient quantitation. HPTLC was pointed out as key analytical technique in this field. A new HPTLC method applying caffeine-impregnated silica gel plates was developed for eight most frequently found fat-soluble azo dyes unauthorizedly added to spices, spice mixtures, pastes, sauces, and palm oils. A simple post-chromatographic UV irradiation provided an effective sample cleanup, which took 4 min for up to 46 samples in parallel. The method was trimmed to enable 23 simultaneous separations within 20 min for quantitation or 46 separations within 5 min for screening. Linear (4-40 ng/band) or polynomial (10-200 ng/band) calibrations of the eight azo dyes revealed high correlation coefficients and low standard deviations. Limits of detection and quantification were determined to be 2-3 and 6-9 ng/zone, respectively. After an easy sample extraction, recoveries of 70-120% were obtained from chili, paprika, and curcuma powder as well as from chili sauce, curry paste, and palm oil spiked at low (mainly 25-50 mg/kg) and high levels (150-300 mg/kg). For unequivocal identification, the compound in a suspect zone was eluted via a column into the mass spectrometer. This resulted in the hyphenation HPTLC-vis-HPLC-DAD-ESI-MS. Graphical abstract Simplified clean-up by UV irradiation for Sudan dye analysis in food by HPTLC-vis-HPLC-DAD-ESI-MS.
Collapse
|
24
|
Hemmati M, Rajabi M, Asghari A. A twin purification/enrichment procedure based on two versatile solid/liquid extracting agents for efficient uptake of ultra-trace levels of lorazepam and clonazepam from complex bio-matrices. J Chromatogr A 2017; 1524:1-12. [DOI: 10.1016/j.chroma.2017.09.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|
25
|
Deng T, Wu D, Duan C, Yan X, Du Y, Zou J, Guan Y. Spatial Profiling of Gibberellins in a Single Leaf Based on Microscale Matrix Solid-Phase Dispersion and Precolumn Derivatization Coupled with Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2017; 89:9537-9543. [PMID: 28783368 DOI: 10.1021/acs.analchem.7b02589] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A spatial-resolved analysis method for profiling of gibberellins (GAs) in a single leaf was developed on the basis of microscale sample preparation and precolumn derivatization coupled with ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The proposed microscale sample preparation was based on modified matrix solid-phase dispersion (MSPD) method, in which the plant sample (<1 mg) and C18 sorbent were ground together in one microcentrifuge tube, and then extraction solvent was added followed by centrifugation. In this protocol, the grinding, extraction, and purification were performed in one microcentrifuge tube without any sample transfer step, resulting in an obvious decrease in sample loss. Moreover, a new derivatization reagent, 3-bromopropyltrimethylammonium bromide (BPTAB), was used to further enhance the signal intensities of GAs on MS by 3-4 orders of magnitude, which was much higher than the reported derivatization reagents for GAs such as bromocholine bromide and 3-bromoactonyltrimethylammonium bromide. The present method showed high sensitivity (minimum detectable amount (MDA) of 10.1-72.3 amol for eight GAs) and low sample consumption (down to 0.30 mg FW). Under the optimized conditions, the distribution of GA19 in a single Arabidopsis thaliana leaf was profiled with a spatial resolution of 2 × 2 mm2.
Collapse
Affiliation(s)
- Ting Deng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, P.R. China.,University of Chinese Academy of Sciences , Beijing 100039, P.R. China
| | - Dapeng Wu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, P.R. China
| | - Chunfeng Duan
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, P.R. China
| | - Xiaohui Yan
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, P.R. China
| | - Yan Du
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, P.R. China.,University of Chinese Academy of Sciences , Beijing 100039, P.R. China
| | - Jun Zou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, P.R. China.,University of Chinese Academy of Sciences , Beijing 100039, P.R. China
| | - Yafeng Guan
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, P.R. China
| |
Collapse
|
26
|
Włodarczyk E, Zarzycki PK. Chromatographic behavior of selected dyes on silica and cellulose micro-TLC plates: Potential application as target substances for extraction, chromatographic, and/or microfluidic systems. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1298028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Elżbieta Włodarczyk
- Department of Environmental Technologies and Bioanalytics, Faculty of Civil Engineering, Environmental, and Geodetic Sciences, Koszalin University of Technology, Koszalin, Poland
| | - Paweł K. Zarzycki
- Department of Environmental Technologies and Bioanalytics, Faculty of Civil Engineering, Environmental, and Geodetic Sciences, Koszalin University of Technology, Koszalin, Poland
| |
Collapse
|
27
|
Xu XM, Cai ZX, Zhang JS, Chen Q, Huang BF, Ren YP. Screening of polypeptide toxins as adulteration markers in the food containing wild edible mushroom by liquid chromatography-triple quadrupole mass spectrometry. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|