1
|
Li N, He S, Li C, Yang F, Dong Y. Sensitive Analysis of Metoprolol Tartrate and Diltiazem Hydrochloride in Human Serum by Capillary Zone Electrophoresis Combining on Column Field-Amplified Sample Injection. J Chromatogr Sci 2021; 59:465-472. [PMID: 33675354 DOI: 10.1093/chromsci/bmab025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/29/2020] [Accepted: 02/06/2021] [Indexed: 11/12/2022]
Abstract
A sensitive capillary zone electrophoresis (CZE) combined with field-amplified sample injection (FASI) method was investigated to simultaneously determine diltiazem (DI) hydrochloride and metoprolol (ME) tartrate in human serum. This method was validated by linearity, limits of detection (LOD), stability, precision and accuracy, and the related parameters are linearity (r2 > 0.9980), intra- and inter-day precisions (intra-day relative standard deviation (RSD) is 2.3-3.4%, and inter-day RSD is 3.8-7.5%) and the LOD (0.02 ng/mL for ME tartrate and 0.01 ng/mL for DI hydrochloride). So the proposed method is rapid, sensitive and accurate for determination of these two anti-anginal drugs in human serum. As for enrichment conditions, it was helpful to add phosphoric acid and isopropanol into samples for enrichment efficiency. A model was established to illustrate the possible enrichment mechanism of analytes, and a theory of half-width was also applied in CZE combined with FASI method to evaluate the peak performance.
Collapse
Affiliation(s)
- Ning Li
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, 199 # West Donggang Road Lanzhou 730000, PR China.,Department of Clinical Pharmacy, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, 333# South Binhe Road Lanzhou 730050, PR China
| | - Shujuan He
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, 199 # West Donggang Road Lanzhou 730000, PR China
| | - Chunlan Li
- Department of Cardiology, the Third People's Hospital of Gansu Province, 763# Duanjiatan Road Lanzhou 730020, PR China
| | - Fatang Yang
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, 199 # West Donggang Road Lanzhou 730000, PR China
| | - Yuming Dong
- Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, 199 # West Donggang Road Lanzhou 730000, PR China
| |
Collapse
|
2
|
Kartsova LA, Makeeva DV, Bessonova EA. Current Status of Capillary Electrophoresis. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Dugheri S, Mucci N, Bonari A, Marrubini G, Cappelli G, Ubiali D, Campagna M, Montalti M, Arcangeli G. Liquid phase microextraction techniques combined with chromatography analysis: a review. ACTA CHROMATOGR 2020. [DOI: 10.1556/1326.2019.00636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sample pretreatment is the first and the most important step of an analytical procedure. In routine analysis, liquid–liquid microextraction (LLE) is the most widely used sample pre-treatment technique, whose goal is to isolate the target analytes, provide enrichment, with cleanup to lower the chemical noise, and enhance the signal. The use of extensive volumes of hazardous organic solvents and production of large amounts of waste make LLE procedures unsuitable for modern, highly automated laboratories, expensive, and environmentally unfriendly. In the past two decades, liquid-phase microextraction (LPME) was introduced to overcome these drawbacks. Thanks to the need of only a few microliters of extraction solvent, LPME techniques have been widely adopted by the scientific community. The aim of this review is to report on the state-of-the-art LPME techniques used in gas and liquid chromatography. Attention was paid to the classification of the LPME operating modes, to the historical contextualization of LPME applications, and to the advantages of microextraction in methods respecting the value of green analytical chemistry. Technical aspects such as description of methodology selected in method development for routine use, specific variants of LPME developed for complex matrices, derivatization, and enrichment techniques are also discussed.
Collapse
Affiliation(s)
- Stefano Dugheri
- 1 Industrial Hygiene and Toxicology Laboratory, Careggi University Hospital, Florence, Italy
| | - Nicola Mucci
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Bonari
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Giovanni Cappelli
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniela Ubiali
- 3 Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marcello Campagna
- 4 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Manfredi Montalti
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulio Arcangeli
- 2 Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Luo X, Hong J, Zheng H, Qin J, Wang M, Yang B. A rapid synergistic cloud point extraction for nine alkylphenols in water using high performance liquid chromatography and fluorescence detection. J Chromatogr A 2020; 1611:460606. [DOI: 10.1016/j.chroma.2019.460606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 11/25/2022]
|
5
|
Ahmed OS, Ladner Y, Montels J, Philibert L, Perrin C. Coupling of salting-out assisted liquid–liquid extraction with on-line stacking for the analysis of tyrosine kinase inhibitors in human plasma by capillary zone electrophoresis. J Chromatogr A 2018; 1579:121-128. [DOI: 10.1016/j.chroma.2018.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/03/2018] [Accepted: 10/13/2018] [Indexed: 01/27/2023]
|
6
|
Breadmore MC, Grochocki W, Kalsoom U, Alves MN, Phung SC, Rokh MT, Cabot JM, Ghiasvand A, Li F, Shallan AI, Keyon ASA, Alhusban AA, See HH, Wuethrich A, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2016-2018). Electrophoresis 2018; 40:17-39. [PMID: 30362581 DOI: 10.1002/elps.201800384] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
One of the most cited limitations of capillary and microchip electrophoresis is the poor sensitivity. This review continues to update this series of biannual reviews, first published in Electrophoresis in 2007, on developments in the field of online/in-line concentration methods in capillaries and microchips, covering the period July 2016-June 2018. It includes developments in the field of stacking, covering all methods from field-amplified sample stacking and large-volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to online or in-line extraction methods that have been used for electrophoresis.
Collapse
Affiliation(s)
- Michael C Breadmore
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Wojciech Grochocki
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gdansk, Poland
| | - Umme Kalsoom
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, College of Science and Technology, University of Tasmania, Hobart, Australia
| | - Mónica N Alves
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Sui Ching Phung
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Joan M Cabot
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, College of Science and Technology, University of Tasmania, Hobart, Australia
| | - Alireza Ghiasvand
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,Department of Chemistry, Lorestan University, Khoramabad, Iran
| | - Feng Li
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Aliaa I Shallan
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, Australia.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Aemi S Abdul Keyon
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Ala A Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Hong Heng See
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Mohamed Dawod
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
7
|
Šlampová A, Malá Z, Gebauer P. Recent progress of sample stacking in capillary electrophoresis (2016-2018). Electrophoresis 2018; 40:40-54. [PMID: 30073675 DOI: 10.1002/elps.201800261] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023]
Abstract
Electrophoretic sample stacking comprises a group of capillary electrophoretic techniques where trace analytes from the sample are concentrated into a short zone (stack). This paper is a continuation of our previous reviews on the topic and brings a survey of more than 120 papers published approximately since the second quarter of 2016 till the first quarter of 2018. It is organized according to the particular stacking principles and includes chapters on concentration adjustment (Kohlrausch) stacking, on stacking techniques based on pH changes, on stacking in electrokinetic chromatography and on other stacking techniques. Where available, explicit information is given about the procedure, electrolyte(s) used, detector employed and sensitivity reached. Not reviewed are papers on transient isotachophoresis which are covered by another review in this issue.
Collapse
Affiliation(s)
- Andrea Šlampová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Zdena Malá
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Petr Gebauer
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
8
|
Espina-Benitez M, Araujo L, Prieto A, Navalón A, Vílchez JL, Valera P, Zambrano A, Dugas V. Development of a New Microextraction Fiber Combined to On-Line Sample Stacking Capillary Electrophoresis UV Detection for Acidic Drugs Determination in Real Water Samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14070739. [PMID: 28686186 PMCID: PMC5551177 DOI: 10.3390/ijerph14070739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 01/26/2023]
Abstract
A new analytical method coupling a (off-line) solid-phase microextraction with an on-line capillary electrophoresis (CE) sample enrichment technique was developed for the analysis of ketoprofen, naproxen and clofibric acid from water samples, which are known as contaminants of emerging concern in aquatic environments. New solid-phase microextraction fibers based on physical coupling of chromatographic supports onto epoxy glue coated needle were studied for the off-line preconcentration of these micropollutants. Identification and quantification of such acidic drugs were done by capillary zone electrophoresis (CZE) using ultraviolet diode array detection (DAD). Further enhancement of concentration sensitivity detection was achieved by on-line CE “acetonitrile stacking” preconcentration technique. Among the eight chromatographic supports investigated, Porapak Q sorbent showed higher extraction and preconcentration capacities. The screening of parameters that influence the microextraction process was carried out using a two-level fractional factorial. Optimization of the most relevant parameters was then done through a surface response three-factor Box-Behnken design. The limits of detection and limits of quantification for the three drugs ranged between 0.96 and 1.27 µg∙L−1 and 2.91 and 3.86 µg∙L−1, respectively. Recovery yields of approximately 95 to 104% were measured. The developed method is simple, precise, accurate, and allows quantification of residues of these micropollutants in Genil River water samples using inexpensive fibers.
Collapse
Affiliation(s)
- Maria Espina-Benitez
- Laboratory of Analytical Chemistry and Electrochemistry, Faculty of Engineering, University of Zulia, P.O. Box 4011-A-526, Maracaibo 4005, Venezuela.
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 VILLEURBANNE, France.
| | - Lilia Araujo
- Laboratory of Analytical Chemistry and Electrochemistry, Faculty of Engineering, University of Zulia, P.O. Box 4011-A-526, Maracaibo 4005, Venezuela.
| | - Avismelsi Prieto
- Laboratory of Analytical Chemistry and Electrochemistry, Faculty of Engineering, University of Zulia, P.O. Box 4011-A-526, Maracaibo 4005, Venezuela.
| | - Alberto Navalón
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus of Fuentenueva, E-18071 Granada, Spain.
| | - José Luis Vílchez
- Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus of Fuentenueva, E-18071 Granada, Spain.
| | - Paola Valera
- Laboratory of Analytical Chemistry and Electrochemistry, Faculty of Engineering, University of Zulia, P.O. Box 4011-A-526, Maracaibo 4005, Venezuela.
| | - Ana Zambrano
- Laboratory of Analytical Chemistry and Electrochemistry, Faculty of Engineering, University of Zulia, P.O. Box 4011-A-526, Maracaibo 4005, Venezuela.
| | - Vincent Dugas
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 VILLEURBANNE, France.
| |
Collapse
|
9
|
Shi L, Wang J, Feng J, Zhao S, Wang Z, Tao H, Liu S. Determination of chlorophenols in water using dispersive liquid-liquid microextraction coupled with water-in-oil microemulsion electrokinetic chromatography in normal stacking mode. J Sep Sci 2017; 40:2662-2670. [DOI: 10.1002/jssc.201700175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/11/2017] [Accepted: 04/15/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Ludi Shi
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy; Northwest A and F University; Yangling Shaanxi China
| | - Jin Wang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy; Northwest A and F University; Yangling Shaanxi China
| | - Jing Feng
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy; Northwest A and F University; Yangling Shaanxi China
| | - Sihan Zhao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy; Northwest A and F University; Yangling Shaanxi China
| | - Zhengmeng Wang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy; Northwest A and F University; Yangling Shaanxi China
| | - Hu Tao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy; Northwest A and F University; Yangling Shaanxi China
| | - Shuhui Liu
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy; Northwest A and F University; Yangling Shaanxi China
| |
Collapse
|