1
|
Huang Y, Lin L, Zhang Y, Liang A, Wen G, Jiang Z. A new surface molecularly imprinted polyacrylamide nanoprobe for trace Cr(VI) with RRS technique. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124329. [PMID: 38669981 DOI: 10.1016/j.saa.2024.124329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
This article was used potassium dichromate as the template molecule, silver nanoclusters as the nano matrix, acrylamide as the monomer, ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent, and azodiisobutyronitrile (AIBN) as the initiator to prepare a new silver nanocluster surface MIP (AgNCs@MIP) nanoprobe for chromate. Upon addition of Cr(VI), it selectively adsorbs on the surface of AgNCs@MIP nanoprobes. The dichromate ion absorption peak at 350 nm overlaps with the AgNCs@MIP RRS peak at 370 nm, resulting in strong RRS energy transfer (RRS-ET) and a decrease in the RRS intensity. The decreased RRS intensity is directly proportional to the concentration of dichromate ions in the range of 0.0025-0.015 µmol/L, with a detection limit of 0.8 nmol/L. Therefore, a simple, fast, sensitive and selective RRS method for the determination of trace Cr(VI) in mineral water has been established, with a relative standard deviation of 9.2-9.8 % and recovery of 95.20 %-103.60 %.
Collapse
Affiliation(s)
- Yuexing Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin 541004, China
| | - Li Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin 541004, China
| | - Youjun Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin 541004, China.
| | - Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin 541004, China
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin 541004, China.
| |
Collapse
|
2
|
Thioflavin-modified molecularly imprinted hydrogel for fluorescent-based non-enzymatic glucose detection in wound exudate. Mater Today Bio 2022; 14:100258. [PMID: 35469256 PMCID: PMC9034389 DOI: 10.1016/j.mtbio.2022.100258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
The concentration of glucose in the body's fluids is an important parameter that can indicate pathological conditions such as the progress of infected wounds. Several wearables and implantable detection approaches have been developed with high selectivity and sensitivity for glucose. However, all of them have drawbacks such as low stability, limited selectivity, and often require complex technology. In this work, we present a fluorescent-based cost-efficient imprinted hydrogel (MIH_GSH) capable of detecting glucose within 30 min. The imprinting approach allows us to improve the selectivity for glucose, overcoming the low specificity and limited binding efficiency at neutral pH of boronic acid-based detection mechanisms. The binding affinity determined for glucose-MIH_GSH was indeed 6-fold higher than the one determined for the non-imprinted hydrogel with a calculated imprinting factor of 1.7. The limit of detection of MIH_GSH for glucose in artificial wound exudate was calculated as 0.48 mM at pH 7.4 proving the suitability of the proposed approach to diagnose chronic wounds (ca. 1 mM). MIH_GSH was compared with a commercial colorimetric assay for the quantification of glucose in wound exudate specimens collected from hospitalized patients. The results obtained with the two methods were statistically similar confirming the robustness of our approach. Importantly, whereas with the colorimetric assay sample preparation was required to limit the interference of the sample background, the fluorescent signal of MIH_GSH was not affected even when used to measure glucose directly in bloody samples. The sensing mechanism here proposed can pave the way for the development of cost-efficient and wearable point-of-care tools capable of monitoring the glucose level in wound exudate enabling the quick assessment of chronic injuries. Highly sensitive and selective non-enzymatic approach to detect glucose in wound exudate. The fluorescent-based method ensured the detection of glucose in complex biological samples. The imprinting approach allowed overcoming the drawback of boronic acid-based methods. The cost-efficient approach is suitable for the development of point-of-care devices.
Collapse
|
3
|
Bhogal S, Kaur K, Mohiuddin I, Kumar S, Lee J, Brown RJC, Kim KH, Malik AK. Hollow porous molecularly imprinted polymers as emerging adsorbents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117775. [PMID: 34329047 DOI: 10.1016/j.envpol.2021.117775] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 05/17/2023]
Abstract
Hollow porous molecularly imprinted polymers (HPMIPs) are identified as promising adsorbents with many advantageous properties (e.g., large number of imprinted cavities, highly accessible binding sites, controllable pore structure, and fast mass transfer). Because of such properties, HPMIPs can exhibit improved binding capacity and kinetics to make analyte molecules readily interact with a greater number of recognition sites on the imprinted shell. This review highlights the synthesis and utility of HPMIPs as adsorbents to cover diverse targets of interest (e.g., endocrine disrupting chemicals, pharmaceuticals, pesticides, and heavy metal ions). The overall potential of HPMIPs is thus discussed in the context of analytical chemistry with particular focus on the efficient extraction of trace-level targets from complex matrices.
Collapse
Affiliation(s)
- Shikha Bhogal
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Kuldeep Kaur
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, 140406, India
| | - Irshad Mohiuddin
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Sandeep Kumar
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Jechan Lee
- Department of Environmental and Safety Engineering & Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea
| | - Richard J C Brown
- Environment Department, National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
4
|
Rafiee F, Tajfar N, Mohammadnejad M. The synthesis and efficiency investigation of a boronic acid-modified magnetic chitosan quantum dot nanocomposite in the detection of Cu 2+ ions. Int J Biol Macromol 2021; 189:477-482. [PMID: 34450145 DOI: 10.1016/j.ijbiomac.2021.08.158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/15/2022]
Abstract
We prepared the magnetic chitosan carbon quantum dot nanoparticles (Fe3O4@CQD NPs) via the hydrothermal treatment of chitosan biopolymer and then its magnetization with Fe3O4 nanoparticles. (4-Acetylphenyl)boronic acid compound was utilized for the modification of surface of Fe3O4@CQD nanoparticles via the covalent imine bond formation between NH2 groups of chitosan quantum dot with carbonyl functional of acetyl-substituted arylboronic acid. The synthesized Fe3O4@CQD@AP-B(OH)2 was characterized by FE-SEM, EDS, XRD, VSM and ICP-OES analysis and its fluorescence property was studied. This magnetic multifunctional nanoplatform sensor has shown high potential sensitivity for Cu2+ ions (in the range of 1.0-30.0 μM with limit of detection 0.3 μM) through interaction of cupric ions with the boronic-acid moiety.
Collapse
Affiliation(s)
- Fatemeh Rafiee
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran.
| | - Niloofar Tajfar
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | - Masoumeh Mohammadnejad
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| |
Collapse
|
5
|
Fu Q, Chen N, Wang G, Guo R. Preparation of P(EGDMA‐
co
‐VPBA) Adsorbent and Its Application in the Separation of Steviol Glycosides. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qiaoge Fu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi Xinjiang 832003 China
| | - Nana Chen
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi Xinjiang 832003 China
| | - Guanyu Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi Xinjiang 832003 China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi Xinjiang 832003 China
| |
Collapse
|
6
|
Li H, He H, Liu Z. Recent progress and application of boronate affinity materials in bioanalysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116271] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Lin Y, Liu Y, Li S, Rui L, Ou J, Wu Q, He J. Template-directed preparation of three-dimensionally ordered macroporous molecularly imprinted microspheres for selective recognition and separation of quinine from cinchona extract. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02533-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
WANG Y, LI J, WANG L, QI J, CHEN L. [Recent advances in applications of fragment/dummy molecularly imprinted polymers]. Se Pu 2021; 39:134-141. [PMID: 34227346 PMCID: PMC9274850 DOI: 10.3724/sp.j.1123.2020.08008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 11/25/2022] Open
Abstract
Molecularly imprinted polymers (MIPs) are designed to mimic the specific binding principle of enzymes to substrates or antigens to antibodies, while holding several advantages such as structure predictability, recognition specificity, easy preparation, low cost, high physical robustness, and thermal stability. Therefore, they have been widely applied in many fields including sample preparation (pretreatment), sensing analysis (chemo/biosensors), biomedicine, and environment/food analysis. To date, several strategies were developed for MIPs preparation, aiming to simplify the preparation process and/or improve the properties of the polymers, greatly broadening its usability. The exploration in various advanced imprinting strategies and their combinational use has become a research hotspot in MIPs preparation, among which the fragment imprinting strategy and the dummy template imprinting strategy are especially favored. Fragment imprinting, also called segment imprinting, uses a partial structure of the target molecule as a pseudo-template to prepare MIPs. This strategy is useful to target molecules that are not easy to obtain or that are too large to be used as templates, providing a feasible method for imprinting target analytes that are easy to inactivate or infect, as well as macromolecules that are difficult to imprint. In turn, dummy template imprinting uses molecules with structure, shape, and size similar to the target analytes as templates for imprinting. Because the target is not directly used as a template, this strategy can overcome problems of template leakage, as well as solve target molecule-related difficulties as they can be expensive, infectious, flammable, explosive, or chemically instable. This mini-review compiles information of several articles published in the last four years across ACS, Elsevier, RSC, and other databases, summarizing the most recent advances in the application of fragment/dummy template MIPs (FMIPs/DMIPs). Herein, the biomedical application of FMIPs is mainly addressed as a strategy for the detection of proteins and microorganisms, and the application of FMIPs in the field of food analysis is also explored. In recent years, the imprinting of mammalian cells has made some progress in the application of FMIPs. Mammalian cells, especially cancer cells, overexpress some proteins and sugars, which are good fragment templates. Consequently, the fragment imprinting strategy is widely used in cancer cell imaging, localization, and treatment. Moreover, due to the complicated structure and easy inactivation of some proteins, their MIPs are often prepared by fragment imprinting (also called epitope imprinting). As some microorganisms are infectious, imprinting microorganisms directly can pose a risk; therefore it is safer to also use the fragment imprinting strategy in such cases. The recent application of fragment imprinting strategy in other areas remains scarce. Nonetheless, three studies in the food analysis have explored this possibility. DMIPs are widely used in sample pretreatment and sensing analysis, and they are mainly used as SPE adsorbents for packed SPE, dispersive SPE (DSPE), magnetic SPE (MSPE), and matrix solid phase dispersion (MSPD) extraction. In addition, DMIPs are employed as molecularly imprinted membrane materials. As a result, by virtue of DMIPs, selective extraction and enrichment of target analytes from complicated samples can be achieved. MIP-based sensors can either recognize or transduce, meaning that they can specifically recognize and bind target analytes as well as generate output signals for detection. Because of the high selectivity of MIPs, the use of a dummy template imprinting strategy solves the problem of template leakage in the process of recognition and adsorption, further improving the detection accuracy and sensitivity of the sensor. These features expand the application range of MIP-based sensors. This review briefly overviews the construction and application of chemiluminescence and fluorescence sensors based on DMIPs. Lastly, the advantages and disadvantages, differences, and relationships among the two strategies are summarized. Despite of their potential, four main challenges still remain as major setbacks for the application of FMIPs and DMIPs: (i) the difficulty to select or prepare appropriate fragment templates and dummy templates; (ii) how to ensure that there is almost no difference in the recognition adsorption selectivity between the fragment/dummy template and the original template, so as to ensure optimal recognition specificity; (iii) the use of, environment-friendly reagents to reduce pollution during FMIPs/DMIPs preparation and use to conform with green chemistry requirements; (iv) how to strengthen the industrial and commercial applications of FMIPs and DMIPs. Therefore, significant efforts should be made to develop new imprinting strategies and techniques, as well as to adopt combinational imprinting approaches for FMIPs/DMIPs preparation to expedite the sustainable development and efficient application of FMIPs and DMIPs.
Collapse
|
9
|
Dong C, Shi H, Han Y, Yang Y, Wang R, Men J. Molecularly imprinted polymers by the surface imprinting technique. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110231] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Highly Porous, Molecularly Imprinted Core–Shell Type Boronate Affinity Sorbent with a Large Surface Area for Enrichment and Detection of Sialic Acid Isomers. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01890-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Wang G, Fu Q, Guo R, Wei Z. Selective adsorption and separation of stevioside and rebaudioside A by a metal-organic framework with boronic acid. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The boronic acid functionalization metal-organic frameworks (MOFs), as unique boronate affinity adsorbents, have desired specific molecular affinity for the separation and enrichment of cis-diol-compounds. Herein, the boronic acid functionalized Zn-based MOF adsorbent (MOF-BA) was synthesized through a simple one-step microwave method and used for the recognition and isolation of steviol glycosides (SGs). This MOF-BA exhibits the same spherical structure and isostructure with the parent framework composed only of the primitive ligand as verified by SEM and XRD characterization. It was confirmed that changing the ratio of ligands could achieve the adjustability of the boron content in the framework. At the same time, the MOF-BA-1.0 showed a suitable pore size (4.69 nm), and the presence of boric acid functional groups showed favorable selectivity for stevioside (STV). The static adsorption results showed that adsorption performances of rebaudioside A (RA) and STV from crude sugar solution (5.0 mg mL−1, pH 8) on MOF-BA-1.0 were investigated at 303 K for 15 h. The adsorption capacities for STV and RA were 42.93 mg g−1 and 22.96 mg g−1, respectively, and the adsorption selectivity (αSTV/RA) reached 4.35. The adsorption isotherm and kinetic data of MOF-BA-1.0 for RA and STV obeyed the Langmuir isotherm model and pseudo second order kinetic model, respectively. The study demonstrated that MOF-BA-1.0 adsorbent could be used as a potential adsorbent to purify the active ingredients of stevia and obtain a high concentration of RA products.
Collapse
Affiliation(s)
- Guanyu Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
| | - Qiaoge Fu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang, China
| |
Collapse
|
12
|
Abstract
Molecularly imprinted polymers (MIPs) are currently widely used and further developed for biological applications. The MIP synthesis procedure is a key process, and a wide variety of protocols exist. The templates that are used for imprinting vary from the smallest glycosylated glycan structures or even amino acids to whole proteins or bacteria. The low cost, quick preparation, stability and reproducibility have been highlighted as advantages of MIPs. The biological applications utilizing MIPs discussed here include enzyme-linked assays, sensors, in vivo applications, drug delivery, cancer diagnostics and more. Indeed, there are numerous examples of how MIPs can be used as recognition elements similar to natural antibodies.
Collapse
|
13
|
Zheng H, Lin H, Chen X, Tian J, Pavase TR, Wang R, Sui J, Cao L. Development of boronate affinity-based magnetic composites in biological analysis: Advances and future prospects. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115952] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Chen G, Shu H, Wang L, Bashir K, Wang Q, Cui X, Li X, Luo Z, Chang C, Fu Q. Facile one-step targeted immobilization of an enzyme based on silane emulsion self-assembled molecularly imprinted polymers for visual sensors. Analyst 2020; 145:268-276. [PMID: 31746832 DOI: 10.1039/c9an01777a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immobilized enzymes play significant roles in many practical applications. However, the enzymes need to be purified before immobilization by conventional immobilizing methods, and the purification process is expensive, laborious, complicated and results in a decrease of the enzymatic activity. So, we present a novel method by a facile one-step targeted immobilization of an enzyme without a purification process from complex samples. For this purpose, a novel molecularly imprinted polymer was prepared via a silane emulsion self-assembly method using boric acid-modified Fe3O4 nanoparticles as magnetic nuclei, horseradish peroxidase as a template, 3-aminopropyltriethoxysilane as a functional monomer and tetraethyl orthosilicate as a crosslinking agent. The molecularly imprinted polymers were characterized using a scanning electron microscope, X-ray photoelectron spectroscope, vibrating sample magnetometer and X-ray diffractometer. The as-prepared and characterized materials were employed to immobilize horseradish peroxidase from a crude extract of horseradish. Moreover, the immobilized horseradish peroxidase was employed to develop visual sensors for the detection of glucose and sarcosine. This study demonstrated that the molecularly imprinted polymers prepared via the silane emulsion self-assembly method can facilely immobilize horseradish peroxidase from a crude extract of horseradish without any purification process. The developed visual method based on the immobilized horseradish peroxidase shows great potential applications for the visual detection of glucose and sarcosine.
Collapse
Affiliation(s)
- Guoning Chen
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pan T, Lin Y, Wu Q, Huang K, He J. Preparation of boronate-functionalized surface molecularly imprinted polymer microspheres with polydopamine coating for specific recognition and separation of glycoside template. J Sep Sci 2020; 44:2465-2473. [PMID: 32367689 DOI: 10.1002/jssc.202000125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 11/10/2022]
Abstract
A facile strategy based on the boronate affinity and polydopamine coating was proposed for the preparation of surface molecularly imprinted polymer microspheres using naringin as the glycoside template. The poly(methacrylic acid-co-methyl methacrylate-co-ethyleneglycol dimethacrylate) microspheres were firstly synthesized as inner cores by suspension polymerization method, and then functionalized with 3-aminophenylboronic acid. The imprinted shell layer was obtained by self-polymerization of dopamine on the surface of boronic acid-functionalized polymer microspheres after reversible immobilization of naringin. The resultant surface molecularly imprinted microspheres showed good imprinting efficiency and recognition specificity toward the template molecule in aqueous environment. The isothermal and kinetic adsorption behaviors of the polymers were investigated. The results showed that the covalent surface imprinted microspheres possessed homogeneous recognition sites, strong adsorption affinity, and rapid rebinding kinetics. In addition, the surface imprinted microspheres were utilized as the sorbents of solid phase extraction to successfully separate and enrich naringin from Citri Grandis extract, and the recovery of naringin in eluting solution reached 84.4%.
Collapse
Affiliation(s)
- Ting Pan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Yali Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Quanzhou Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Kaiwen Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Jianfeng He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
16
|
Yang Q, Li C, Li J, Wang X, Arabi M, Peng H, Xiong H, Chen L. Rational construction of a triple emission molecular imprinting sensor for accurate naked-eye detection of folic acid. NANOSCALE 2020; 12:6529-6536. [PMID: 32159564 DOI: 10.1039/d0nr00765j] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Multiple emissions of blue, green and red from a molecular imprinting sensor rationally constructed, were used for the fluorescence colorimetric visualization of a fluorescent analyte of folic acid, using a flexible post-imprinting mixing strategy. That is, two kinds of folic acid-templated molecularly imprinted polymers (MIPs) were firstly synthesized by encapsulating green and red fluorescent quantum dots (g-QDs and r-QDs) individually on SiO2 cores, and they were then mixed at an appropriate ratio, resulting in a triple emission MIPs sensor. Upon folic acid recognition, the inherent blue fluorescence of folic acid was intensified, and the green and red fluorescence of the sensor QDs were gradually quenched. The quenching rate difference between g-QDs and r-QDs was greatly enhanced and used to obtain a wider-range and profuse fluorescence color evolution, by investigating the influences of the QDs modifier, eluent and imprinting layer thickness in detail. Under optimal conditions, the ratiometric intensity change of the three color emissions varied in a logistic function within 0.01-50 ppm of folic acid, and the corresponding fluorescence colors shifted from yellow to orange to red to purple and finally to blue. This excellent visualization capability of the MIPs sensor contributed to the accurate naked-eye detection of folic acid concentration using a portable ultraviolet lamp. Moreover, the MIPs sensor succeeded in determining folic acid in complicated food and serum samples, providing comparable results with the PRC standard method and satisfactory recoveries of 99.5-108.0%. The merits, including construction simplicity, high sensitivity and selectivity, and result visualization, enable such a multiple emission MIPs sensing strategy to be potentially applicable for visual identification and determination of various analytes in more fields.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China. and CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Chuyao Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China. and CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Xiaoyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Hailong Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China. and School of Pharmacy, Binzhou Medical University, Yantai 264003, China and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
17
|
Boronate affinity glycosyl molecularly imprinted polymer microspheres for the determination of teicoplanin using ultra-high performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A 2020; 1615:460776. [DOI: 10.1016/j.chroma.2019.460776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 02/08/2023]
|
18
|
Hou X, Guo B, Tong Y, Tian M. Using self-polymerization synthesis of boronate-affinity hollow stannic oxide based fragment template molecularly imprinted polymers for the selective recognition of polyphenols. J Chromatogr A 2020; 1612:460631. [DOI: 10.1016/j.chroma.2019.460631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023]
|
19
|
Bashir K, Guo P, Chen G, Li Y, Ge Y, Shu H, Fu Q. Synthesis, characterization, and application of griseofulvin surface molecularly imprinted polymers as the selective solid phase extraction sorbent in rat plasma samples. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
20
|
An K, Kang H, Tian D. Fabrication and evaluation of controllable core/shell magnetic molecular imprinted polymers based on konjac glucomannan for trichlorfon. J Appl Polym Sci 2019. [DOI: 10.1002/app.48910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Kai An
- School of Chemical and Environmental EngineeringHubei Minzu University Enshi 445000 People's Republic of China
| | - Huiting Kang
- Key Laboratory of Biologic Resources Protection and Utilization of Hubei ProvinceHubei Minzu University Enshi 445000 People's Republic of China
| | - Dating Tian
- School of Chemical and Environmental EngineeringHubei Minzu University Enshi 445000 People's Republic of China
- Key Laboratory of Biologic Resources Protection and Utilization of Hubei ProvinceHubei Minzu University Enshi 445000 People's Republic of China
| |
Collapse
|
21
|
Liang C, Zhang Z, Zhang H, Ye L, He J, Ou J, Wu Q. Ordered macroporous molecularly imprinted polymers prepared by a surface imprinting method and their applications to the direct extraction of flavonoids from Gingko leaves. Food Chem 2019; 309:125680. [PMID: 31670118 DOI: 10.1016/j.foodchem.2019.125680] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 09/12/2019] [Accepted: 10/07/2019] [Indexed: 01/12/2023]
Abstract
In this work, to improve the availability of the recognition sites of molecularly imprinted polymers (MIPs), ordered macroporous molecularly imprinted polymers (OMMIPs) were facilely prepared by grafting a quercetin-MIPs layer on the pore walls of the ordered macroporous thiol group functionalized silica. The pore structures were characterized by FTIR, Raman, SEM, BET and TGA measurements. The results indicated that OMMIPs possessed a nanoscale polymer layer, a more regular macroporous structure and a greater porosity compared with the traditional bulk MIPs (TBMIPs). The polymer content of OMMIPs was about 49.7%. Kinetic and isothermal adsorption experiments indicated that OMMIPs exhibited higher affinity and selectivity towards quercetin than its structural analogues. Moreover, OMMIPs could improve the intra-particle adsorption and thus provide a significant improvement in recognition sites availability over TBMIPs. Using the quercetin-OMMIPs as SPE sorbent, quercetin was directly extracted from the crude Gingko leaves extract with a satisfying selectivity and elution recovery.
Collapse
Affiliation(s)
- Cuiling Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhiyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huidan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lifang Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jianfeng He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Jiming Ou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Quanzhou Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
22
|
Hollow dummy template imprinted boronate-modified polymers for extraction of norepinephrine, epinephrine and dopamine prior to quantitation by HPLC. Mikrochim Acta 2019; 186:686. [DOI: 10.1007/s00604-019-3801-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/07/2019] [Indexed: 12/26/2022]
|
23
|
Chen Y, Huang A, Zhang Y, Bie Z. Recent advances of boronate affinity materials in sample preparation. Anal Chim Acta 2019; 1076:1-17. [DOI: 10.1016/j.aca.2019.04.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 11/28/2022]
|
24
|
Wang Z, Long R, Peng M, Li T, Shi S. Molecularly Imprinted Polymers-Coated CdTe Quantum Dots for Highly Sensitive and Selective Fluorescent Determination of Ferulic Acid. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:1505878. [PMID: 31360577 PMCID: PMC6644248 DOI: 10.1155/2019/1505878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/09/2019] [Indexed: 06/10/2023]
Abstract
Ferulic acid (FA), an important phenolic acid, is widely distributed in higher plants and presents many pharmacological effects. Therefore, sensitive determination of FA in complex matrix is necessary. Molecularly imprinted polymers-coated CdTe quantum dots (CdTe-QDs@MIPs) exhibited incomparable advantages because of their combination of excellent selectivity of MIPs and high sensitivity of QDs. Here, a fluorescent probe based on CdTe-QDs@MIPs was successfully fabricated for selective and sensitive determination of FA. MIPs shell was obtained by the reverse microemulsion method using FA, 3-(aminopropyl) triethoxysilane (APTES), and tetraethyl orthosilicate (TEOS), as template, functional monomer, and crosslinker. In optimal conditions, the fluorescence CdTe-QDs@MIPs sensor exhibited fast response (within only 3 min), high sensitivity (limit of detection, LOD at 0.85 μg/l), excellent linear ranges (2-100 μg/l) with a correlation coefficient of 0.9996, and distinguished selectivity for FA. Satisfactory recoveries from 91.8% to 110.3% were achieved with precisions below 6.6% for FA analysis in real pineapple juice and apple juice by developed CdTe-QDs@MIPs. The fluorescence results coincided well with those obtained by high-performance liquid chromatography (HPLC). It could be concluded that the resultant CdTe-QDs@MIPs offered a new way for rapid and sensitive analysis of FA in the complex matrix.
Collapse
Affiliation(s)
- Zhihong Wang
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, Guangdong Institute of Analysis, Guangzhou 510070, China
| | - Ruiqing Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China
| | - Mijun Peng
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology, Guangdong Institute of Analysis, Guangzhou 510070, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Te Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China
| |
Collapse
|
25
|
Peng C, Lan YH, Sun L, Chen XZ, Chi SS, Zheng C, Dong LY, Wang XH. Facile Synthesis of Boronate Affinity-Based Molecularly Imprinted Monolith with Reduced Capturing pH Towards Cis-Diol-Containing Compounds. Chromatographia 2019. [DOI: 10.1007/s10337-019-03736-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Li L, Li Y, Wang H, Liu S, Bao JJ. Preparation and evaluation of a novel and high efficient boronic acid-substituted silica supported Pt catalyst. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Long R, Li T, Tong C, Wu L, Shi S. Molecularly imprinted polymers coated CdTe quantum dots with controllable particle size for fluorescent determination of p-coumaric acid. Talanta 2019; 196:579-584. [DOI: 10.1016/j.talanta.2019.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/25/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
|
28
|
Süngü Ç, Kip Ç, Tuncel A. Molecularly imprinted polymeric shell coated monodisperse-porous silica microspheres as a stationary phase for microfluidic boronate affinity chromatography. J Sep Sci 2019; 42:1962-1971. [PMID: 30900808 DOI: 10.1002/jssc.201801258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
Molecular imprinting of cis-diol functionalized agents via boronate affinity interaction has been usually performed using nanoparticles as a support which cannot be utilized as a stationary phase in continuous microcolumn applications. In this study, monodisperse-porous, spherical silica particles in the micron-size range, with bimodal pore diameter distribution were selected as a new support for the synthesis of a molecularly imprinted boronate affinity sorbent, using a cis-diol functionalized agent as the template. A specific surface area of 158 m2 /g was achieved with the imprinted sorbent by using monodisperse-porous silica microspheres containing both mesoporous and macroporous compartments as the support. High porosity originating from the macroporous compartment and sufficiently high particle size provided good column permeability to the imprinted sorbent in microcolumn applications. The mesoporous compartment provided a large surface area for the parking of imprinted molecules while the macroporous compartment facilitated the intraparticular diffusion of imprinted target within the microsphere interior. A microfluidic boronate affinity system was first constructed by using molecularly imprinted polymeric shell coated monodisperse-porous silica microspheres as a stationary phase. The synthetic route for the imprinting process, the reversible adsorption/ desorption behavior of selected target and the selectivity of imprinted sorbent in both batch and microfluidic boronate affinity chromatography systems are reported.
Collapse
Affiliation(s)
| | - Çiğdem Kip
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
| | - Ali Tuncel
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|
29
|
Shell thickness controlled hydrophilic magnetic molecularly imprinted resins for high-efficient extraction of benzoic acids in aqueous samples. Talanta 2019; 194:969-976. [DOI: 10.1016/j.talanta.2018.10.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022]
|
30
|
Huang W, Hou X, Tong Y, Tian M. Determination of sialic acid in serum samples by dispersive solid-phase extraction based on boronate-affinity magnetic hollow molecularly imprinted polymer sorbent. RSC Adv 2019; 9:5394-5401. [PMID: 35515918 PMCID: PMC9060700 DOI: 10.1039/c9ra00511k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/04/2019] [Indexed: 11/21/2022] Open
Abstract
Boronate-affinity magnetic hollow molecularly imprinted polymers (B-MhMIPs) were prepared with sialic acid (SA) as the template, 3-aminophenylboronic acid (APBA) as the functional monomer and glycidilmethacrylate (GMA) as the co-monomer to chemisorb Fe3O4 nanoparticles. Furthermore, the hollow structure made the nanoparticles have more binding sites at both internal and external surfaces, which can facilitate the removal of template molecules from polymers and enhance the adsorption abilities towards SA. After optimizing, the adsorption pH was controlled at 4.0, and this was different from most cis-diol-containing compounds. Under the optimal conditions, the limit of detection for SA was 0.025 μg mL-1 (n = 3). This method was applied to analyze serum samples with different spiked levels, and the recoveries of the SA were in the range of 70.9-106.2%. These results confirmed the superiority of the B-MhMIPs for selective and efficient enrichment of trace SA from complex matrices.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 China
| | - Xingyu Hou
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 China
| | - Yukui Tong
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 China
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 China
| |
Collapse
|
31
|
Paruli EIII, Griesser T, Merlier F, Gonzato C, Haupt K. Molecularly imprinted polymers by thiol–yne chemistry: making imprinting even easier. Polym Chem 2019. [DOI: 10.1039/c9py00403c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic, bio-mimetic materials with recognition properties on a par with those of antibodies, which feature superior physical and chemical stability.
Collapse
Affiliation(s)
- Ernesto III Paruli
- Sorbonne Universités
- Université de Technologie de Compiègne
- Laboratory for Enzyme and Cell Engineering UMR CNRS 7025
- 60200 Compiègne
- France
| | - Thomas Griesser
- Institute of Chemistry of Polymeric Materials and Christian Doppler Laboratory for Functional and Polymer Based Ink-Jet Inks
- University of Leoben Otto-Glöckel-Strasse 2
- A-8700 Leoben
- Austria
| | - Franck Merlier
- Sorbonne Universités
- Université de Technologie de Compiègne
- Laboratory for Enzyme and Cell Engineering UMR CNRS 7025
- 60200 Compiègne
- France
| | - Carlo Gonzato
- Sorbonne Universités
- Université de Technologie de Compiègne
- Laboratory for Enzyme and Cell Engineering UMR CNRS 7025
- 60200 Compiègne
- France
| | - Karsten Haupt
- Sorbonne Universités
- Université de Technologie de Compiègne
- Laboratory for Enzyme and Cell Engineering UMR CNRS 7025
- 60200 Compiègne
- France
| |
Collapse
|
32
|
Long R, Li T, Wu L, Shi S. Synthesis of CdTe Quantum Dots-based Imprinting Fluorescent Nanosensor for Highly Specific and Sensitive Determination of Caffeic Acid in Apple Juices. EFOOD 2019. [DOI: 10.2991/efood.k.190802.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
33
|
Tong C, Tong X, Shi S, Guo K. Rapid discrimination and quantification of isomeric flavonoid-O-diglycosides in Citrus paradisi cv. changshanhuyou by online extraction-quadrupole time-of flight tandem mass spectrometry. J Pharm Biomed Anal 2018; 165:24-30. [PMID: 30500597 DOI: 10.1016/j.jpba.2018.11.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/22/2018] [Accepted: 11/20/2018] [Indexed: 01/19/2023]
Abstract
Rapid differentiation, characterization and quantification of isomers from complex mixtures by direct mass spectrometry (MS) remained an analytical challenge due to their similar or identical MS/MS spectra and matrix interferences. Here, we reported a novel online extraction-quadrupole time-of-flight tandem mass spectrometry (OLE-QTOF-MS/MS) system to rapid, efficient and sensitive analysis of interglycosidic linkage isomers (hesperidin and neohesperidin) in Citrus paradisi cv. Changshanhuyou (Changshanhuyou). OLE system packed with solid Changshanhuyou (0.02 mg) could be firstly used to online remove interferences with large polarities, and then online extract and enrich hesperidin and neohesperidin, which shows great potential to diminish the analysis time of sample pretreatment, as well as to reduce matrix effects and instrument consumption. Detailed fragmentation analysis found that, under positive ion mode, relative abundance of specific fragment ions m/z 449 to m/z 303 showed linear correlation to the mass content of hesperidin (0% to 100%) with good correlation coefficient (R2 = 0.9958). Utilizing this method, the mass ratio of hesperidin to neohesperidin in Changshanhuyou was relatively quantified as 3.7:96.3 with RSD at 2.9%. Finally, using internal standard method, the absolute quantitative analysis was performed with acceptable reproducibility (RSD 1.3 and 4.5% for intra- and inter-day variations) and recoveries (from 95.9% to 108.9%), acceptable limit of detection (0.33 ng). In general, OLE-QTOF-MS/MS represented a promising and practical method for simple, rapid and effective analysis of isomeric compounds in complex matrices.
Collapse
Affiliation(s)
- Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, PR China
| | - Xia Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, PR China.
| | - Keke Guo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, 410083, PR China
| |
Collapse
|
34
|
Debittering of lemon juice using surface molecularly imprinted polymers and the utilization of limonin. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1104:205-211. [PMID: 30529494 DOI: 10.1016/j.jchromb.2018.11.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/15/2018] [Accepted: 11/20/2018] [Indexed: 11/20/2022]
Abstract
In this work, surface molecularly imprinted polymers (SMIPs) were prepared as a specific sorbent to remove the limonin from the lemon juice for the first time, and then the MIPs containing limonin were directly made into a water-soluble gel to treat inflammation of mice. The resulting polymers were characterized by scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectrometer spectra. And the polymerization conditions and adsorption performances of the resultant nanomaterials were further investigated in detail. Results showed that the MIPs have higher adsorption capacity (27.72 mg/g) compared with surface molecularly non-imprinted polymers (NIPs) (8.12 mg/g). The selectivity experiment indicated that the polymers had excellent selective recognition for limonin and the selectivity factors were calculated as 2.75 and 1.83 for nomilin and obakunone, respectively. The MIPs were successfully used as adsorbent for selectively removing limonin from lemon juice and the MIPs extracted almost all the limonin from lemon juice according to the HPLC results. Furthermore, the MIPs with limonin were processed into water-soluble gel, which can be used to reduce the inflammation and enhance wound healing of model mice.
Collapse
|
35
|
Zhang YZ, Zhang JW, Wang CZ, Zhou LD, Zhang QH, Yuan CS. Polydopamine-Coated Magnetic Molecularly Imprinted Polymers with Fragment Template for Identification of Pulsatilla Saponin Metabolites in Rat Feces with UPLC-Q-TOF-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:653-660. [PMID: 29260546 DOI: 10.1021/acs.jafc.7b05747] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, a modified pretreatment method using magnetic molecularly imprinted polymers (MMIPs) was successfully applied to study the metabolites of an important botanical with ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The MMIPs for glucoside-specific adsorption was used to identify metabolites of Pulsatilla chinensis in rat feces. Polymers were prepared by using Fe3O4 nanoparticles as the supporting matrix, d-glucose as fragment template, and dopamine as the functional monomer and cross-linker. Results showed that MMIPs exhibited excellent extraction performance, large adsorption capacity (5.65 mg/g), fast kinetics (60 min), and magnetic separation. Furthermore, the MMIPs coupled with UPLC-Q-TOF-MS were successfully utilized for the identification of 17 compounds including 15 metabolites from the Pulsatilla saponin metabolic pool. This study provides a reliable protocol for the separation and identification of saponin metabolites in a complex biological sample, including those from herbal medicines.
Collapse
Affiliation(s)
- Yu-Zhen Zhang
- School of Chemistry and Chemical Engineering, Chongqing University , Chongqing 400044, China
| | - Jia-Wei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University , Chongqing 400044, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago , Chicago, Illinois 60637, United States
| | - Lian-Di Zhou
- Basic Medical College, Chongqing Medical University , Chongqing 400016, China
| | - Qi-Hui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University , Chongqing 400044, China
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago , Chicago, Illinois 60637, United States
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
36
|
Boronate-modified hollow molecularly imprinted polymers for selective enrichment of glycosides. Mikrochim Acta 2017; 185:46. [DOI: 10.1007/s00604-017-2608-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
|
37
|
Lerond M, Bélanger D, Skene WG. Surface immobilized azomethine for multiple component exchange. SOFT MATTER 2017; 13:6639-6646. [PMID: 28926070 DOI: 10.1039/c7sm01456b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Diazonium chemistry concomitant with in situ electrochemical reduction was used to graft an aryl aldehyde to indium-tin oxide (ITO) coated glass substrates. This served as an anchor for preparing electroactive azomethines that were covalently bonded to the transparent electrode. The immobilized azomethines could undergo multiple step-wise component exchanges with different arylamines. The write-erase-write sequences were electrochemically confirmed. The azomethines could also be reversibly hydrolyzed. This was exploited for multiple azomethine-hydrolysis cycles resulting in discrete electroactive immobilized azomethines. The erase-rewrite sequences were also electrochemically confirmed.
Collapse
Affiliation(s)
- Michael Lerond
- Laboratoire de caractérisation photophysique des matériaux conjugués, Département de Chimie, Pavillon JA Bombardier, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | | | | |
Collapse
|
38
|
yang J, He X, Chen L, Zhang Y. Thiol-yne click synthesis of boronic acid functionalized silica nanoparticle-graphene oxide composites for highly selective enrichment of glycoproteins. J Chromatogr A 2017; 1513:118-125. [DOI: 10.1016/j.chroma.2017.07.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/28/2017] [Accepted: 07/08/2017] [Indexed: 10/19/2022]
|
39
|
Synthesis and characterization of hollow porous molecular imprinted polymers for the selective extraction and determination of caffeic acid in fruit samples. Food Chem 2017; 224:32-36. [DOI: 10.1016/j.foodchem.2016.12.042] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 11/22/2022]
|
40
|
Shi S, Fan D, Xiang H, Li H. Effective synthesis of magnetic porous molecularly imprinted polymers for efficient and selective extraction of cinnamic acid from apple juices. Food Chem 2017; 237:198-204. [PMID: 28763986 DOI: 10.1016/j.foodchem.2017.05.086] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 11/17/2022]
Abstract
An effective strategy was proposed to prepare novel magnetic porous molecularly imprinted polymers (MPMIPs) for highly selective extraction of cinnamic acid (CMA) from complex matrices. Characterization and various parameters affecting adsorption and desorption behaviors were investigated. Results revealed adsorption behavior between CMA and MPMIPs followed Freundlich equation adsorption isotherm with a maximum adsorption capacity at 4.35mg/g and pseudo-second-order reaction kinetics with equilibrium time at 60min. Subsequently, MPMIPs were successfully used to selectively extract CMA from apple juice with a relatively satisfactory recovery (92.7-101.4%). Coupling with high-performance liquid chromatography and ultraviolet detection (HPLC-UV), the limit of detection (LOD) for CMA was 0.006µg/mL, and the linear range (0.02-10μg/mL) was wide with correlation coefficient at 0.9995. Finally, the contents of CMA in two kinds of apple juices were determined as 0.132 and 0.120μg/mL. Results indicated the superiority of MPMIPs in the selective extraction field.
Collapse
Affiliation(s)
- Shuyun Shi
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, PR China; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Dengxin Fan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Haiyan Xiang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| | - Huan Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| |
Collapse
|
41
|
Hollow porous ionic liquids composite polymers based solid phase extraction coupled online with high performance liquid chromatography for selective analysis of hydrophilic hydroxybenzoic acids from complex samples. J Chromatogr A 2017; 1484:7-13. [DOI: 10.1016/j.chroma.2017.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/27/2016] [Accepted: 01/07/2017] [Indexed: 12/15/2022]
|