1
|
Kumar R, Thakur A, Kumar S, Hajam YA. Royal jelly a promising therapeutic intervention and functional food supplement: A systematic review. Heliyon 2024; 10:e37138. [PMID: 39296128 PMCID: PMC11408027 DOI: 10.1016/j.heliyon.2024.e37138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Royal jelly (RJ), a secretion produced by honeybees, has garnered significant interest for its potential as a therapeutic intervention and functional food supplement. This systematic review aims to synthesize current research on the health benefits, bioactive components, and mechanisms of action of RJ. Comprehensive literature searches were conducted across multiple databases, including PubMed, Scopus, and Web of Science, focusing on studies published from 2000 to 2024 (April). Findings indicate that RJ exhibits a wide range of pharmacological activities, including anti-inflammatory, antioxidant, antimicrobial, and anti-aging effects. Beneficial biological properties of RJ might be due to the presence of flavonoids proteins, peptides, fatty acids. Both preclinical and clinical studies have reported that RJ improves the immune function such as wound healing, and also decreases the severity of chronic diseases including diabetes and cardiovascular disorders. The molecular mechanisms underlying these effects involve modulation of signalling pathways such as NF-κB, MAPK, and AMPK. Despite promising results, the review identifies several gaps in the current knowledge, including the need for standardized dosing regimens and long-term safety assessments. Furthermore, variations in RJ composition due to geographic and botanical factors necessitate more rigorous quality control measures. This review underscores the potential of RJ as a multifunctional therapeutic agent and highlights the necessity for further well designed studies to fully elucidate its health benefits and optimize its use as a functional food supplement.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department Biosciences, Himachal University, Shimla, Himachal Pradesh-171005, India
| | - Ankita Thakur
- Department Biosciences, Himachal University, Shimla, Himachal Pradesh-171005, India
| | - Suresh Kumar
- Department Biosciences, Himachal University, Shimla, Himachal Pradesh-171005, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab -144030, India
| |
Collapse
|
2
|
Chen D, Guo C, Lu W, Zhang C, Xiao C. Rapid quantification of royal jelly quality by mid-infrared spectroscopy coupled with backpropagation neural network. Food Chem 2023; 418:135996. [PMID: 37001352 DOI: 10.1016/j.foodchem.2023.135996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/07/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023]
Abstract
Royal jelly is rich in nutrients but its quality is greatly affected by storage conditions. To determine the quality of royal jelly accurately and quickly, a qualitative discrimination model was established based on the fusion of conventional parameters and mid-infrared spectrum, using support vector machine. The prediction models for three representative quality parameters were developed by the backpropagation neural network with various algorithms. The results demonstrated that the recognition rate of the multi-source information fusion model was increased to 100% when compared with that of the spectral data preprocessed by Savitzky-golay smoothing (95.83%). The mean square errors of the constructed model for moisture, water-soluble protein, and total sugar were 0.0032, 0.0058, and 0.0069, respectively. The constructed model had an ensured accuracy for the calibration set, with the correlation coefficient of prediction maintained at 0.9353, 0.9533, and 0.9563, which could meet the requirement of non-destructive rapid detection of royal jelly quality.
Collapse
|
3
|
Organic acids and their derivatives: minor components of bee pollen, bee bread, royal jelly and bee venom. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Ma C, Ma B, Li J, Fang Y. Changes in chemical composition and antioxidant activity of royal jelly produced at different floral periods during migratory beekeeping. Food Res Int 2022; 155:111091. [PMID: 35400464 DOI: 10.1016/j.foodres.2022.111091] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Abstract
Over 90% of global royal jelly (RJ), a functional food with various health benefits, is produced in China mainly by migratory beekeeping of a high RJ-producing honeybee (RJB) strain. To explore quality changes of RJ produced by migratory RJBs at different floral periods, we performed metabolomics and proteomics analysis and assessed RJ antioxidant activity. Overall, the RJ metabolic and proteomic profiles were observed to vary with floral periods. Minor sugars (raffinose, erlose, and sucrose) and major RJ protein 5 (MRJP5) were identified among the discriminating components mainly contributing to the altered profiles. Water, crude protein, and the trans-10-hydroxy-2-decenoic acid (10-HDA) content fulfill the requirements of the International Organization for Standardization regardless of floral periods. Notably, the 10-HDA content increased 11.05%-19.65% during tea blooming. Moreover, changes in antioxidants resulted in significant difference in RJ antioxidant activity. The integrated omics data provide a detailed view of chemical composition for RJ quality evaluation.
Collapse
Affiliation(s)
- Chuan Ma
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Beibei Ma
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jianke Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yu Fang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Dimitrakopoulou ME, Vantarakis A. Does Traceability Lead to Food Authentication? A Systematic Review from A European Perspective. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Apostolos Vantarakis
- Department of Public Health, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
6
|
Theodoridis G, Pechlivanis A, Thomaidis NS, Spyros A, Georgiou CA, Albanis T, Skoufos I, Kalogiannis S, Tsangaris GT, Stasinakis AS, Konstantinou I, Triantafyllidis A, Gkagkavouzis K, Kritikou AS, Dasenaki ME, Gika H, Virgiliou C, Kodra D, Nenadis N, Sampsonidis I, Arsenos G, Halabalaki M, Mikros E. FoodOmicsGR_RI. A Consortium for Comprehensive Molecular Characterisation of Food Products. Metabolites 2021; 11:74. [PMID: 33513809 PMCID: PMC7911248 DOI: 10.3390/metabo11020074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The national infrastructure FoodOmicsGR_RI coordinates research efforts from eight Greek Universities and Research Centers in a network aiming to support research and development (R&D) in the agri-food sector. The goals of FoodOmicsGR_RI are the comprehensive in-depth characterization of foods using cutting-edge omics technologies and the support of dietary/nutrition studies. The network combines strong omics expertise with expert field/application scientists (food/nutrition sciences, plant protection/plant growth, animal husbandry, apiculture and 10 other fields). Human resources involve more than 60 staff scientists and more than 30 recruits. State-of-the-art technologies and instrumentation is available for the comprehensive mapping of the food composition and available genetic resources, the assessment of the distinct value of foods, and the effect of nutritional intervention on the metabolic profile of biological samples of consumers and animal models. The consortium has the know-how and expertise that covers the breadth of the Greek agri-food sector. Metabolomics teams have developed and implemented a variety of methods for profiling and quantitative analysis. The implementation plan includes the following research axes: development of a detailed database of Greek food constituents; exploitation of "omics" technologies to assess domestic agricultural biodiversity aiding authenticity-traceability control/certification of geographical/genetic origin; highlighting unique characteristics of Greek products with an emphasis on quality, sustainability and food safety; assessment of diet's effect on health and well-being; creating added value from agri-food waste. FoodOmicsGR_RI develops new tools to evaluate the nutritional value of Greek foods, study the role of traditional foods and Greek functional foods in the prevention of chronic diseases and support health claims of Greek traditional products. FoodOmicsGR_RI provides access to state-of-the-art facilities, unique, well-characterised sample sets, obtained from precision/experimental farming/breeding (milk, honey, meat, olive oil and so forth) along with more than 20 complementary scientific disciplines. FoodOmicsGR_RI is open for collaboration with national and international stakeholders.
Collapse
Affiliation(s)
- Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Alexandros Pechlivanis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.S.T.); (A.S.K.); (M.E.D.)
| | - Apostolos Spyros
- Department of Chemistry, University of Crete, Voutes Campus, 71003 Heraklion, Greece;
| | - Constantinos A. Georgiou
- Chemistry Laboratory, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Triantafyllos Albanis
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.A.); (I.K.)
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece;
| | - Stavros Kalogiannis
- Department of Nutritional Sciences & Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece; (S.K.); (I.S.)
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | | | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (T.A.); (I.K.)
| | - Alexander Triantafyllidis
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Gkagkavouzis
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
- Department of Genetics, Development and Molecular Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia S. Kritikou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.S.T.); (A.S.K.); (M.E.D.)
| | - Marilena E. Dasenaki
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, 15771 Athens, Greece; (N.S.T.); (A.S.K.); (M.E.D.)
| | - Helen Gika
- Department of Medicine, Laboratory of Forensic Medicine & Toxicology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Christina Virgiliou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Dritan Kodra
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (C.V.); (D.K.)
- Biomic_Auth, Bioanalysis and Omics Laboratory, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (A.T.); (K.G.)
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioannis Sampsonidis
- Department of Nutritional Sciences & Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece; (S.K.); (I.S.)
| | - Georgios Arsenos
- Department of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Maria Halabalaki
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (M.H.); (E.M.)
| | - Emmanuel Mikros
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (M.H.); (E.M.)
| | | |
Collapse
|
7
|
Metabolic profiling unravels the effects of enhanced output and harvesting time on royal jelly quality. Food Res Int 2020; 139:109974. [PMID: 33509520 DOI: 10.1016/j.foodres.2020.109974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 11/09/2020] [Accepted: 11/22/2020] [Indexed: 12/17/2022]
Abstract
Royal jelly (RJ), a natural secretion of nurse bees, is a functional food with health-promoting properties. To investigate RJ quality changes with enhanced output and harvesting time, we compared metabolic profiles of RJ harvested at 24 h, 48 h, and 72 h after larval grafting into queen cells from Italian bees (ITBs) and high RJ-producing bees (RJBs) selected from ITBs. A total of 77 high-abundance compounds were identified with reverse-phase liquid chromatography- and hydrophilic interaction liquid chromatography-high-resolution mass spectrometry. Metabolite abundance, water content, and antibacterial activity were found largely unchanged between both bee strains, indicating that a similar RJ quality was achieved. Notably, the observed 10-hydroxy-2-decenoic acid content in RJBs (1.98%) and ITBs (2.41%) meet the standard for premium RJ in China. RJ harvested at 48 h and 72 h had similar metabolic profiles, indicating little influence of the two harvesting times on RJ quality. The harvesting at 24 h could lead to a higher RJ quality with higher abundance levels of many bioactive compounds and lower water content. Our data based mainly on RJ metabolic composition constitute evidence for mass production of high-quality RJ.
Collapse
|
8
|
Virgiliou C, Kanelis D, Pina A, Gika H, Tananaki C, Zotou A, Theodoridis G. A targeted approach for studying the effect of sugar bee feeding on the metabolic profile of Royal Jelly. J Chromatogr A 2019; 1616:460783. [PMID: 31952813 DOI: 10.1016/j.chroma.2019.460783] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/12/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Royal Jelly (RJ) constitutes one of the most popular beehive products and for this reason the use of inexpensive sweeteners during its production remains an important quality issue. In the present study we report results of metabolic profiling of RJ samples obtained after the application of artificial bee-feeding using different feeding protocols. The hydrophilic content of RJ samples was assessed by applying (HILIC)UPLC-MS/MS. In total 96 crude RJ samples were analysed with the developed method. Multivariate statistical analysis revealed clear differentiation between the RJ samples obtained from control (non-fed) bees and samples obtained after feeding. In total 27 out of 57 detected molecules were statistically found to be significantly altered in the different comparisons. Among them some amino acids (e.g. tryptophan, lysine), amino acid derivatives (pyroglutamic acid), amines (cadaverine, TMAO, etc.), carbohydrates and vitamins were found as potential markers. The results of the study could be further used for the development of an LC-MS based analytical tool for RJ quality control assessment.
Collapse
Affiliation(s)
- Chistina Virgiliou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Buildings A & B, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Greece; FoodOmicsGR, Research Infrastructure, Aristotle University node, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Greece
| | - Dimitris Kanelis
- Laboratory of Apiculture-Sericulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54006, Greece
| | - Athanasia Pina
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Helen Gika
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Buildings A & B, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Greece; FoodOmicsGR, Research Infrastructure, Aristotle University node, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Greece; Department of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Chrysoula Tananaki
- FoodOmicsGR, Research Infrastructure, Aristotle University node, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Greece; Laboratory of Apiculture-Sericulture, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54006, Greece
| | - Anastasia Zotou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; FoodOmicsGR, Research Infrastructure, Aristotle University node, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Greece
| | - Georgios Theodoridis
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Buildings A & B, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Greece; FoodOmicsGR, Research Infrastructure, Aristotle University node, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Greece.
| |
Collapse
|
9
|
Zheng G, Yang X, Chen B, Chao Y, Hu P, Cai Y, Wu B, Wei M. Identification and determination of chemical constituents of Citrus reticulata semen through ultra high performance liquid chromatography combined with Q Exactive Orbitrap tandem mass spectrometry. J Sep Sci 2019; 43:438-451. [PMID: 31654554 DOI: 10.1002/jssc.201900641] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/13/2019] [Accepted: 10/22/2019] [Indexed: 12/30/2022]
Abstract
Citrus reticulata semen, a traditional Chinese medicinal material, has desirable medicinal and dietary properties. In this study, a method combining ultra high performance liquid chromatography with Q Exactive Orbitrap tandem mass spectrometry was established and validated for the identification and analysis of the chemical components of C. reticulata semen for the first time. The evaluation of different retention times and fragmentation characteristics, as well as comparative analysis with the literature, resulted in the identification of 35 chemical constituents, including 21 flavonoids and 14 other compounds. The 21 flavonoids derived from C. reticulata semen were reported for the first time. Seven of the chemical components of C. reticulata semen were quantitatively analyzed using the developed method under the optimal conditions. The results showed that the content of limonin, hesperidin, nobiletin, synephrine, tangeretin, 3,5,6,7,8,3',4'-heptamethoxyflavone and 5-hydroxide-6,7,8,3',4'-pentamethoxyflavone in C. reticulata semen was 11.1666, 0.0404, 0.0092, 0.0255, 0.0087, 0.0010, and 0.0008 mg/g, respectively. This study demonstrated that the ultra high performance liquid chromatography Q Exactive Orbitrap mass spectrometry based method can be used to rapidly and reliably analyze the chemical constituents of C. reticulata semen. These results provide a scientific basis for further studies of C. reticulata semen.
Collapse
Affiliation(s)
- GuoDong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - XiuJuan Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - BaiZhong Chen
- Guangdong Xinbaotang Biological Technology Co., Ltd, Guangdong, Jiangmen, P. R. China
| | - YingXin Chao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - PingJun Hu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Bo Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - MinYan Wei
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
10
|
Kunugi H, Mohammed Ali A. Royal Jelly and Its Components Promote Healthy Aging and Longevity: From Animal Models to Humans. Int J Mol Sci 2019; 20:ijms20194662. [PMID: 31547049 PMCID: PMC6802361 DOI: 10.3390/ijms20194662] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Aging is a natural phenomenon that occurs in all living organisms. In humans, aging is associated with lowered overall functioning and increased mortality out of the risk for various age-related diseases. Hence, researchers are pushed to find effective natural interventions that can promote healthy aging and extend lifespan. Royal jelly (RJ) is a natural product that is fed to bee queens throughout their entire life. Thanks to RJ, bee queens enjoy an excellent reproductive function and lengthened lifespan compared with bee workers, despite the fact that they have the same genome. This review aimed to investigate the effect of RJ and/or its components on lifespan/healthspan in various species by evaluating the most relevant studies. Moreover, we briefly discussed the positive effects of RJ on health maintenance and age-related disorders in humans. Whenever possible, we explored the metabolic, molecular, and cellular mechanisms through which RJ can modulate age-related mechanisms to extend lifespan. RJ and its ingredients—proteins and their derivatives e.g., royalactin; lipids e.g., 10-hydroxydecenoic acid; and vitamins e.g., pantothenic acid—improved healthspan and extended lifespan in worker honeybees Apis mellifera, Drosophila Melanogaster flies, Gryllus bimaculatus crickets, silkworms, Caenorhabditis elegans nematodes, and mice. The longevity effect was attained via various mechanisms: downregulation of insulin-like growth factors and targeting of rapamycin, upregulation of the epidermal growth factor signaling, dietary restriction, and enhancement of antioxidative capacity. RJ and its protein and lipid ingredients have the potential to extend lifespan in various creatures and prevent senescence of human tissues in cell cultures. These findings pave the way to inventing specific RJ anti-aging drugs. However, much work is needed to understand the effect of RJ interactions with microbiome, diet, activity level, gender, and other genetic variation factors that affect healthspan and longevity.
Collapse
Affiliation(s)
- Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan.
| | - Amira Mohammed Ali
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan.
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria 21527, Egypt.
| |
Collapse
|