1
|
Han J, Liu J, Lu H, Guo K, Zhang F, Guo S, Su X, Dong S, Sun J, Feng J, An T. Optimization, validation, and implementation of a new method for detecting liquid crystal monomers in dust using GC-MS/MS with atmospheric pressure chemical ionization. Anal Chim Acta 2025; 1354:344002. [PMID: 40253070 DOI: 10.1016/j.aca.2025.344002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/12/2025] [Accepted: 03/30/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Liquid crystal monomers (LCMs) are a new class of emerging pollutants. To assess their occurrence, behaviour, and potential risks, a sensitive and selective analytical method is required for the determination of LCMs at trace levels in multiple environmental media. Toward this end, an improved GC-MS/MS method was developed and validated for the quantification of LCMs. RESULTS The method integrates atmospheric pressure chemical ionization (APCI) with GC-MS/MS. Under optimal instrumental conditions, the instrument quantification limits of LCMs reached as low as 0.02 pg·injection-1, which can be attributed to the generation of high-abundance molecular ions/quasi-molecular ions under APCI. Compared to previously published methods, the developed method in this study reduces the method detection limits of LCMs by approximately 1-38.7 times, enabling the analysis of LCMs at concentrations as low as 0.02 ng·g-1 in dust samples. This improved approach was applied to both indoor and outdoor dust samples. The concentrations of LCMs obtained in this study are consistent with those reported in previous research, demonstrating high detection frequencies of fluorinated LCMs and their predominance in dust. SIGNIFICANCE The developed method in this study is not only applicable to dust samples but also readily extends to other environmental matrices, thereby facilitating the investigation of the occurrence, origin, and migration of LCMs in various environments.
Collapse
Affiliation(s)
- Jing Han
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China
| | - Jun Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China
| | - Huiyuan Lu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China
| | - Kehan Guo
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China
| | - Fei Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China
| | - Shujie Guo
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China
| | - Xianfa Su
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China
| | - Shuying Dong
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China
| | - Jianhui Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China
| | - Jinglan Feng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Zuo P, Wang C, Li Z, Lu D, Xian H, Lu H, Dong Y, Yang R, Li Y, Pei Z, Zhang Q. PM 2.5-bound polyhalogenated carbazoles (PHCZs) in urban Beijing, China: Occurrence and the source implication. J Environ Sci (China) 2023; 131:59-67. [PMID: 37225381 DOI: 10.1016/j.jes.2022.10.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 05/26/2023]
Abstract
Polyhalogenated carbazoles (PHCZs) are recently raising much attention due to their toxicity and ubiquitous environmental distribution. However, little knowledge is known about their ambient occurrences and the potential source. In this study, we developed an analytical method based on GC-MS/MS to simultaneously determine 11 PHCZs in PM2.5 from urban Beijing, China. The optimized method provided low method limit of quantifications (MLOQs, 1.45-7.39 fg/m3) and satisfied recoveries (73.4%-109.5%). This method was applied to analyze the PHCZs in the outdoor PM2.5 (n = 46) and fly ash (n = 6) collected from 3 kinds of surrounding incinerator plants (steel plant, medical waste incinerator and domestic waste incinerator). The levels of ∑11PHCZs in PM2.5 ranged from 0.117 to 5.54 pg/m3 (median 1.18 pg/m3). 3-chloro-9H-carbazole (3-CCZ), 3-bromo-9H-carbazole (3-BCZ), and 3,6-dichloro-9H-carbazole (36-CCZ) were the dominant compounds, accounting for 93%. 3-CCZ and 3-BCZ were significantly higher in winter due to the high PM2.5 concentration, while 36-CCZ was higher in spring, which may be related to the resuspending of surface soil. Furthermore, the levels of ∑11PHCZs in fly ash ranged from 338 to 6101 pg/g. 3-CCZ, 3-BCZ and 36-CCZ accounted for 86.0%. The congener profiles of PHCZs between fly ash and PM2.5 were highly similar, indicating that combustion process could be an important source of ambient PHCZs. To the best of our knowledge, this is the first research providing the occurrences of PHCZs in outdoor PM2.5.
Collapse
Affiliation(s)
- Peijie Zuo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zengwei Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Xian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huili Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yin Dong
- The People's Hospital of Yuhuan, Yuhuan 317600, China.
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
3
|
Ayala-Cabrera JF, Montero L, Meckelmann SW, Uteschil F, Schmitz OJ. Review on atmospheric pressure ionization sources for gas chromatography-mass spectrometry. Part II: Current applications. Anal Chim Acta 2022; 1238:340379. [DOI: 10.1016/j.aca.2022.340379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
|
4
|
Lyu B, Zhang X, Li J, Zhang L, Zhong Y, Wu Y. Determination of Polychlorinated Dibenzo-p-Dioxins and Furans in Food Samples by Gas Chromatography-Triple Quadrupole Mass Spectrometry (GC-MS/MS) and Comparison with Gas Chromatography-High Resolution Mass Spectrometry (GC-HRMS). J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Zhao X, Yang X, Du Y, Li R, Zhou T, Wang Y, Chen T, Wang D, Shi Z. Polybrominated diphenyl ethers in serum from residents living in a brominated flame retardant production area: Occurrence, influencing factors, and relationships with thyroid and liver function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116046. [PMID: 33333402 DOI: 10.1016/j.envpol.2020.116046] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 10/06/2020] [Indexed: 06/12/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been used as flame retardants (FRs) in China for decades, even after they were identified as persistent organic pollutants. In this study, serum samples were collected from 172 adults without occupational exposure who were residents of a well-known FR production region (Laizhou Bay, north China), and PBDE congeners were measured to assess their occurrence, congener profile and influencing factors in serum. Moreover, the relationships between serum concentrations of PBDEs and thyroid/liver function indicators were analyzed to evaluate whether human exposure to PBDEs would lead to thyroid/liver injury. All 8 PBDE congeners were detected at higher frequencies and serum concentrations than those found in general populations. The median levels of ∑PBDEs, BDE-209 and ∑3-7PBDEs (sum of tri-to hepta-BDEs) were 64.5, 56.9 and 7.2 ng/g lw (lipid weight), respectively, which indicated that deca-BDE was the primarily produced PBDE in Laizhou Bay and that the lower brominated BDEs were still ubiquitous in the environment. Gender was a primary influencing factor for some BDE congeners in serum; their levels in female serum samples were significantly lower than those in male serum samples. Serum PBDE levels showed a downward trend with increased body mass index (BMI), which might reflect the increasing serum lipid contents. Serum levels of some BDE congeners were significantly positively correlated with certain thyroid hormones and antibodies, including free triiodothyronine (fT3), total triiodothyronine (tT3), total thyroxine (tT4) and thyroid peroxidase antibody (TPO-Ab). Levels of some congeners were significantly negatively correlated with some types of serum lipid, including cholesterol (CHOL), low density lipoprotein (LDL) and total triglyceride (TG). Other than serum lipids, only two liver function indicators, total protein (TP) and direct bilirubin (DBIL), were significantly correlated with certain BDE congeners (BDE-100 and BDE-154). Our results provide new evidence on the thyroid-disrupting and hepatotoxic effects of PBDEs.
Collapse
Affiliation(s)
- Xuezhen Zhao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiaodi Yang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yinglin Du
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Renbo Li
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Tao Zhou
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Yuwei Wang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Tian Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Dejun Wang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China.
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
6
|
Niu Y, Liu J, Yang R, Zhang J, Shao B. Atmospheric pressure chemical ionization source as an advantageous technique for gas chromatography-tandem mass spectrometry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Feasibility of gas chromatography-atmospheric pressure photoionization–high-resolution mass spectrometry for the analysis of polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in environmental and feed samples. Anal Bioanal Chem 2020; 412:3703-3716. [DOI: 10.1007/s00216-020-02615-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
|
8
|
Guo W, Pan B, Sakkiah S, Yavas G, Ge W, Zou W, Tong W, Hong H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4361. [PMID: 31717330 PMCID: PMC6888492 DOI: 10.3390/ijerph16224361] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Abstract
Persistent organic pollutants (POPs) present in foods have been a major concern for food safety due to their persistence and toxic effects. To ensure food safety and protect human health from POPs, it is critical to achieve a better understanding of POP pathways into food and develop strategies to reduce human exposure. POPs could present in food in the raw stages, transferred from the environment or artificially introduced during food preparation steps. Exposure to these pollutants may cause various health problems such as endocrine disruption, cardiovascular diseases, cancers, diabetes, birth defects, and dysfunctional immune and reproductive systems. This review describes potential sources of POP food contamination, analytical approaches to measure POP levels in food and efforts to control food contamination with POPs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huixiao Hong
- U.S. Food & Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA; (W.G.); (B.P.); (S.S.); (G.Y.); (W.G.); (W.Z.); (W.T.)
| |
Collapse
|
9
|
Gottardo R, Sorio D, Ballotari M, Tagliaro F. First application of atmospheric-pressure chemical ionization gas chromatography tandem mass spectrometry to the determination of cannabinoids in serum. J Chromatogr A 2019; 1591:147-154. [PMID: 30679047 DOI: 10.1016/j.chroma.2019.01.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 02/08/2023]
Abstract
The analysis of cannabinoids in blood samples is still a challenging issue for forensic laboratories, because of the low concentrations to be determined to prove that a person acted under CannabisTherefore, sensitive analytical techniques are required. This study presents the development and validation of a novel APGC-MS/MS method for the simultaneous determination of Δ9-tetrahydrocannabinol (THC), 11-hydroxy- Δ9-THC (THC-OH), 11-nor-9-carboxy- Δ9-THC (THCA), cannabidiol (CBD), cannabidiol acid (CBDA) and cannabigerol (CBG) in human serum. The developed method was fully validated according to international guidelines, with evaluation of selectivity, precision, accuracy, linearity, LODs and LOQs, extraction recovery and matrix effect. The method was linear in the range 0.2-25 ng/mL for THC, THC-OH, CBD and CBG, while for THCA and CBDA linearity was assessed in the range of 0.8-100 ng/mL and 3-100 ng/mL, respectively. The LOQs were determined in 0.2 ng/mL for THC, 0.4 ng/mL for THC-OH, 0.8 ng/mL for CBD and CBG, 1.6 ng/mL for THCA and 3 ng/mL for CBDA. The method was applied to the analysis of 15 serum samples from DUID cases. To the best of our knowledge, the present work is the first one describing an application of APGC source in the field of forensic toxicology.
Collapse
Affiliation(s)
- Rossella Gottardo
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Piazzale L. A. Scuro 10, Verona, Italy.
| | - Daniela Sorio
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Piazzale L. A. Scuro 10, Verona, Italy
| | - Marco Ballotari
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Piazzale L. A. Scuro 10, Verona, Italy
| | - Franco Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Piazzale L. A. Scuro 10, Verona, Italy; Institute Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya Street, Moscow, Russian Federation
| |
Collapse
|
10
|
Wang Y, Sun Y, Chen T, Shi Z, Zhou X, Sun Z, Zhang L, Li J. Determination of polybrominated diphenyl ethers and novel brominated flame retardants in human serum by gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1099:64-72. [PMID: 30243115 DOI: 10.1016/j.jchromb.2018.09.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 11/18/2022]
Abstract
The accurate detection of brominated flame retardants (BFRs) in humans is an area of high scientific interest and regulatory need due to their potential toxicity. The instrumental analysis of BFRs was commonly performed on gas chromatography-mass spectrometry (GC-MS) operating in electron ionization (EI) or negative chemical ionization (NCI) modes. However, soft ionization techniques, such as atmospheric pressure chemical ionization (APCI), may be more suitable for the analysis of BFRs because the BFRs show high fragmentation in EI and low selectivity in NCI. Additionally, accurate quantifications of BFRs in complex matrices is challenging due to their low concentrations and therefore, a highly sensitive technique is desperately needed. In this study, a new methodology based on gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (GC-APCI-MS/MS) analysis was developed for the determination of thirteen BFRs (eight usually monitored polybrominated diphenyl ethers (PBDEs) congeners and five additional novel BFRs) in human serum. The primary task was to evaluate the potential of the GC-APCI-MS/MS technique for the trace analysis of BFRs in human serum. The results of the spiked recovery test using fetal bovine serum showed that mean recoveries of the analytes ranged from 83.4% to 118% with reduced swing differential signaling (RSDs) of ≤21.1%. The methodological limits of detection (mLOD) of the analytes ranged from 0.04 to 30 pg/mL, and these values were at least one order of magnitude lower than those estimated by the authors in a previous study using GC-NCI-MS or GC-EI-MS/MS, indicating that GC-APCI-MS/MS is more sensitive. Specially, compared to GC-NCI-MS and GC-EI-MS/MS, when GC-APCI-MS/MS was used for the detection of highly brominated BFRs, such as BDE-209 and decabromodiphenyl ethane (DBDPE), a notable improvement in sensitivity and reliability was obtained using a deactivated capillary column connected to the analytical column as the transfer line and maintaining a high temperature to improve the chromatographic behaviors. The developed methodology was successfully used for the analysis of BFRs in human serum collected from residents living in a BFR production area and Beijing.
Collapse
Affiliation(s)
- Yuwei Wang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yanmin Sun
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Tian Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Xianqing Zhou
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lei Zhang
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, and China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| |
Collapse
|