1
|
A portable tool for colorimetric detection of corrosion inhibitors using paper-based analytical devices. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
2
|
Pinheiro KMP, Duarte LM, Rodrigues MF, Vaz BG, Junior IM, Carvalho RM, Coltro WKT. Determination of naphthenic acids in produced water by using microchip electrophoresis with integrated contactless conductivity detection. J Chromatogr A 2022; 1677:463307. [PMID: 35834889 DOI: 10.1016/j.chroma.2022.463307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/16/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
This study reports for the first time the use of a microchip electrophoresis (ME) device with integrated capacitively coupled contactless conductivity detection (C4D) to analyze naphthenic acids in produced water. A mixture containing 9-anthracenecarboxylic, 1-naphthoic, and benzoic acids was separated and detected using a running buffer composed of 10 mmol L-1 carbonate buffer (pH = 10.2). The separation was achieved within ca. 140 s with baseline resolution greater than 2 and efficiency values ranging from 1.9 × 105 to 2.4 × 105 plates m-1. The developed methodology provided linear correlation with determination coefficients greater than 0.992 for the concentration ranges between 50 and 250 µmol L-1 for benzoic and 9-anthracenecarboxylic acids, and between 50 and 200 µmol L-1 for 1-naphthoic acid. The achieved limit of detection values varied between 4.7 and 7.7 µmol L-1. The proposed methodology revealed satisfactory repeatability with RSD values for a sequence of eight injections between 5.5 and 7.7% for peak areas and lower than 1% for migration times. In addition, inter-day precision was evaluated for sixteen injections (a sequence of four injections performed during four days), and the RSD values were lower than 11.5 and 4.9% for peak areas and migration time, respectively. Five produced water samples were analyzed, and it was possible to detect and quantify 9-anthracenecarboxylic acid. The concentrations ranged from 1.05 to 2.24 mmol L-1 with recovery values between 90.8 and 96.0%. ME-C4D demonstrated satisfactory analytical performance for determining naphthenic acids in produced water for the first time, which is useful for petroleum or oil industry investigation.
Collapse
Affiliation(s)
- Kemilly M P Pinheiro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Lucas M Duarte
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil; Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-141, Brazil
| | - Marcella F Rodrigues
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Boniek G Vaz
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Iris Medeiros Junior
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello (CENPES), Rio de Janeiro, RJ 21040-000, Brazil
| | - Rogerio M Carvalho
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello (CENPES), Rio de Janeiro, RJ 21040-000, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP 13084-971, Brazil.
| |
Collapse
|
3
|
Non-aqueous electrophoresis integrated with electrospray ionization mass spectrometry on a thiol-ene polymer-based microchip device. Anal Bioanal Chem 2021; 413:4195-4205. [PMID: 33954829 DOI: 10.1007/s00216-021-03374-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Non-aqueous capillary electrophoresis (NACE) on microfluidic chips is still a comparatively little explored area, despite the inherent advantages of this technique and its application potential for, in particular, lipophilic compounds. A main reason is probably the fact that implementation of NACE on microchips largely precluded the use of polymeric substrate materials. Here, we report non-aqueous electrophoresis on a thiol-ene-based microfluidic chip coupled to mass spectrometry via an on-chip ESI interface. Microchips with an integrated ESI emitter were fabricated using a double-molding approach. The durability of thiol-ene, when exposed to different organic solvents, was investigated with respect to swelling and decomposition of the polymer. Thiol-ene exhibited good stability against organic solvents such as methanol, ethanol, N-methylformamide, and formamide, which allows for a wide range of background electrolyte compositions. The integrated ESI emitter provided a stable spray with RSD% of the ESI signal ≤8%. Separation efficiency of the developed microchip electrophoresis system in different non-aqueous buffer solutions was tested with a mixture of several drugs of abuse. Ethanol- and methanol-based buffers provided comparable high theoretical plate numbers (≈ 6.6 × 104-1.6 × 105 m-1) with ethanol exhibiting the best separation efficiency. Direct coupling of non-aqueous electrophoresis to mass spectrometry allowed for fast analysis of hydrophobic compounds in the range of 0.1-5 μg mL-1 and 0.2-10 μg mL-1 and very good sensitivities (LOD ≈ 0.06-0.28 μg mL-1; LOQ ≈ 0.20-0.90 μg mL-1). The novel combination of non-aqueous CE on a microfluidic thiol-ene device and ESI-MS provides a mass-producible and highly versatile system for the analysis of, in particular, lipophilic compounds in a wide range of organic solvents. This offers promising potential for future applications in forensic, clinical, and environmental analysis. Graphical abstract.
Collapse
|
4
|
Ragab MAA, El-Kimary EI. Recent Advances and Applications of Microfluidic Capillary Electrophoresis: A Comprehensive Review (2017-Mid 2019). Crit Rev Anal Chem 2020; 51:709-741. [PMID: 32447968 DOI: 10.1080/10408347.2020.1765729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microfluidic capillary electrophoresis (MCE) is the novel technique resulted from the CE mininaturization as planar separation and analysis device. This review presents and discusses various application fields of this advanced technology published in the period 2017 till mid-2019 in eight different sections including clinical, biological, single cell analysis, environmental, pharmaceuticals, food analysis, forensic and ion analysis. The need for miniaturization of CE and the consequence advantages achieved are also discussed including high-throughput, miniaturized detection, effective separation, portability and the need for micro- or even nano-volume of samples. Comprehensive tables for the MCE applications in the different studied fields are provided. Also, figure comparing the number of the published papers applying MCE in the eight discussed fields within the studied period is included. The future investigation should put into consideration the possibility of replacing conventional CE with the MCE after proper validation. Suitable validation parameters with their suitable accepted ranges should be tailored for analysis methods utilizing such unique technique (MCE).
Collapse
Affiliation(s)
- Marwa A A Ragab
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, El-Messalah, Alexandria, Egypt
| | - Eman I El-Kimary
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, El-Messalah, Alexandria, Egypt
| |
Collapse
|
5
|
Duarte LM, Moreira RC, Coltro WKT. Nonaqueous electrophoresis on microchips: A review. Electrophoresis 2020; 41:434-448. [DOI: 10.1002/elps.201900238] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/14/2019] [Accepted: 11/20/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Lucas M. Duarte
- Instituto de QuímicaUniversidade Federal de Goiás Goiânia GO Brazil
| | - Roger C. Moreira
- Instituto de QuímicaUniversidade Federal de Goiás Goiânia GO Brazil
| | - Wendell K. T. Coltro
- Instituto de QuímicaUniversidade Federal de Goiás Goiânia GO Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica Campinas SP Brazil
| |
Collapse
|
6
|
Multichannel separation device with parallel electrochemical detection. J Chromatogr A 2019; 1610:460537. [PMID: 31537305 DOI: 10.1016/j.chroma.2019.460537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/22/2019] [Accepted: 09/08/2019] [Indexed: 11/23/2022]
Abstract
A device with four parallel channels was designed and manufactured by 3D printing in titanium. A simple experimental setup allowed splitting of the mobile phase in four parallel streams, such that a single sample could be analysed four times simultaneously. The four capillary channels were filled with a monolithic stationary phase, prepared using a zwitterionic functional monomer in combination with various dimethacrylate cross-linkers. The resulting stationary phases were applicable in both reversed-phase and hydrophilic-interaction retention mechanisms. The mobile-phase composition was optimized by means of a window diagram so as to obtain the highest possible resolution of dopamine precursors and metabolites on all columns. Miniaturized electrochemical detectors with carbon fibres as working electrodes and silver micro-wires as reference electrodes were integrated in the device at the end of each column. Experimental separations were successfully compared with those predicted by a three-parameter retention model. Finally, dopamine was determined in human urine to further confirm applicability of the developed device.
Collapse
|
7
|
Pinheiro KMP, Moreira RC, Rezende KCA, Talhavini M, Logrado LPL, Baio JAF, Lanza MRV, Coltro WKT. Rapid separation of post-blast explosive residues on glass electrophoresis microchips. Electrophoresis 2018; 40:462-468. [DOI: 10.1002/elps.201800245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 01/21/2023]
Affiliation(s)
| | - Roger C. Moreira
- Instituto de Química; Universidade Federal de Goiás; Goiânia GO Brazil
| | | | - Márcio Talhavini
- Instituto Nacional de Criminalística; Polícia Federal Brasileira; Brasília DF Brazil
| | | | - José A. F. Baio
- Instituto de Química de São Carlos; Universidade de São Paulo; São Carlos SP Brazil
| | - Marcos R. V. Lanza
- Instituto de Química de São Carlos; Universidade de São Paulo; São Carlos SP Brazil
| | - Wendell K. T. Coltro
- Instituto de Química; Universidade Federal de Goiás; Goiânia GO Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica; Campinas SP Brazil
| |
Collapse
|
8
|
Kubáň P, Hauser PC. Contactless conductivity detection for analytical techniques: Developments from 2016 to 2018. Electrophoresis 2018; 40:124-139. [PMID: 30010203 DOI: 10.1002/elps.201800248] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 01/05/2023]
Abstract
The publications concerning capacitively coupled contactless conductivity detection for the 2-year period from mid-2016 to mid-2018 are covered in this update to the earlier reviews of the series. Relatively few reports on fundamental investigations or new designs have appeared in the literature in this time interval, but the development of new applications with the detection method has continued strongly. Most often, contactless conductivity measurements have been employed for the detection of inorganic or small organic ions in conventional capillary electrophoresis, less often in microchip electrophoresis. A number of other uses, such as detection in chromatography or the gauging of bubbles in streams have also been reported.
Collapse
Affiliation(s)
- Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Peter C Hauser
- Department of Chemistry, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Moreira RC, Costa BMC, Marra MC, Santana MHP, Maldaner AO, Botelho ÉD, Paixão TRLC, Richter EM, Coltro WKT. Screening of seized cocaine samples using electrophoresis microchips with integrated contactless conductivity detection. Electrophoresis 2018; 39:2188-2194. [PMID: 29947145 DOI: 10.1002/elps.201800137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/09/2018] [Accepted: 06/10/2018] [Indexed: 11/11/2022]
Abstract
This study describes the development of a new analytical method for the separation and detection of cocaine (COC) and its adulterants, or cutting agents, using microchip electrophoresis (ME) devices coupled with capacitively coupled contactless conductivity detection (C4 D). All the experiments were carried out using a glass commercial ME device containing two pairs of integrated sensing electrodes. The running buffer composed of 20 mmol/L amino-2-(hydroxymethyl) propane-1,3-diol and 10 mmol/L 3,4-dimethoxycinnamic acid provided the best separation conditions for COC and its adulterants with baseline resolution (R > 1.6), separation efficiencies ranging from (2.9 ± 0.1) to (3.2 ± 0.2) × 105 plates/m, and estimated LOD values between 40 and 150 μmol/L. The quantification of COC was successfully performed in four samples seized by the Brazilian Federal Police Department and all predicted values agree with values estimated by the reference method. Some other interfering species were detected in the seized samples during the screening procedure on ME-C4 D devices. While lidocaine was detected in sample 3, the presence of levamisole was observed in samples 2 and 4. However, their concentrations were estimated to be below the LOQ. ME-C4 D devices have proved to be quite efficient for the identification and quantification of COC with errors lower than 10% when compared to the data obtained by a reference method. The approach herein reported offers great potential to be used for on-site COC screening in seized samples.
Collapse
Affiliation(s)
| | - Brenda M C Costa
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Mariana C Marra
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Mario H P Santana
- Instituto Nacional de Criminalística, Polícia Federal Brasileira, Brasília, DF, Brazil
| | - Adriano O Maldaner
- Unidade Técnico-Científica, Superintendência Regional da Polícia Federal em MG, Uberlândia, MG, Brazil
| | - Élvio D Botelho
- Unidade Técnico-Científica, Superintendência Regional da Polícia Federal em MG, Uberlândia, MG, Brazil
| | | | | | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
10
|
20th anniversary of axial capacitively coupled contactless conductivity detection in capillary electrophoresis. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|