1
|
Chen G, Wan Y, Ghosh R. Bioseparation using membrane chromatography: Innovations, and challenges. J Chromatogr A 2025; 1744:465733. [PMID: 39893917 DOI: 10.1016/j.chroma.2025.465733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
The resin-based column continues to be the dominant incumbent in bioprocess chromatography. While alternative formats such as membrane-, monolith- and fiber-based chromatography are more visible than before, each still plays minor roles. The reasons for this are complex and some of these are explained in this paper. However, the fact remains that membrane chromatography has come a long way since its early days of development. The main advantage of membrane chromatography continues to be its convection dominant transport mechanism, the resultant benefit being fast and scalable separation. Also, resolution obtained with properly designed devices could be comparable or even better than resin-based chromatography. Significant progress has been made in new membrane development, membrane characterization, device design and novel applications development. A wider range of new membrane matrices, ligands, and ligand-matrix linking chemistries are now available. New membrane modules, formats, and process configurations have also helped improve membrane performance. However, some significant challenges still exist, and these need to be addressed if membrane chromatography is to become more mainstream in the field of bioprocessing. Also, membrane chromatography has significant potential for application in analytical separations and this space has hardly been explored. In this paper, the advances in the areas of membrane preparation, device design and process development are reviewed. A high-level cost analysis is presented and the role of process design in membrane chromatography is discussed.
Collapse
Affiliation(s)
- Guoqiang Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, PR China
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada.
| |
Collapse
|
2
|
Ghosh R, Hale G, Durocher Y, Gatt P. Dry-compression packing of hydroxyapatite nanoparticles within a flat cuboid chromatography device and its use for fast protein separation. J Chromatogr A 2022; 1667:462881. [DOI: 10.1016/j.chroma.2022.462881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
|
3
|
A cuboid chromatography device having short bed-height gives better protein separation at a significantly lower pressure drop than a taller column having the same bed-volume. J Chromatogr A 2021; 1647:462167. [PMID: 33962076 DOI: 10.1016/j.chroma.2021.462167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 11/20/2022]
Abstract
Simultaneously reducing the bed-height and increasing the area of cross-section, while keeping the bed-volume the same, would substantially reduce the pressure drop across a process chromatography column. This would minimize problems such as resin compaction and non-uniformity in column packing, which are commonly faced when using soft chromatographic media. However, the increase in macroscale convective dispersion due to the increase in column diameter, and the resultant loss in resolution would far outweigh any potential benefit. Cuboid-packed bed devices have lower macroscale convective dispersion compared to their equivalent cylindrical columns. In this paper, we discuss how and why a flat cuboid chromatography device having a short bed-height gives better protein separation, at a significantly lower pressure drop, than a taller column having the same bed-volume. First, we explored this option based on computational fluid dynamic (CFD) simulations. Depending on the flow rate, the pressure drop across the flat cuboid device was lower than that in the tall column by a factor of 6.35 to 6.4 (i.e. less than 1/6th the pressure). The CFD results also confirmed that the macroscale convective dispersion within the flat cuboid device was significantly lower. Head-to-head separation experiments using a 1 mL flat cuboid device having a bed-height of 10 mm, and a 1 mL tall column having a bed-height of 25.8 mm, both packed with the same chromatographic media, were carried out. The number of theoretical plates per unit bed-height was on an average, around 2.5 time times greater with the flat cuboid device, while the total number of theoretical plates in the two devices were comparable. At any given superficial velocity, the height equivalent of a theoretical plate in the tall column was on an average, higher by a factor 2.5. Binary protein separation experiments showed that at any given flow rate, the resolution obtained using the flat cuboid device was significantly higher than that obtained with the tall column. This work opens up the possibility of designing and developing short bed-height chromatography devices for carrying out high-resolution biopharmaceutical purifications, at very low pressures.
Collapse
|
4
|
Chen G, Umatheva U, Pagano J, Yu D, Ghose S, Li Z, Ghosh R. High-resolution purification of a therapeutic PEGylated protein using a cuboid packed-bed device. J Chromatogr A 2020; 1630:461524. [PMID: 32920248 DOI: 10.1016/j.chroma.2020.461524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/15/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
PEGylated proteins which are a class of protein-synthetic polymer conjugates that have shown significant promise in the area of biotherapeutics are difficult to purify. A cuboid packed-bed device was used to purify a mono-PEGylated therapeutic protein from impurities such as high molecular weight (HMW) species (e.g., tri- and/or di-PEGylated forms), and low molecular weight (LMW) species such as unreacted protein and polyethylene glycol (or PEG). The separation efficiency of this device was compared with that of an equivalent cylindrical column. The effects of operating conditions such as flow rate, buffer composition, elution gradient, and column loading were systematically compared. An equivalent column with the same bed volume, same resin and same bed height was served as control. In mono-PEGylated protein purifications experiments, the cuboid packed-bed device exhibited sharper peaks and gave better resolution at all conditions examined in this study. The purity of mono-PEGylated protein in the samples collected from the cuboid packed-bed device and the column were comparable, i.e., 98.1% and 97.9% respectively. The recovery of mono-PEGylated protein in the pooled eluate from the cuboid packed-bed device was 31.7% greater than that recovered in the pooled eluate from the column. Therefore, significantly higher recovery of mono-PEGylated protein was obtained with the cuboid packed-bed device while maintaining the same purity specification as obtained with the column.
Collapse
Affiliation(s)
- Guoqiang Chen
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Umatheny Umatheva
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - John Pagano
- Biologics Process Development, Bristol-Myers Squibb, 3510F-BDB231, 38 Jackson Road, Devens MA 01434, United States
| | - Deqiang Yu
- Biologics Process Development, Bristol-Myers Squibb, 3510F-BDB231, 38 Jackson Road, Devens MA 01434, United States
| | - Sanchayita Ghose
- Biologics Process Development, Bristol-Myers Squibb, 3510F-BDB231, 38 Jackson Road, Devens MA 01434, United States
| | - Zhengjian Li
- Biologics Process Development, Bristol-Myers Squibb, 3510F-BDB231, 38 Jackson Road, Devens MA 01434, United States
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada.
| |
Collapse
|
5
|
Ghosh R, Chen G, Umatheva U, Gatt P. A flow distribution and collection feature for ensuring scalable uniform flow in a chromatography device. J Chromatogr A 2020; 1618:460892. [DOI: 10.1016/j.chroma.2020.460892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/28/2019] [Accepted: 01/14/2020] [Indexed: 01/05/2023]
|
6
|
Simulation and experimental study of the transport of protein bands through cuboid packed-bed devices during chromatographic separations. J Chromatogr A 2020; 1615:460764. [DOI: 10.1016/j.chroma.2019.460764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/02/2019] [Indexed: 11/22/2022]
|
7
|
Umatheva U, Chen G, Ghosh R. Computational fluid dynamic (CFD) simulation of a cuboid packed-bed chromatography device. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Chen G, Gerrior A, Durocher Y, Ghosh R. Efficient capture of monoclonal antibody from cell culture supernatant using protein A media contained in a cuboid packed-bed device. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1134-1135:121853. [DOI: 10.1016/j.jchromb.2019.121853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
|
9
|
Madadkar P, Sadavarte R, Ghosh R. Performance Comparison of a Laterally-Fed Membrane Chromatography (LFMC) Device with a Commercial Resin Packed Column. MEMBRANES 2019; 9:E138. [PMID: 31671843 PMCID: PMC6918161 DOI: 10.3390/membranes9110138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022]
Abstract
The use of conventional membrane adsorbers such as radial flow devices is largely restricted to flow-through applications, such as virus and endotoxin removal, as they fail to give acceptable resolution in bind-and-elute separations. Laterally-fed membrane chromatography or LFMC devices have been specifically developed to combine high-speed with high-resolution. In this study, an LFMC device containing a stack of strong cation exchange membranes was compared with an equivalent resin packed column. Preliminary characterization experiments showed that the LFMC device had a significantly greater number of theoretical plates per metre than the column. These devices were used to separate a ternary model protein mixture consisting of ovalbumin, conalbumin and lysozyme. The resolution obtained with the LFMC device was better than that obtained with the column. For instance, the LFMC device could resolve lysozyme dimer from lysozyme monomer, which was not possible using the column. In addition, the LFMC device could be operated at lower pressure and at significantly higher flow rates. The devices were then compared based on an application case study, i.e., preparative separation of monoclonal antibody charge variants. The LFMC device gave significantly better separation of these variants than the column.
Collapse
Affiliation(s)
- Pedram Madadkar
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4L8, Canada.
| | - Rahul Sadavarte
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4L8, Canada.
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
10
|
Chen G, Zhitomirsky I, Ghosh R. Fast, low-pressure chromatographic separation of proteins using hydroxyapatite nanoparticles. Talanta 2019; 199:472-477. [DOI: 10.1016/j.talanta.2019.02.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 11/26/2022]
|
11
|
Chen G, Gerrior A, Hale G, Ghosh R. Feasibility study of the fractionation of monoclonal antibody charge variants using a cuboid packed-bed device. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Enhancing the efficiency of disc membrane chromatography modules by using a flow directing layer. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Effect of the Length-to-Width Aspect Ratio of a Cuboid Packed-Bed Device on Efficiency of Chromatographic Separation. Processes (Basel) 2018. [DOI: 10.3390/pr6090160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In recent papers we have discussed the use of cuboid packed-bed devices as alternative to columns for chromatographic separations. These devices address some of the major flow distribution challenges faced by preparative columns used for process-scale purification of biologicals. Our previous studies showed that significant improvements in separation metrics such as the number of theoretical plates, peak shape, and peak resolution in multi-protein separation could be achieved. However, the length-to-width aspect ratio of a cuboid packed-bed device could potentially affect its performance. A systematic comparison of six cuboid packed-bed devices having different length-to-width aspect ratios showed that it had a significant effect on separation performance. The number of theoretical plates per meter in the best-performing cuboid packed-bed device was about 4.5 times higher than that in its equivalent commercial column. On the other hand, the corresponding number in the worst-performing cuboid-packed bed was lower than that in the column. A head-to-head comparison of the best-performing cuboid packed bed and its equivalent column was carried out. Performance metrics compared included the widths and dispersion indices of flow-through and eluted protein peaks. The optimized cuboid packed-bed device significantly outperformed its equivalent column with regards to all these attributes.
Collapse
|
14
|
Umatheva U, Madadkar P, Selvaganapathy PR, Ghosh R. Computational fluid dynamic (CFD) simulation of laterally-fed membrane chromatography. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Effects of process parameters on the efficiency of chromatographic separations using a cuboid packed-bed device. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1086:23-28. [DOI: 10.1016/j.jchromb.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/26/2018] [Accepted: 04/03/2018] [Indexed: 11/23/2022]
|
16
|
|
17
|
Feasibility study for high-resolution multi-component separation of protein mixture using a cation-exchange cuboid packed-bed device. J Chromatogr A 2018; 1549:25-30. [DOI: 10.1016/j.chroma.2018.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/19/2018] [Accepted: 03/14/2018] [Indexed: 01/09/2023]
|
18
|
Ghosh R, Chen G. Mathematical modelling and evaluation of performance of cuboid packed-bed devices for chromatographic separations. J Chromatogr A 2017; 1515:138-145. [DOI: 10.1016/j.chroma.2017.07.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
|