1
|
Sefid-Sefidehkhan Y, Mokhtari M, Mahmoodpoor A, Vaez-Gharamaleki Y, Khoubnasabjafari M, Afshar Moghaddam MR, Jouyban-Gharamaleki V, Dastmalchi S, Rahimpour E, Jouyban A. Efficient dispersive solid-phase extraction of methylprednisolone from exhaled breath of COVID-19 patients. RSC Adv 2023; 13:11457-11463. [PMID: 37063715 PMCID: PMC10090898 DOI: 10.1039/d2ra07902j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/28/2023] [Indexed: 04/18/2023] Open
Abstract
In the current study, bismuth ferrite nano-sorbent was synthesized and utilized as a sorbent for the dispersive solid-phase extraction of methylprednisolone from exhaled breath samples. The size and morphology of the nano-sorbent were characterized by X-ray diffraction analysis and scanning electron microscopy. Following its desorption with acetonitrile, methylprednisolone was quantified by a high-performance liquid chromatography-ultraviolet detector. Factors affecting the extraction of methylprednisolone were optimized. Under optimized experimental conditions, a linear relationship between the analytical signals and methylprednisolone concentration was obtained in the range of 0.001-0.2 μg mL-1 for exhaled breath condensate samples and 0.002-0.4 μg per filter for filter samples. A pre-concentration factor of 6.4-fold, corresponding to an extraction recovery of 96.0%, was achieved. The validated method was applied for the determination of methylprednisolone in real samples taken from the exhaled breath of COVID-19 patients under mechanical ventilation.
Collapse
Affiliation(s)
- Yasaman Sefid-Sefidehkhan
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
| | - Mehdi Mokhtari
- Immunology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Yosra Vaez-Gharamaleki
- Hematology - Oncology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | | | - Vahid Jouyban-Gharamaleki
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences Tabriz Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
2
|
Recent advances and applications of cyclodextrins in magnetic solid phase extraction. Talanta 2021; 229:122296. [PMID: 33838782 DOI: 10.1016/j.talanta.2021.122296] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
Cyclodextrins (CDs) as a family of cyclic oligosaccharides are toroidal with a hydrophobic interior and a hydrophilic exterior. They are well-known for their ability to form host-guest inclusion complexes with different compounds. They are used as chiral stationary phases in high performance liquid chromatography (HPLC) and gas chromatography (GC) or as chiral reagents in the background electrolyte of capillary electrophoresis (CE). In recent years, they have been used for modification of sorbents or as sorbents in solid phase extraction (SPE) procedures. Magnetic solid-phase extraction (MSPE), as a new type of SPE procedure, has received considerable attention due to its rapid phase separation process as compared to traditional extraction mode. This review covers the synthesis of CD-based magnetic sorbents (such as immobilization of CDs onto the different supports, production of nanosponges, and making hybrid substances with nanomaterials) and the use of these compounds in MSPE of different analytes from biological, environmental, and food samples. Also, prospects of CD-based sorbents for sample pre-treatment are also proposed.
Collapse
|
3
|
Xu L, Huang Y, Zhao B, Ren L, Long T. Determination of 2, 4-Dichlorophenol, 2, 4-Dinitrophenol, and Bisphenol a in River Water by Magnetic Solid-Phase Extraction (MSPE) Using β-Cyclodextrin Modified Magnetic Ferrite Microspheres and High-Performance Liquid Chromatography – Diode Array Detection (HPLC-DAD). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1932977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lanying Xu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou, China
| | - Yingying Huang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou, China
| | - Bingshan Zhao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou, China
| | - Limin Ren
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou, China
| | - Tao Long
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou, China
| |
Collapse
|
4
|
Mohamadi N, Sharififar F, Pournamdari M, Ansari M. Determination of trigonelline in human plasma by magnetic solid-phase extraction: a pharmacokinetic study. Nanomedicine (Lond) 2021; 16:323-333. [PMID: 33501838 DOI: 10.2217/nnm-2020-0365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To develop a novel method for the bioanalytical extraction of trigonelline (TRG) from human plasma samples using a magnetic nanocomposite and to evaluate its pharmacokinetic profile. Materials & methods: Magnetic bentonite/β-cyclodextrine (β-CD) nanoparticles, coupled with a validated ion-pairing reversed-phase high-performance liquid chromatography method, were used to determine TRG concentration from plasma samples following a single oral administration. Results: The developed reversed-phase high-performance liquid chromatography method was accurate, precise, specific, selective and reproducible. TRG showed rapid absorption, middle rate of elimination and mean residence time of ∼24 h. The data were best fitted on a two-compartment model in which tmax was 1.0 h, Cmax 0.115 μg/ml, area under the curve (AUC)0-24 1.72 μg/ml.h, Cl 0.0293 l/h/kg, t1/2α 0.79 h, t1/2β 13.68 h and ka 1.63 h-1. Conclusion: The findings of this study could provide useful information to promote the future study of TRG and aid optimal dose finding.
Collapse
Affiliation(s)
- Neda Mohamadi
- Herbal & Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Fariba Sharififar
- Herbal & Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Mostafa Pournamdari
- Department of Drug & Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Mehdi Ansari
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| |
Collapse
|
5
|
Rahimpour E, Alvani-Alamdari S, Jouyban A. A Comprehensive Review on Developed Pharmaceutical Analysis Methods by Iranian Analysts in 2018. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This article summarizes the publishing activities including bioanalytical and pharmaceutical analyses researches carried out in Iran in 2018 in order to connect academic researchers to those in industry, medical care units and hospitals. A wide spectrum of analytical methods has been used to determine and/or evaluate drug levels in the biological samples, based on physical, chemical and biochemical principles. We have compiled a concise survey of the literature covering 125 reports and tabulated the relevant analytical parameters. Chromatographic and electrochemical methods were found to be the technique of choice for many workers and almost 83% studies were performed by using these methods. This is the first annual review of the literature searching in SCOPUS database for published bioanalytical and pharmaceutical analysis researches in Iran.
Collapse
Affiliation(s)
- Elaheh Rahimpour
- harmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Alvani-Alamdari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- harmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Wang H, Yan S, Qu B, Liu H, Ding J, Ren N. Magnetic solid phase extraction using Fe 3O 4@β-cyclodextrin–lipid bilayers as adsorbents followed by GC-QTOF-MS for the analysis of nine pesticides. NEW J CHEM 2020. [DOI: 10.1039/d0nj01191f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A rapid method for the analysis of trace organochlorine pesticides in a complex matrix.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Shaowei Yan
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Bo Qu
- Department of Quality
- AVIC Aerodynamics Research Institute
- Harbin 150009
- China
| | - He Liu
- Jilin Province Environmental Monitoring Center
- Changchun 130011
- China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090
- China
| |
Collapse
|
7
|
Gentili A. Cyclodextrin-based sorbents for solid phase extraction. J Chromatogr A 2019; 1609:460654. [PMID: 31679713 DOI: 10.1016/j.chroma.2019.460654] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/20/2019] [Accepted: 10/23/2019] [Indexed: 11/28/2022]
Abstract
Cyclodestrins (CDs) are cyclic oligosaccharides well-known for their ability to form host-guest inclusion complexes with properly sized compounds. They have been used for decades as chiral selectors as well as drug delivery systems within the frameworks of separation science and pharmaceutical science. More recently, their use has been extended to the field of extractive science under the stimulus of additional advantageous characteristics, such as low-price, negligible environmental impact, non-toxicity, as arising from the fact that natural CDs are starch degradation products. To abate their solubility in water and generate novel sorbents for solid phase extraction, the following approaches have been employed: (i) immobilization onto inert materials (silica, attapulgite, etc.); (ii) immobilization onto nanomaterials (magnetic nanoparticles, titanium oxide, carbon nanotubes, graphene oxide, etc.); (iii) polymerisation with specific cross-linkers to form the so-called CD-based nanosponges. Particularly promising are these last ones for their selectivity, mesoporous structure, insolubility in aqueous media and good dispersibility. This review offers a concise overview on the state of art and future prospects of CDs in this important sector of the analytical chemistry, offering a critical perspective of the most significant applications.
Collapse
Affiliation(s)
- Alessandra Gentili
- Department of Chemistry, Faculty of Mathematical, Physical and Natural Sciences, "Sapienza" University of Rome, P.le A. Moro n° 5, 00185 Rome, Italy.
| |
Collapse
|
8
|
Baimani N, Aberoomand Azar P, Waqif Husain S, Ahmad Panahi H, Mehramizi A. Ultrasensitive separation of methylprednisolone acetate using a photoresponsive molecularly imprinted polymer incorporated polyester dendrimer based on magnetic nanoparticles. J Sep Sci 2019; 42:1468-1476. [PMID: 30689289 DOI: 10.1002/jssc.201801093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/19/2022]
Abstract
We developed an approach for the use of polyester dendrimer during the imprinting process to raise the number of recognized sites in the polymer matrix and improve its identification ability. Photoresponsive molecularly imprinted polymers were synthesized on modified magnetic nanoparticles involving polyester dendrimer which uses the reactivity between allyl glycidyl ether and acrylic acid for the high-yielding assembly by surface polymerization. The photoresponsive molecularly imprinted polymers were constructed using methylprednisoloneacetate as the template, water-soluble azobenzene involving 5-[(4, 3-(methacryloyloxy) phenyl) diazenyl] dihydroxy aniline as the novel functional monomer, and ethylene glycol dimethacrylate as the cross-linker. Through the evaluation of a series of features of spectroscopic and nano-structural, this sorbent showed excellent selective adsorption, recognition for the template, and provided a highly selective and sensitive strategy for determining the methylprednisoloneacetate in real and pharmaceutical samples. In addition, this sorbent according to good photo-responsive features and specific affinity to methylprednisoloneacetate with high recognition ability, represented higher binding capacity, a more extensive specific area, and faster mass transfer rate than its corresponding surface molecularly imprinted polymer.
Collapse
Affiliation(s)
- Nasim Baimani
- Department of Analytical Chemistry, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parviz Aberoomand Azar
- Department of Analytical Chemistry, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Syed Waqif Husain
- Department of Analytical Chemistry, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Homayon Ahmad Panahi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|