1
|
Li H, Tian Y, Tan L, Wang N, Qiao Y, Wang J. A double-emission molecularly imprinted ratiometric fluorescent sensor based on carbon quantum dots and fluorescein isothiocyanate for visual detection of p-nitroaniline. Mikrochim Acta 2024; 191:377. [PMID: 38850342 DOI: 10.1007/s00604-024-06466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
A novel molecularly imprinted ratiometric fluorescent sensor CQDs@MIP/FITC@SiO2 for the detection of p-nitroaniline (p-NA) was constructed through the mixture of CQDs@MIP and FITC@SiO2 in the ratio of 1:1 (VCQDs@MIP:VFITC@SiO₂). The polymers of CQDs@MIP and FITC@SiO2 were prepared by sol-gel method and reversed-phase microemulsion method, respectively. CQDs@MIP was used as the auxiliary response signal and FITC@SiO2 was used as the reference enhancement signal. The signal was measured at excitation/emission wavelengths of 365/438, 512 nm. The sensor showed good linearity in the concentration range 0.14-40.00 µM (R2 = 0.998) with a detection limit of 0.042 µM for p-NA. The color change of "blue-cyan-green" could be observed by the naked eye under 365 nm UV light, thus realizing the visual detection of p-NA. The sensor presented comparable results compared with high-performance liquid chromatography (HPLC) method for the detection of p-NA in hair dye paste and aqueous samples with recoveries of 96.8-103.7% and 95.8-104.4%, respectively. It was demonstrated that the constructed sensor possesses the advantages of simplicity, excellent selectivity, superior sensitivity, and outstanding stability.
Collapse
Affiliation(s)
- Huiru Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministy of Education, Ocean University of China, Qingdao, 266100, China
| | - Yanbo Tian
- Key Laboratory of Marine Chemistry Theory and Technology, Ministy of Education, Ocean University of China, Qingdao, 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministy of Education, Ocean University of China, Qingdao, 266100, China.
| | - Na Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministy of Education, Ocean University of China, Qingdao, 266100, China
| | - Yu Qiao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministy of Education, Ocean University of China, Qingdao, 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministy of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
2
|
Huang S, Wang X, Zhang B, Xia L, Chen Y, Li G. Room-temperature fabrication of fluorinated covalent organic polymer @ Attapulgite composite for in-syringe membrane solid-phase extraction and analysis of domoic acid in aquatic products. J Chromatogr A 2024; 1721:464849. [PMID: 38564930 DOI: 10.1016/j.chroma.2024.464849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
A novel fluorinated covalent organic polymer @ attapulgite composite (F-COP@ATP) was prepared at room temperature for in-syringe membrane solid-phase extraction (SM-SPE) of domoic acid (DA) in aquatic products. Natural ore ATP has the advantages of low cost, good mechanical strength and abundant hydroxyl group on its surface, and in-situ modified F-COP layer can provide abundant adsorption sites. F-COP@ATP combining the advantages of F-COP and ATP, becomes an ideal adsorbent for DA extracting. Moreover, a high-throughput sample preparation strategy was carried out by using the F-COP@ATP membrane as syringe filter and assembling syringes with a ten-channel injection pump. In addition, the experimental factors were optimized, such as pH of extract, amount of adsorbent, velocity of extraction and desorption, type and volume of desorption solvent. The DA analytical method was established by SM-SPE-HPLC/tandem mass spectrometry. The method had a wide linear range with low limit of detection (0.344 ng/kg) and low limit of quantification (1.14 ng/kg). F-COP@ATP membrane can be reused more than five times. The method realized the analysis of DA in scallop and razor clam samples, which shows its application prospect in practical analysis. This study provided an efficient, low-energy and mild idea for preparing other reusable natural mineral ATP-based composite materials for separation and enrichment, which reduces the experimental cost and is closer to environmental protection and green chemistry to a certain extent.
Collapse
Affiliation(s)
- Simin Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoqian Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Bo Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yi Chen
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223001, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Bian Y, Zhang Y, Feng XS, Gao HY. Marine toxins in seafood: Recent updates on sample pretreatment and determination techniques. Food Chem 2024; 438:137995. [PMID: 38029684 DOI: 10.1016/j.foodchem.2023.137995] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023]
Abstract
Marine toxins can lead to varying degrees of human poisoning, often resulting in fatal symptoms and causing significant economic losses in seafood-producing regions. To gain a deeper comprehension of the role of marine toxins in seafood and their impact on the environment, it is imperative to develop rapid, cost-effective, environmentally friendly, and efficient methods for sample pretreatment and determination to mitigate adverse impacts of marine toxins. This review presents a comprehensive overview of advancements made in sample pretreatment and determination techniques for marine toxins since 2017. The advantages and disadvantages of various technologies were critically examined. Additionally, the current challenges and future development strategies for the analysis of marine toxins are provided.
Collapse
Affiliation(s)
- Yu Bian
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Hui-Yuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
Wu J, Zheng L, Huang X. Fabrication and evaluation of a molecular-imprinted-polymer functionalized electrode for selective electric field-assisted solid-phase microextraction of phytohormones. Talanta 2024; 270:125572. [PMID: 38157736 DOI: 10.1016/j.talanta.2023.125572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Specific extraction and separation plays a pivotal role in the accurate quantification of trace phytohormones (PHs). However, due to their high polarity, specific capture of PHs is challenging. In this study, under the assistance of electric field, a molecular-imprinted-polymer functionalized electrode (MIP@ED) was in-situ prepared using 3-indoleacetic acid (IAA) as template and employed as the adsorbent of electric field-assisted solid-phase microextraction (EA-SPME) for specific capture of PHs. Results showed that the implementation of electric field during the preparation of MIP@ED and EA-SPME procedures improved the extraction selectivity, the selective factors towards IAA and its structural analogues increased from 2.09 to 2.45 to 2.88-3.51. Under the optimum conditions, the proposed MIP@ED/EA-SPME was combined with HPLC technique to monitor trace PHs in water and agricultural products. The achieved limits of detection were in the ranges of 0.0053-0.011 μg/L and 0.048-0.12 μg/kg for water and agricultural product, respectively. The established approach was successfully applied to quantify trace PHs in real samples, and the spiked recoveries varied from 84.0 % to 118 % with good repeatability (RSDs blow 10 %). The obtained results provided clear evidence that the developed approach employing the MIP@ED/EA-SPME technique demonstrated high sensitivity, good selectivity, satisfactory reproducibility and environmental friendliness in the quantification of trace PHs in complex samples. In addition, the current study supplied a new strategy to enhance the specific recognition performance of MIP-based SPME.
Collapse
Affiliation(s)
- Jiangyi Wu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Lingxin Zheng
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Xiaojia Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
5
|
Oller-Ruiz A, Alcaraz-Oliver N, Férez G, Gilabert J. Measuring Marine Biotoxins in a Hypersaline Coastal Lagoon. Toxins (Basel) 2023; 15:526. [PMID: 37755952 PMCID: PMC10534363 DOI: 10.3390/toxins15090526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023] Open
Abstract
Marine biotoxins have posed a persistent problem along various coasts for many years. Coastal lagoons are ecosystems prone to phytoplankton blooms when altered by eutrophication. The Mar Menor is the largest hypersaline coastal lagoon in Europe. Sixteen marine toxins, including lipophilic toxins, yessotoxins, and domoic acid (DA), in seawater samples from the Mar Menor coastal lagoon were measured in one year. Only DA was detected in the range of 44.9-173.8 ng L-1. Environmental stressors and mechanisms controlling the presence of DA in the lagoon are discussed. As an enrichment and clean-up method, we employed solid phase extraction to filter and acidify 75 mL of the sample, followed by pre-concentration through a C18 SPE cartridge. The analytes were recovered in aqueous solutions and directly injected into the liquid chromatography system (LC-MS), which was equipped with a C18 column. The system operated in gradient mode, and we used tandem mass spectrometry (MS/MS) with a triple quadrupole (QqQ) in the multiple reaction monitoring mode (MRM) for analysis. The absence of matrix effects was checked and the limits of detection for most toxins were low, ranging from 0.05 to 91.2 ng L-1, depending on the compound. To validate the measurements, we performed recovery studies, falling in the range of 74-122%, with an intraday precision below 14.9% RSD.
Collapse
Affiliation(s)
| | | | | | - Javier Gilabert
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), E-30203 Cartagena, Spain
| |
Collapse
|
6
|
Wang QF, Liang LJ, Sun JB, Zhou J. Application of a reversed-phase ionic liquid dispersive liquid-liquid microextraction method for the extraction and preconcentration of domoic acid from urine samples. Heliyon 2022; 8:e10152. [PMID: 36033330 PMCID: PMC9404275 DOI: 10.1016/j.heliyon.2022.e10152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/15/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
A simple and efficient sample extraction and preconcentration method based on reversed-phase ionic liquid dispersive liquid-liquid microextraction (RP-IL-DLLME) had been developed and used to quantify the domoic acid in human urine samples. The analysis was performed by ultra-performance liquid chromatography and photodiode array detection. During the procedure, hydrophilic ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate [C4mim] BF4 as dispersive solvent and NaOH solution was chosen as extraction solvent. Some important parameters in the method were investigated to get high enrichment factors. Under optimal conditions, the linearity of the method was in the range of 0.1–10 ng mL−1 and the correlation coefficient was above 0.9996. The relative standard deviations (RSDs) of the developed methods for intra-day (n = 5) and inter-day (n = 5) precision ranged from 1.9 to 3.9%. Meanwhile, limit of detection (LOD) was 0.03 ng mL−1(S/N = 3) and that of quantification (LOQ) was 0.1 ng mL−1(S/N = 10) with the enrichment factors (EF) being 230. Eventually, the proposed method was successfully applied to the determination of Dominic acid in human urine samples.
Collapse
Affiliation(s)
- Qiao feng Wang
- Medical School, Xi’an Peihua University, Xi’an, Shaanxi, 710199, China
| | - Li Jun Liang
- Department of Pharmacy, South China Hospital of Shenzhen University, Shenzhen Guangdong 518116, China
| | - Jiang Bing Sun
- Department of Pharmacy, South China Hospital of Shenzhen University, Shenzhen Guangdong 518116, China
| | - Jun Zhou
- Department of Pharmacy, South China Hospital of Shenzhen University, Shenzhen Guangdong 518116, China
- Corresponding author.
| |
Collapse
|
7
|
Liu Y, Lian Z, Li F, Majid A, Wang J. Review on molecular imprinting technology and its application in pre-treatment and detection of marine organic pollutants. MARINE POLLUTION BULLETIN 2021; 169:112541. [PMID: 34052587 DOI: 10.1016/j.marpolbul.2021.112541] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 05/17/2023]
Abstract
Molecular imprinting technology (MIT) has been considered as an attractive method to produce artificial receptors with the memory of size, shape and functional groups of the templates and has become an emerging technique with the potential in various fields due to recognitive specificity, high efficient selectivity and mechanical stability, which can effectively remove background interference and is suitable for the pre-treatment and analysis of trace level substances in complex matrix samples. Nearly 100 papers about the application of MIT in the detection of marine pollutants were found through Science Citation Index Expanded (SCIE). On this basis, combined with the application of MIT in other fields, the pre-treatment process of marine environmental samples was summarized and the potential of four types of different molecularly imprinted materials in the pre-treatment and detection of marine organic pollutants (including antibiotics, triazines, organic dyes, hormones and shellfish toxins) samples was evaluated, which provides the innovative configurations and progressive applications for the analysis of marine samples, and also highlights future trends and perspectives in the emerging research field.
Collapse
Affiliation(s)
- Yuhua Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Ziru Lian
- Marine College, Shandong University, Weihai 264209, China
| | - Fangfang Li
- Shandong Institute for Food and Drug Control, Jinan 250000, China
| | - Abdul Majid
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
8
|
WANG J, CHEN J, YANG J, HE X, WANG Y, WANG B. [Determination of domoic acid in seawater by solid phase extraction-liquid chromatography-tandem mass spectrometry]. Se Pu 2021; 39:889-895. [PMID: 34212589 PMCID: PMC9404059 DOI: 10.3724/sp.j.1123.2021.02026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 11/25/2022] Open
Abstract
Domoic acid (DA) can poison or even be fatal to marine mammals, and poses a potential risk to human health via transmission through the food chain. The level of DA in seawater will affect the safety of seafood. Therefore, a powerful method for the detection of DA in seawater, especially in the coastal mariculture zone, is needed. In order to identify different concentration levels of DA in real seawater, in this study, a method was established for the determination of trace DA in seawater by SPE-LC-MS/MS. First, the LC-MS/MS instrument and sample pretreatment conditions were optimized. Subsequently, DA was separated on a 5 TC-C18 (2) analytical column (150 mm×4.6 mm, 5 μm), and multiple reaction monitoring (MRM) was conducted in the positive electrospray ionization mode. For off-line SPE, the HLB cartridge could enrich DA in seawater. The best enrichment of DA was obtained after adding 0.32 mL formic acid to an 80.0 mL seawater sample. Four on-line SPE columns from Agilent, namely, 5 TC-C18(2) (12.5 mm×4.6 mm, 5 μm), Zorbax Eclipse Plus-C18 (12.5 mm×2.1 mm, 5 μm), Zorbax Eclipse XDB-C8 (12.5 mm×2.1 mm, 5 μm), and PLRP-S (12.5 mm×2.1 mm, 15-20 μm), were tested to determine their suitability to trap DA from seawater samples. The 5 TC-C18 (2) column offered the best retention ability and good peak shape of DA, and was selected as the on-line SPE column. Validation was then performed to assess the sensitivity, linearity, matrix effects (MEs), recoveries, and precisions of the proposed method. After simple treatment of the seawater samples by filtration and acidification, 0.6 mL of the seawater sample was injected directly for on-line SPE-LC-MS/MS. The linearity was good, and ranged from 10.0 to 500.0 ng/L (correlation coefficient R2=0.9992). The limit of detection (LOD) and limit of quantification (LOQ) of DA were 4.0 and 10.0 ng/L, respectively, with good recovery (≥81.0%) and precision (RSDs≤4.2%) at three spiked levels in the blank seawater samples. After the DA in the 80.0 mL seawater sample was enriched by off-line SPE, a 0.6 mL sample was injected for on-line SPE-LC-MS/MS. The DA in the spiked blank seawater sample showed a good linear relationship in the range of 0.3-50.0 ng/L (R2=0.9990). The LOD and LOQ were 0.1 and 0.3 ng/L, respectively. The recoveries of DA at low, medium, and high spiked levels in the blank seawater samples were all ≥69.2%, and the RSDs were ≤4.4%. The MEs of DA with both methods were 18.3% and 13.7%, respectively, indicating that the ME was mild enough to be negligible. In summary, the proposed method is simple, sensitive, robust, and powerful for the detection of DA in inshore and offshore seawater.
Collapse
|
9
|
Zhang Z, Rui L, Lin Y, Zhang H, Ou J, He J, Wu Q. Preparation of ordered macroporous molecularly imprinted polymers and their applications in purifying cinchona alkaloids from cinchona extract. POLYM INT 2021. [DOI: 10.1002/pi.6205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zhi‐Yuan Zhang
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Li‐Li Rui
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Ya‐Li Lin
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Hui‐Dan Zhang
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Ji‐Ming Ou
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Jian‐Feng He
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| | - Quan‐Zhou Wu
- School of Pharmaceutical Sciences Guangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
10
|
Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115923] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Chen J, Zhao W, Tan L, Wang J, Li H, Wang J. Separation and detection of trace atrazine from seawater using dummy-template molecularly imprinted solid-phase extraction followed by high-performance liquid chromatography. MARINE POLLUTION BULLETIN 2019; 149:110502. [PMID: 31425841 DOI: 10.1016/j.marpolbul.2019.110502] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
A novel sample pretreatment strategy for separation and detection of atrazine from seawater was established with molecular imprinting solid-phase extraction (MISPE). Cyromazine was used as dummy-template based on computational analysis to synthesize dummy-template molecularly imprinted polymers (DMIPs) as sorbent of MISPE for atrazine analysis. The DMIPs were irregular loose porous layered structure characterized by scanning electron microscopy and showed higher binding capacity than non-imprinted polymers through adsorption experiments. An offline MISPE procedure using DMIPs as sorbent coupled with high-performance liquid chromatograph was developed for separation and purification of atrazine from seawater samples. The recoveries of atrazine in the spiked seawater samples ranged from 86.7% to 98.6%, and the relative standard deviation was less than 4.07% (n = 3) under optimal conditions indicating that the proposed method was suitable for the detection of trace residual atrazine in seawater. In addition, no atrazine was detected in three seawater samples from Jiaozhou bay, China.
Collapse
Affiliation(s)
- Jianlei Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Weihong Zhao
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Junfu Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Huiping Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, PR China.
| |
Collapse
|
12
|
Zhou T, Che G, Ding L, Sun D, Li Y. Recent progress of selective adsorbents: From preparation to complex sample pretreatment. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115678] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Huang Z, He J, Li Y, Wu C, You L, Wei H, Li K, Zhang S. Preparation of dummy molecularly imprinted polymers for extraction of Zearalenone in grain samples. J Chromatogr A 2019; 1602:11-18. [DOI: 10.1016/j.chroma.2019.05.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 01/06/2023]
|
14
|
Li H, Chen J, Tan L, Wang J. Solid-phase extraction using a molecularly imprinted polymer for the selective purification and preconcentration of norfloxacin from seawater. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1628245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Huiping Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jianlei Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
15
|
Chen J, Wang J, Tan L. Highly selective separation and detection of cyromazine from seawater using graphene oxide based molecularly imprinted solid-phase extraction. J Sep Sci 2019; 42:2100-2106. [PMID: 30964224 DOI: 10.1002/jssc.201900232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 01/14/2023]
Abstract
A novel molecularly imprinted polymer based on graphene oxide was prepared as a solid-phase extraction adsorbent for the selective adsorption and extraction of cyromazine from seawater samples. The obtained graphene oxide molecularly imprinted polymer and non-imprinted polymer were nanoparticles and characterized by scanning electron microscopy. The imprinted polymer showed higher adsorption capacity and better selectivity than non-imprinted polymer, and the maximum adsorption capacity was 14.5 mg/g. The optimal washing and elution solvents for molecularly imprinted solid phase extraction procedure were 2 mL of acetonitrile/water (80:20, v/v) and methanol/acetic acid (70:30, v/v), respectively. The recoveries of cyromazine in the spiked seawater samples were in the range of 90.3-104.1%, and the relative standard deviation was <5% (n = 3) under the optimal procedure and detection conditions. The limit of detection of the proposed method was 0.7 μg/L, and the limit of quantitation was 2.3 μg/L. Moreover, the imprinted polymer could keep high adsorption capacity for cyromazine after being reused six times at least. Finally, the synthesized graphene oxide molecularly imprinted polymer was successfully used as a satisfied sorbent for high selectivity separation and detection of cyromazine from seawater coupled with high-performance liquid chromatography.
Collapse
Affiliation(s)
- Jianlei Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, P. R. China
| |
Collapse
|
16
|
Preparation of molecularly imprinted hybrid monoliths for the selective detection of fluoroquinolones in infant formula powders. J Chromatogr A 2019; 1588:33-40. [DOI: 10.1016/j.chroma.2018.12.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023]
|
17
|
Zhang J, Chen Y, Wu W, Wang Z, Chu Y, Chen X. Hollow porous dummy molecularly imprinted polymer as a sorbent of solid-phase extraction combined with accelerated solvent extraction for determination of eight bisphenols in plastic products. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
Lewis NI, Bates SS, Quilliam MA. Production of domoic acid from large-scale cultures of Pseudo-nitzschia multiseries: A feasibility study. HARMFUL ALGAE 2018; 79:58-63. [PMID: 30420017 DOI: 10.1016/j.hal.2018.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 06/09/2023]
Abstract
The commercial demand for domoic acid (DA), the phycotoxin responsible for Amnesic Shellfish Poisoning, is currently met by extraction from a diminishing supply of stockpiled contaminated mussels (Mytilus edulis). As this supply becomes scarce, a more reliable source is needed. Purification of the toxin from an algal source would be easier and more economical than from shellfish tissue if algal growth and yield of toxin were maximized. This project was initiated to determine if DA could be produced using large-scale semi-continuous algal cultures, which should reduce labour and shorten the time required for biomass production. Pseudo-nitzschia multiseries was grown in 300-L fibreglass photobioreactors called a Brite-Box™. The effect of temperature and nutrient depletion on the yield of DA by P. multiseries was examined. A decline in maximum cell number without a substantial increase in cellular DA was associated with increased temperature. Maximum total cellular DA (8.8 pg cell-1) was achieved at 20 °C. Semi-continuous culture of P. multiseries is accompanied by increasing amounts of DA lost to the medium. The process was deemed to be feasible for growing P. multiseries but methods to recover this extracellular DA are necessary for this process to be economical.
Collapse
Affiliation(s)
- Nancy I Lewis
- National Research Council Canada, Measurement Science and Standards, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada.
| | - Stephen S Bates
- Fisheries and Oceans Canada, Gulf Fisheries Centre, P.O. Box 5030, Moncton, New Brunswick, E1C 9B6, Canada.
| | - Michael A Quilliam
- National Research Council Canada, Measurement Science and Standards, 1411 Oxford Street, Halifax, Nova Scotia, B3H 3Z1, Canada.
| |
Collapse
|
19
|
Madikizela LM, Ncube S, Chimuka L. Recent Developments in Selective Materials for Solid Phase Extraction. Chromatographia 2018. [DOI: 10.1007/s10337-018-3644-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Ao J, Gu J, Yuan T, Li D, Ma Y, Shen Z. Applying molecular modelling and experimental studies to develop molecularly imprinted polymer for domoic acid enrichment from both seawater and shellfish. CHEMOSPHERE 2018; 199:98-106. [PMID: 29433033 DOI: 10.1016/j.chemosphere.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
A highly selective sample cleanup method using molecularly imprinted polymers (MIP) was developed for the enrichment of domoic acid (DA, an amnesic shellfish toxin) from both seawater and shellfish samples. Molecular modelling was firstly applied to screening a suitable functional monomer and optimize the polymer preparation. Theoretical results were in a good agreement with those of the experimental studies. MIP was prepared by precipitation polymerization using 1, 3, 5-pentanetricarboxylic acid and 2-(Trifluoromethyl)acrylic acid as the template molecule and functional monomer, respectively. The morphology and molecular structure of MIP were revealed by scanning electron microscope (SEM) and fourier transform infrared spectroscopy (FTIR), respectively. The obtained MIP showed high affinity and selectivity for DA with binding site numbers of 0.875 mg g-1 and an average association constant of 0.219 L mg-1 evaluated by adsorption experiments. The developed molecularly imprinted solid-phase extraction (MISPE) column achieved satisfied adsorption rate (99.2%) and recovery (71.2%) with relative standard deviation (RSD) less than 1.0%, which is more stable and precise than the C18, SAX, and HLB columns. Finally, the determination method for DA in both seawater and shellfish samples was then successfully established and validated using MISPE coupled with high-performance liquid chromatography-ultraviolet detection (HPLC-UV). The method limit of detection was 20 μg L-1 and 50 μg kg-1 for seawater and shellfish, respectively. This study demonstrates that molecular modelling is a useful tool to screening functional monomer and optimize polymer preparation. It provides an innovative polymer for trace DA monitoring in both seawater and shellfish.
Collapse
Affiliation(s)
- Junjie Ao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaping Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Dan Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuning Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhemin Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
21
|
Guo P, Zhang J, Chen X, Zhao L. Preparation of dummy template-imprinted polymers for the rapid extraction of nonsteroidal anti-inflammatory drugs residues in aquatic environmental samples. Biomed Chromatogr 2018; 32:e4193. [DOI: 10.1002/bmc.4193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/12/2017] [Accepted: 01/10/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Ping Guo
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Jingjing Zhang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Xiaohui Chen
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Longshan Zhao
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| |
Collapse
|
22
|
Dummy-surface molecularly imprinted polymers as a sorbent of micro-solid-phase extraction combined with dispersive liquid–liquid microextraction for determination of five 2-phenylpropionic acid NSAIDs in aquatic environmental samples. Anal Bioanal Chem 2017; 410:373-389. [DOI: 10.1007/s00216-017-0727-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/29/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022]
|