1
|
Li W, Zhu L, Zhang F, Han C, Li P, Jiang J. A novel strategy by combining foam fractionation with high-speed countercurrent chromatography for the rapid and efficient isolation of antioxidants and cytostatics from Camellia oleifera cake. Food Res Int 2024; 176:113798. [PMID: 38163709 DOI: 10.1016/j.foodres.2023.113798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Camellia oleifera cake is a by-product, which is rich in functional chemical components. However, it is typically used as animal feed with no commercial value. The purpose of this study was to isolate and identify compounds from Camellia oleifera cake using a combination of foam fractionation and high-speed countercurrent chromatography (HSCCC) and to investigate their biological activities. Foam fractionation with enhanced drainage through a hollow regular decahedron (HRD) was first established for simultaneously enriching flavonoid glycosides and saponins for further separation of target compounds. Under suitable operating conditions, the introduction of HRD resulted in a threefold increase in enrichment ratio with no negative effect on recovery. A novel elution-extrusion countercurrent chromatography (EECCC) coupled with the consecutive injection mode was established for the successful simultaneous isolation of flavonoid glycosides and saponins. As a result, 38.7 mg of kaemferol-3-O-[2-O-D-glucopyranosyl-6-O-α-L-rhamnopyranosyl]-β-D-glucopyranoside (purity of 98.17%, FI), 70.8 mg of kaemferol-3-O-[2-O-β-D-xylopyranosyl-6-O-α-L-rhamnopyranosyl]-β-D-glucopyranoside (purity of 97.52%, FII), and 560 mg of an oleanane-type saponin (purity of 92.32%, FIII) were separated from the sample (900 mg). The present study clearly showed that FI and II were natural antioxidants (IC50 < 35 μg/mL) without hemolytic effect. FIII displayed the effect of inhibiting Hela cell proliferation (IC50 < 30 μg/mL). Further erythrocyte experiments showed that this correlated with the extremely strong hemolytic effect of FIII. Overall, this study offers a potential strategy for efficient and green isolation of natural products, and is beneficial to further expanding the application of by-products (Camellia oleifera cake) in food, cosmetics, and pharmacy.
Collapse
Affiliation(s)
- Weixin Li
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Liwei Zhu
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Fenglun Zhang
- China CO-OP Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Chunrui Han
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Pengfei Li
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China
| | - Jianxin Jiang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Ezzanad A, De los Reyes C, Macías-Sánchez AJ, Hernández-Galán R. Isolation and Identification of 12-Deoxyphorbol Esters from Euphorbia resinifera Berg Latex: Targeted and Biased Non-Targeted Identification of 12-Deoxyphorbol Esters by UHPLC-HRMS E. PLANTS (BASEL, SWITZERLAND) 2023; 12:3846. [PMID: 38005743 PMCID: PMC10674858 DOI: 10.3390/plants12223846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Diterpenes from the Euphorbia genus are known for their ability to regulate the protein kinase C (PKC) family, which mediates their ability to promote the proliferation of neural precursor cells (NPCs) or neuroblast differentiation into neurons. In this work, we describe the isolation from E. resinifera Berg latex of fifteen 12-deoxyphorbol esters (1-15). A triester of 12-deoxy-16-hydroxyphorbol (4) and a 12-deoxyphorbol 13,20-diester (13) are described here for the first time. Additionally, detailed structural elucidation is provided for compounds 3, 5, 6, 14 and 15. The absolute configuration for compounds 3, 4, 6, 13, 14 and 15 was established by the comparison of their theoretical and experimental electronic circular dichroism (ECD) spectra. Access to the above-described collection of 12-deoxyphorbol derivatives, with several substitution patterns and attached acyl moieties, allowed for the study of their fragmentation patterns in the collision-induced dissociation of multiple ions, without precursor ion isolation mass spectra experiments (HRMSE), which, in turn, revealed a correlation between specific substitution patterns and the fragmentation pathways in their HRMSE spectra. In turn, this allowed for a targeted UHPLC-HRMSE analysis and a biased non-targeted UHPLC-HRMSE analysis of 12-deoxyphorbols in E. resinifera latex which yielded the detection and identification of four additional 12-deoxyphorbols not previously isolated in the initial column fractionation work. One of them, identified as 12-deoxy-16-hydroxyphorbol 20-acetate 13-phenylacetate 16-propionate (20), has not been described before.
Collapse
Affiliation(s)
- Abdellah Ezzanad
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Puerto Real, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (A.E.); (C.D.l.R.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Carolina De los Reyes
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Puerto Real, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (A.E.); (C.D.l.R.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Antonio J. Macías-Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Puerto Real, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (A.E.); (C.D.l.R.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| | - Rosario Hernández-Galán
- Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Puerto Real, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (A.E.); (C.D.l.R.)
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
3
|
Campos MF, Mendonça SC, Peñaloza EMC, de Oliveira BAC, Rosa AS, Leitão GG, Tucci AR, Ferreira VNS, Oliveira TKF, Miranda MD, Allonso D, Leitão SG. Anti-SARS-CoV-2 Activity of Ampelozizyphus amazonicus (Saracura-Mirá): Focus on the Modulation of the Spike-ACE2 Interaction by Chemically Characterized Bark Extracts by LC-DAD-APCI-MS/MS. Molecules 2023; 28:molecules28073159. [PMID: 37049921 PMCID: PMC10095690 DOI: 10.3390/molecules28073159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Traditional medicine shows several treatment protocols for COVID-19 based on natural products, revealing its potential as a possible source of anti-SARS-CoV-2 agents. Ampelozizyphus amazonicus is popularly used in the Brazilian Amazon as a fortifier and tonic, and recently, it has been reported to relieve COVID-19 symptoms. This work aimed to investigate the antiviral potential of A. amazonicus, focusing on the inhibition of spike and ACE2 receptor interaction, a key step in successful infection. Although saponins are the major compounds of this plant and often reported as its active principles, a polyphenol-rich extract was the best inhibitor of the spike and ACE2 interaction. Chemical characterization of A. amazonicus bark extracts by LC-DAD-APCI-MS/MS before and after clean-up steps for polyphenol removal showed that the latter play an essential role in maintaining this activity. The effects of the extracts on viral replication were also assessed, and all samples (aqueous and ethanol extracts) demonstrated in vitro activity, inhibiting viral titers in the supernatant of Calu-3 cells after 24 hpi. By acting both in the SARS-CoV-2 cell entry process and its replication, A. amazonicus bark extracts stand out as a multitarget agent, highlighting the species as a promising candidate in the development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Mariana Freire Campos
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, RJ, Brazil
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Centro de Ciências da Saúde, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Simony Carvalho Mendonça
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Centro de Ciências da Saúde, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Evelyn Maribel Condori Peñaloza
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Centro de Ciências da Saúde, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Beatriz A. C. de Oliveira
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Centro de Ciências da Saúde, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Alice S. Rosa
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21.941-902, RJ, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, IOC-Fiocruz, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Amanda R. Tucci
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21.941-902, RJ, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, IOC-Fiocruz, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Vivian Neuza S. Ferreira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Thamara Kelcya F. Oliveira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21.941-902, RJ, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, IOC-Fiocruz, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Milene Dias Miranda
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21.941-902, RJ, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, IOC-Fiocruz, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, RJ, Brazil
| | - Suzana Guimarães Leitão
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Centro de Ciências da Saúde, Rio de Janeiro 21.941-902, RJ, Brazil
| |
Collapse
|
4
|
Leitão SG, Leitão GG, de Oliveira DR. Saracura-Mirá, a Proposed Brazilian Amazonian Adaptogen from Ampelozizyphus amazonicus. PLANTS (BASEL, SWITZERLAND) 2022; 11:191. [PMID: 35050079 PMCID: PMC8781190 DOI: 10.3390/plants11020191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The Amazon Forest is known all over the world for its diversity and exuberance, and for sheltering several indigenous groups and other traditional communities. There, as well as in several other countries, in traditional medical systems, weakness, fatigue and debility are seen as limiting health conditions where medicinal plants are often used in a non-specific way to improve body functions. This review brings together literature data on Ampelozizyphus amazonicus, commonly known in Brazil as "saracura-mirá" and/or "cerveja de índio", as an Amazonian adaptogen, including some contributions from the authors based on their ethnographic and laboratory experiences. Topics such as botany, chemistry, ethnopharmacological and pharmacological aspects that support the adaptogen character of this plant, as well as cultivation, market status and supply chain aspects are discussed, and the gaps to establish "saracura-mirá" as an ingredient for the pharmaceutical purposes identified. The revised data presented good scientific evidence supporting the use of this Amazonian plant as a new adaptogen. Literature data also reveal that a detailed survey on natural populations of this plant is needed, as well as agronomical studies that could furnish A. amazonicus bark as a raw material. Another important issue is the lack of developed quality control methods to assure its quality assessment.
Collapse
Affiliation(s)
- Suzana Guimarães Leitão
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. A2, sl. 10, Rio de Janeiro 21941-902, Brazil
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco H, Rio de Janeiro 21941-902, Brazil;
| | - Danilo Ribeiro de Oliveira
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bl. A2, sl. 10, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
5
|
Li S, Liu C, Zhang Y, Tsao R. On-line coupling pressurised liquid extraction with two-dimensional counter current chromatography for isolation of natural acetylcholinesterase inhibitors from Astragalus membranaceus. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:640-653. [PMID: 33238329 DOI: 10.1002/pca.3012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Radix Astragali, the dried root of Astragalus membranaceus (Fish.) Bge. (family Fabaceae), which is known as Huangqi in China, has been proven to be an immunostimulant, diuretic, antidiabetic, analgesic, and it has also been used as a health food supplement in some Asian populations and also serves as a lead herb in many traditional Chinese medicine formulations as well as in Chinese ethnic tonifying soups. OBJECTIVE Screening and purification of bioactive compounds from natural products is challenging work due to their complexity. We present the first report on the use of pressurised liquid extraction and on-line two-dimensional counter current chromatography as an efficient medium for scaled-up extraction and separation of six bioactive compounds from Astragalus membranaceus. METHOD We applied the established method with ultrafiltration-liquid chromatography to screen acetylcholinesterase inhibitors, which were then evaluated and confirmed for anti-Alzheimer activity using PC12 cell model. RESULTS Six major compounds, namely, calycosin-7-O-β-d-glucoside, pratensein-7-O-β-d-glucoside, formononetin-7-O-β-d-glucoside, calycosin, genistein, and formononetin, with acetylcholinesterase binding affinities were identified and isolated from the raw plant materials via two sets of n-hexane/ethyl acetate/0.2% acetic acid (first-stage counter current chromatography) and n-hexane/ethyl acetate/methanol/water (second-stage counter current chromatography) solvent systems: 1.87:1.0:1.33 and 5.62:1.0:2.42:5.25, v/v/v/v, which were optimised by a mathematical model. CONCLUSION Therefore, a useful platform for the large-scale production of bioactive and nutraceutical ingredients was developed herein. With the on-line system developed here, we present a feasible, selective, and effective strategy for rapid screening and identification of enzyme inhibitors from complex mixtures.
Collapse
Affiliation(s)
- Sainan Li
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Mendonça SC, Simas RC, Reis Simas DL, Leitão SG, Leitão GG. Mass spectrometry as a tool for the dereplication of saponins from Ampelozizyphus amazonicus Ducke bark and wood. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:262-282. [PMID: 32681766 DOI: 10.1002/pca.2972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Mass spectrometry in natural products research has been used as a first step to identify possible chemical structures and to guide subsequent efforts to isolate novel compounds. Preparations of Ampelozizyphus amazonicus Ducke (AA) are known for their high content of saponins, especially dammarane-type triterpenoid aglycones. In the Amazon, where it is known as "saracura-mirá", roots and bark are widely used for the treatment and prevention of malaria, while the wood is discarded. The extract prepared from the wood is also saponin-rich, but its exact chemical composition has not been described. OBJECTIVE This study provides information on the chemical profiling and tentative structural identification of the major compounds (saponins) present in aqueous and ethanol extracts of bark and wood of AA by mass spectrometry. METHODS The strategy used to identify compounds present in all samples was ultra-high-performance liquid chromatography with an ultraviolet detector coupled to tandem mass spectrometry (UHPLC-UV-MS/MS) for the analysis of fragmentation patterns through product ion scan using MZmine 2 software. Also, direct sample injection and electrospray ionisation combined with high-resolution mass spectrometry (DI-ESI-HRMS) measurements were performed. RESULTS The extracts showed chemical similarity, and 95 saponins were tentatively identified in AA wood and bark, including 73 which are described for the first time as tentative structures for this plant species. CONCLUSION This research describes a useful method for the fast and simultaneous tentative identification of major saponins in AA, contributing to the study of the chemical properties of this genus and family. Furthermore, it demonstrates the importance of the qualitative dereplication process, allowing a straightforward way to propose the tentative identification of compounds.
Collapse
Affiliation(s)
- Simony C Mendonça
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rosineide C Simas
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Suzana G Leitão
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gilda G Leitão
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Kostanyan AA, Voshkin AA, Belova VV. Analytical, Preparative, and Industrial-Scale Separation of Substances by Methods of Countercurrent Liquid-Liquid Chromatography. Molecules 2020; 25:E6020. [PMID: 33353256 PMCID: PMC7766798 DOI: 10.3390/molecules25246020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
Countercurrent liquid-liquid chromatographic techniques (CCC), similar to solvent extraction, are based on the different distribution of compounds between two immiscible liquids and have been most widely used in natural product separations. Due to its high load capacity, low solvent consumption, the diversity of separation methods, and easy scale-up, CCC provides an attractive tool to obtain pure compounds in the analytical, preparative, and industrial-scale separations. This review focuses on the steady-state and non-steady-state CCC separations ranging from conventional CCC to more novel methods such as different modifications of dual mode, closed-loop recycling, and closed-loop recycling dual modes. The design and modeling of various embodiments of CCC separation processes have been described.
Collapse
Affiliation(s)
| | - Andrey A. Voshkin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninskii pr., 119991 Moscow, Russia; (A.A.K.); (V.V.B.)
| | | |
Collapse
|
8
|
Spórna-Kucab A, Wybraniec S. High-Speed Counter-Current Chromatography in Separation and Identification of Saponins from Beta vulgaris L. Cultivar Red Sphere. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/116416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Zhao HD, Lu Y, Yan M, Chen CH, Morris-Natschke SL, Lee KH, Chen DF. Rapid Recognition and Targeted Isolation of Anti-HIV Daphnane Diterpenes from Daphne genkwa Guided by UPLC-MS n. JOURNAL OF NATURAL PRODUCTS 2020; 83:134-141. [PMID: 31860304 PMCID: PMC7441572 DOI: 10.1021/acs.jnatprod.9b00993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Daphnane diterpenes with a 5/7/6-tricyclic ring system exhibit potent anti-HIV activity but are found in low abundance as plant natural products. In this study, an effective approach based on mass spectrometric fragmentation pathways was conducted to specifically recognize and isolate anti-HIV compounds of this type from Daphne genkwa. Briefly, the fragmentation pathways of reference analogues were elucidated based on characteristic ion fragments of m/z 323 → 295 → 267 or m/z 253 → 238 → 197 by ultra-high-performance liquid chromatography-ion trap tandem mass spectrometry (UPLC-IT-MSn) and then applied to the differentiations of substances with or without an oxygenated group at C-12. Twenty-seven daphnane diterpenes were successfully recognized from a petroleum ether extract of D. genkwa, including some potential new compounds and isomers that could not be identified accurately only from the ion fragments. Further separation of these target compounds using high-speed countercurrent chromatography (HSCCC) and preparative HPLC led to the isolation of three new (11, 25, and 27) and 14 known compounds, whose structures were identified and confirmed based on MS, NMR, and electronic circular dichroism (ECD) spectroscopy. The isolates exhibited anti-HIV activities at nanomolar concentrations. The results demonstrated that this strategy is feasible and reliable to rapidly recognize and isolate daphnane diterpenes from D. genkwa.
Collapse
Affiliation(s)
- Hua-Ding Zhao
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai 201203, People’s Republic of China
| | - Yan Lu
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai 201203, People’s Republic of China
| | - Min Yan
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai 201203, People’s Republic of China
| | - Chin-Ho Chen
- Duke University Medical Center, Box 2926, SORF, Durham, North Carolina 27710, United States
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
| | - Dao-Feng Chen
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai 201203, People’s Republic of China
| |
Collapse
|
10
|
Martínez-Fructuoso L, Pereda-Miranda R, Rosas-Ramírez D, Fragoso-Serrano M, Cerda-García-Rojas CM, da Silva AS, Leitão GG, Leitão SG. Structure Elucidation, Conformation, and Configuration of Cytotoxic 6-Heptyl-5,6-dihydro-2 H-pyran-2-ones from Hyptis Species and Their Molecular Docking to α-Tubulin. JOURNAL OF NATURAL PRODUCTS 2019; 82:520-531. [PMID: 30601004 DOI: 10.1021/acs.jnatprod.8b00908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cytotoxic 6-heptyl-5,6-dihydro-2 H-pyran-2-ones are chemical markers of Hyptis (Lamiaceae) and are responsible for some of the therapeutic properties of species with relevance to traditional medicine. The present investigation describes the isolation of known pectinolides A-C (1-3), in addition to the new pectinolides I-M (4-8), from two Mexican collections of H. pectinata by HPLC. The novel biosynthetically related monticolides A (9) and B (10) were also isolated by high-speed countercurrent chromatography from H. monticola, an endemic species of the Brazilian southeastern high-altitude regions. A combination of chemical correlations, chiroptical measurements, and Mosher ester NMR analysis was used to confirm their absolute configuration. The utility of DFT-NMR chemical shifts and JH-H calculations was assessed for epimer differentiation. Molecular docking studies indicated that 6-heptyl-5,6-dihydro-2 H-pyran-2-ones have a high affinity for the pironetin-binding site of α-tubulin, which may be a possible mechanism contributing to the cytotoxic potential of these small and flexible molecules.
Collapse
Affiliation(s)
- Lucero Martínez-Fructuoso
- Departamento de Farmacia, Facultad de Química , Universidad Nacional Autónoma de México , Ciudad Universitaria, Mexico City 04510 , Mexico
| | - Rogelio Pereda-Miranda
- Departamento de Farmacia, Facultad de Química , Universidad Nacional Autónoma de México , Ciudad Universitaria, Mexico City 04510 , Mexico
| | - Daniel Rosas-Ramírez
- Departamento de Farmacia, Facultad de Química , Universidad Nacional Autónoma de México , Ciudad Universitaria, Mexico City 04510 , Mexico
| | - Mabel Fragoso-Serrano
- Departamento de Farmacia, Facultad de Química , Universidad Nacional Autónoma de México , Ciudad Universitaria, Mexico City 04510 , Mexico
| | - Carlos M Cerda-García-Rojas
- Departamento de Química , Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , A. P. 14-740, Mexico City 07000 , Mexico
| | - Aline Soares da Silva
- Faculdade de Farmacia , Universidade Federal do Rio de Janeiro , CCS, Bloco A, Ilha do Fundão, 21941-902 , Rio de Janeiro , Brazil
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais , Universidade Federal do Rio de Janeiro , CCS, Bloco H, Ilha do Fundão, 21941-590 , Rio de Janeiro , Brazil
| | - Suzana Guimarães Leitão
- Faculdade de Farmacia , Universidade Federal do Rio de Janeiro , CCS, Bloco A, Ilha do Fundão, 21941-902 , Rio de Janeiro , Brazil
| |
Collapse
|
11
|
Fan Q, Liu Y, Kulakowski D, Chen S, Friesen JB, Pauli GF, Song Q. Countercurrent separation assisted identification of two mammalian steroid hormones in Vitex negundo. J Chromatogr A 2018; 1553:108-115. [PMID: 29699871 DOI: 10.1016/j.chroma.2018.04.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/23/2018] [Accepted: 04/13/2018] [Indexed: 01/18/2023]
Abstract
Countercurrent separation (CCS) has been widely used for the separation of high abundance compounds. However, the identification of low abundance compounds, such as mammalian steroid hormones, from natural sources is still a challenging task. A mixture of 14 human steroid hormone reference compounds was prepared for the development of a CCS enrichment strategy. The TLC-based GUESS (Generally Useful Estimate of Solvent Systems) method along with partitioning experiments were implemented to develop a process for the enrichment of these low abundance compounds with CCS. The application of CCS to the steroid hormone enrichment of Vitex negundo extracts was demonstrated by the identification of progesterone and estriol. This method provides a CCS-driven strategy to mine plant sources for low abundance compounds.
Collapse
Affiliation(s)
- Qingfei Fan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, PR China; Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yang Liu
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA; UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Daniel Kulakowski
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA; UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Shaonong Chen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA; UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - J Brent Friesen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA; UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA; Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, River Forest, IL, 60305, USA
| | - Guido F Pauli
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA; UIC/NIH Center for Botanical Dietary Supplements Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Qishi Song
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, PR China.
| |
Collapse
|
12
|
Kostanyan AE, Shishilov ON. An easy-to-use calculating machine to simulate steady state and non-steady-state preparative separations by multiple dual mode counter-current chromatography with semi-continuous loading of feed mixtures. J Chromatogr A 2018; 1552:92-98. [PMID: 29673766 DOI: 10.1016/j.chroma.2018.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 11/30/2022]
Abstract
Multiple dual mode counter-current chromatography (MDM CCC) separation processes with semi-continuous large sample loading consist of a succession of two counter-current steps: with "x" phase (first step) and "y" phase (second step) flow periods. A feed mixture dissolved in the "x" phase is continuously loaded into a CCC machine at the beginning of the first step of each cycle over a constant time with the volumetric rate equal to the flow rate of the pure "x" phase. An easy-to-use calculating machine is developed to simulate the chromatograms and the amounts of solutes eluted with the phases at each cycle for steady-state (the duration of the flow periods of the phases is kept constant for all the cycles) and non-steady-state (with variable duration of alternating phase elution steps) separations. Using the calculating machine, the separation of mixtures containing up to five components can be simulated and designed. Examples of the application of the calculating machine for the simulation of MDM CCC processes are discussed.
Collapse
Affiliation(s)
- Artak E Kostanyan
- Kurnakov Institute of General & Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 31, Moscow 119991, Russia.
| | - Oleg N Shishilov
- Institute of Fine Chemical Technologies, Moscow Technological University, Prospekt Vernadskogo 86, Moscow 119571, Russia; O3-Innovation, LLC, Skolkovo Innovation Center, Nobel Str. 1, Moscow 143026, Russia
| |
Collapse
|
13
|
Celano R, Campone L, Pagano I, Carabetta S, Di Sanzo R, Rastrelli L, Piccinelli AL, Russo M. Characterisation of nutraceutical compounds from different parts of particular species of Citrus sinensis 'Ovale Calabrese' by UHPLC-UV-ESI-HRMS. Nat Prod Res 2018; 33:244-251. [PMID: 29473425 DOI: 10.1080/14786419.2018.1443102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Consumers are aware of diet causing health problems and therefore there is an increased demand for natural ingredients that are expected to be safe and health-promoting. Many of these compounds belong to the class of flavonoids and can be divided into these five groups: flavanones, flavones, flavonols, flavanols, isoflavones and anthocyanidins. Extracts from citrus fruits are usually used as functional ingredients for several products. The aim of this paper was to develop an UHPLC-UV-ESI-HRMS method to define the metabolite profile of different parts of citrus fruit, of a particular cultivar called 'Ovale Calabrese', and in its main by-products. The high resolution mass spectrometry analysis allowed the identification of 27 compounds belonging to the classes of flavonoids and terpenoids. The high contents of phytochemical compounds, reveal the potential use of the 'Ovale Calabrese' as a rich source of nutraceutical compounds.
Collapse
Affiliation(s)
- Rita Celano
- a Department of Pharmacy , University of Salerno , Fisciano , Italy
| | - Luca Campone
- a Department of Pharmacy , University of Salerno , Fisciano , Italy.,b Department of Agriculture, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab) , University Mediterranea of Reggio Calabria , Reggio Calabria , Italy
| | - Imma Pagano
- a Department of Pharmacy , University of Salerno , Fisciano , Italy
| | - Sonia Carabetta
- b Department of Agriculture, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab) , University Mediterranea of Reggio Calabria , Reggio Calabria , Italy
| | - Rosa Di Sanzo
- b Department of Agriculture, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab) , University Mediterranea of Reggio Calabria , Reggio Calabria , Italy
| | - Luca Rastrelli
- a Department of Pharmacy , University of Salerno , Fisciano , Italy
| | | | - Mariateresa Russo
- b Department of Agriculture, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab) , University Mediterranea of Reggio Calabria , Reggio Calabria , Italy
| |
Collapse
|
14
|
Friesen JB, McAlpine JB, Chen SN, Pauli GF. The 9th International Countercurrent Chromatography Conference held at Dominican University, Chicago, USA, August 1-3, 2016. J Chromatogr A 2017; 1520:1-8. [PMID: 28939232 DOI: 10.1016/j.chroma.2017.08.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 01/06/2023]
Abstract
The 9th International Countercurrent Chromatography Conference (CCC 2016) was held at Dominican University near Chicago, IL (USA), from August 1st-3rd, 2016. The biennial CCC 20XX conferences provide an opportunity for countercurrent chromatography and centrifugal partition chromatography (CCC/CPC) manufactures, marketers, theorists, and research scientists to gather together socially, learn from each other, and advance countercurrent separation technology. A synopsis of the conference proceedings as well as a series of short reviews of the special edition articles is included in this document. Many productive discussions and collegial conversation at CCC 2016 attested to the liveliness, connectivity, and productivity of the global countercurrent research community and bodes well for the success of the 10th conference at the University of Braunschweig, Germany on August 1-3, 2018.
Collapse
Affiliation(s)
- J Brent Friesen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, River Forest, IL 60305, USA.
| | - James B McAlpine
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shao-Nong Chen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Guido F Pauli
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA; Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
15
|
Kostanyan AE. Theoretical study of separation and concentration of solutes by closed-loop recycling liquid-liquid chromatography with multiple sample injection. J Chromatogr A 2017; 1506:82-92. [DOI: 10.1016/j.chroma.2017.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/14/2017] [Accepted: 05/17/2017] [Indexed: 11/27/2022]
|