1
|
Krotulski AJ, Mata DC, Smith CR, Palmquist-Orlando KB, Modell C, Vikingsson S, Truver MT. Advances in analytical methodologies for detecting novel psychoactive substances: a review. J Anal Toxicol 2025; 49:152-169. [PMID: 39786399 DOI: 10.1093/jat/bkae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/26/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025] Open
Abstract
Novel psychoactive substances (NPSs) have historically been difficult compounds to analyze in forensic toxicology. The identification, detection, and quantitation of these analytes and their metabolites have been difficult due to their rapid emergence, short lifespan, and various potencies. Advancements in analytical instrumentation are fundamental to mitigating these NPS challenges by providing reliable identification and sensitivity. This review discusses the pros and cons of various analytical instruments that have played a pivotal role in NPS analysis. As analytical technology advanced, the ability to analyze for NPS became easier with high-resolution mass spectrometry (MS); however, traditional immunoassays are still beneficial for some NPS classes such as benzodiazepines. Over 200 articles from 2010-23 were reviewed, and 180 were utilized for this review. Journal articles were categorized according to the technology used during analysis: immunoassay, gas chromatography-MS, liquid chromatography-MS-low resolution, and liquid chromatography-MS-high resolution to allow for quick references based on a laboratory's technologies. Journal articles were organized in table format to outline the authors, NPS drug classes, and instrumentation used, among other important information.
Collapse
Affiliation(s)
- Alex J Krotulski
- Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, Horsham, PA, United States
- Society of Forensic Toxicologists Novel Psychoactive Substances Committee
| | - Dani C Mata
- Orange County Crime Lab, Santa Ana, CA, United States
- Society of Forensic Toxicologists Novel Psychoactive Substances Committee
| | | | | | - Celia Modell
- South Carolina Law Enforcement Division, Columbia, SC, United States
- Society of Forensic Toxicologists Novel Psychoactive Substances Committee
| | - Svante Vikingsson
- Center for Forensic Science Advancement and Application, RTI International, Durham, NC, United States
- Society of Forensic Toxicologists Novel Psychoactive Substances Committee
| | - Michael T Truver
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
- Society of Forensic Toxicologists Novel Psychoactive Substances Committee
| |
Collapse
|
2
|
Wiśnik-Sawka M, Fabianowski W, Gajda D. Innovative Supported Membranes for Ion Mobility Spectrometer (IMS) Sample Introduction Systems with High Permeability Relative to Toxic Agents in Air (TAAs). MATERIALS (BASEL, SWITZERLAND) 2025; 18:281. [PMID: 39859753 PMCID: PMC11766479 DOI: 10.3390/ma18020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 01/27/2025]
Abstract
One of the main objectives of the ion mobility spectrometry (IMS) technique is to reduce moisture in detection systems, which causes the formation of ion clusters and ion water and a reduction in formed clusters' activity. Thus, one of the methods limiting moisture in a sampling injection system is to use hydrophobic polymeric membranes. The use of membranes with high permeability relative to the analysed organic compounds is required, including toxic agents in air (TAAs). Such requirements align with those of polydimethylsiloxane (PDMS) membranes. Unfortunately, thin PDMS membranes are not mechanically resistant. In this study, relatively thin PDMS membranes were reinforced with fine mesh fabric supports. These supports were chemically modified with selected oligoglycol derivatives and finally coated with PDMS. The obtained membranes were tested for water permeability and TAA simulants.
Collapse
Affiliation(s)
- Monika Wiśnik-Sawka
- Military Institute of Chemistry and Radiometry, gen A. Chruściela “Montera” 105, 00-910 Warsaw, Poland;
| | - Wojciech Fabianowski
- Military Institute of Chemistry and Radiometry, gen A. Chruściela “Montera” 105, 00-910 Warsaw, Poland;
| | | |
Collapse
|
3
|
Nytka M, Wan J, Tureček F, Lemr K. Cyclic Ion Mobility of Isomeric New Psychoactive Substances Employing Characteristic Arrival Time Distribution Profiles and Adduct Separation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1733-1742. [PMID: 38949154 PMCID: PMC11311522 DOI: 10.1021/jasms.4c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Analysis of new psychoactive substances (NPS), which is essential for toxicological and forensic reasons, can be made complicated by the presence of isomers. Ion mobility has been used as a standalone technique or coupled to mass spectrometry to detect and identify NPS. However, isomer separation has so far chiefly relied on chromatography. Here we report on the determination of isomeric ratios using cyclic ion mobility-mass spectrometry without any chromatographic separation. Isomers were distinguished by mobility separation of lithium adducts. Alternatively, we used arrival time distribution (ATD) profiles that were characteristic of individual isomers and were acquired for protonated molecules or fragment ions. Both approaches provided comparable results. Calculations were used to determine the structures and collision cross sections of both protonated and lithiated isomers that accurately characterized their ion mobility properties. The applicability of ATD profiles to isomer differentiation was demonstrated using direct infusion and flow injection analysis with electrospray of solutions, as well as desorption electrospray of solid samples. Data processing was performed by applying multiple linear regression to the ATD profiles. Using the proposed ATD profile-based approach, the relationships between the determined and given content of isomers showed good linearity with coefficients of determination typically greater than 0.99. Flow injection analysis using an autosampler allowed us to rapidly determine isomeric ratios in a sample containing two isomeric pairs with a minor isomer of 10% (determined 9.3% of 3-MMC and 11.0% of 3-FMC in a mixture with buphedrone and 4-FMC). The proposed approach is not only useful for NPS, but also may be applicable to small isomeric molecules analyzed by ion mobility when complete separation of isomers is not achieved.
Collapse
Affiliation(s)
- Marianna Nytka
- Department
of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 77146 Olomouc, Czech
Republic
| | - Jiahao Wan
- Department
of Chemistry, University of Washington, Seattle, Washington 98195-1700, United
States
| | - František Tureček
- Department
of Chemistry, University of Washington, Seattle, Washington 98195-1700, United
States
| | - Karel Lemr
- Department
of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 77146 Olomouc, Czech
Republic
| |
Collapse
|
4
|
Aderorho R, Lucas SW, Chouinard CD. Separation and Characterization of Synthetic Cannabinoid Metabolite Isomers Using SLIM High-Resolution Ion Mobility-Tandem Mass Spectrometry (HRIM-MS/MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:582-589. [PMID: 38361441 DOI: 10.1021/jasms.3c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Synthetic cannabinoids, a subclass of new psychoactive substances (NPS), are laboratory-made substances that are chemically similar to those found naturally in the cannabis plant. Many of these substances are illicitly manufactured and have been associated with severe health problems, prompting a need to develop analytical methods capable of characterizing both known and previously undetected compounds. This work focuses on a novel Structures for Lossless Ion Manipulations (SLIM) IM-MS approach to the differentiation and structural characterization of synthetic cannabinoid metabolites, specifically MDA-19/BUTINACA, JWH-018, and JWH-250 isomer groups. These different compound classes are structurally very similar, differing only in the position of one or a few functional groups; this yielded similarity in measured collision cross section (CCS) values. However, the high resolution of SLIM IM provided adequate separation of many of these isomers, such as sodiated JWH-250 metabolites N-4-OH, N-5-OH, and 5-OH, which displayed CCS of 187.5, 182.5, and 202.3 Å2, respectively. In challenging cases where baseline separation was precluded due to nearly identical CCS, such as for JWH-018 isomers, simple derivatization by dansyl chloride selectively reacted with the 6-OH compound to provide differentiation of all isomers using a combination of CCS and m/z. Finally, the opportunity to use this method for structural elucidation of unknowns was demonstrated by using SLIM IM mobility-aligned MS/MS fragmentation. Different MDA-19/BUTINACA isomers were first mobility separated and could then be individually activated, yielding unique fragments for both targeted identification and structural determination. Overall, the described SLIM IM-MS/MS workflow provides significant potential as a rapid screening tool for the characterization of emerging NPS such as synthetic cannabinoids and their metabolites.
Collapse
Affiliation(s)
- Ralph Aderorho
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Shadrack Wilson Lucas
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | |
Collapse
|
5
|
Boronat Ena MDM, Cowan DA, Abbate V. Ambient ionization mass spectrometry applied to new psychoactive substance analysis. MASS SPECTROMETRY REVIEWS 2023; 42:3-34. [PMID: 34036620 DOI: 10.1002/mas.21695] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
In the past decade a plethora of drugs with similar effects to controlled psychoactive drugs, like cannabis, amfetamine (amphetamine), or lysergic acid diethylamide, have been synthesized. These drugs can collectively be classified under the term new psychoactive substances (NPS) and are used for recreational purposes. The novelty of the substances, alongside the rapid rate of emergence and structural variability, makes their detection as well as their legal control highly challenging, increasing the demand for rapid and easy-to-use analytical techniques for their detection and identification. Therefore, interest in ambient ionization mass spectrometry applied to NPS has grown in recent years, which is largely because it is relatively fast and simple to use and has a low operating cost. This review aims to provide a critique of the suitability of current ambient ionization techniques for the analysis of NPS in the forensic and clinical toxicology fields. Consideration is given to analytical performance and ease of implementation, including ionization efficiency, selectivity, sensitivity, quantification, analyte chemistry, molecular coverage, validation, and practicality.
Collapse
Affiliation(s)
- Maria Del Mar Boronat Ena
- Department of Analytical, Environmental and Forensic Sciences, King's College London, Faculty of Life Sciences & Medicine, London, UK
| | - David A Cowan
- Department of Analytical, Environmental and Forensic Sciences, King's College London, Faculty of Life Sciences & Medicine, London, UK
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King's College London, Faculty of Life Sciences & Medicine, London, UK
| |
Collapse
|
6
|
Kuwayama K, Miyaguchi H, Kanamori T, Tsujikawa K, Yamamuro T, Segawa H, Okada Y, Iwata YT. Micro-segmental hair analysis: detailed procedures and applications in forensic toxicology. Forensic Toxicol 2022; 40:215-233. [PMID: 36454411 PMCID: PMC9715473 DOI: 10.1007/s11419-022-00619-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/01/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE Since the 1980s, the detection sensitivity of mass spectrometers has increased by improving the analysis of drugs in hair. Accordingly, the number of hair strands required for the analysis has decreased. The length of the hair segment used in the analysis has also shortened. In 2016, micro-segmental hair analysis (MSA), which cuts a single hair strand at a 0.4-mm interval corresponding to a hair growth length of approximately one day, was developed. The advantage of MSA is that the analytical results provide powerful evidence of drug use in the investigation of drug-related crimes and detailed information about the mechanism of drug uptake into hair. This review article focuses on the MSA technique and its applications in forensic toxicology. METHODS Multiple databases, such as SciFinder, PubMed, and Google, were utilized to collect relevant reports referring to MSA and drug analysis in hair. The experiences of our research group on the MSA were also included in this review. RESULTS The analytical results provide a detailed drug distribution profile in a hair strand, which is useful for examining the mechanism of drug uptake into hair in detail. Additionally, the analytical method has been used for various scenarios in forensic toxicology, such as the estimation of days of drug consumption and death. CONCLUSIONS The detailed procedures are summarized so that beginners can use the analytical method in their laboratories. Moreover, some application examples are presented, and the limitations of the current analytical method and future perspectives are described.
Collapse
Affiliation(s)
- Kenji Kuwayama
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan.
| | - Hajime Miyaguchi
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Tatsuyuki Kanamori
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Kenji Tsujikawa
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Tadashi Yamamuro
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Hiroki Segawa
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Yuki Okada
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Yuko T Iwata
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| |
Collapse
|
7
|
Belenguer-Sapiña C, Sáez-Hernández R, Pellicer-Castell E, Armenta S, Mauri-Aucejo A. Simultaneous determination of third-generation synthetic cannabinoids in oral fluids using cyclodextrin-silica porous sorbents. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Vincenti F, Gregori A, Flammini M, Di Rosa F, Salomone A. Seizures of New Psychoactive Substances on the Italian territory during the COVID-19 pandemic. Forensic Sci Int 2021; 326:110904. [PMID: 34371393 PMCID: PMC8411784 DOI: 10.1016/j.forsciint.2021.110904] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022]
Abstract
In recent years, the availability and the consequent consumption of New Psychoactive Substances (NPS) have proliferated at an unprecedented rate, posing a significant risk to the public health and challenging the law enforcement efforts to tackle the black market. In particular, large availability on Internet and unmonitored shipping have facilitated the diffusion of NPS on national territories. In this scenario, the forensic activity based on the process of drug detection, including investigation, seizure, recognition and analytical identification is crucial to get insights into the drug black market transformation. In this study, we describe the results obtained from the analysis of hundreds of packages seized during the months of year 2020, and suspected to contain NPS because not reacting with standard field test kits. We focused on the analysis by GC-MS and HPLC-HRMS, and NPS in particular, trying to underline the most common molecules present on the Italian territory during the COVID-19 pandemic. NPS were identified in 92.6% of the samples. The most prevalent compounds were synthetic cathinones, and 3-MMC in particular, which alone accounted for 18.6% of the total cases. Other prevalent molecules were 5F-MDMB-PICA, 2-FDCK, 1cp-LSD and 1P-LSD. Fentanyl was never detected. The information obtained from drug seizures is crucial to publish national alerts, which are in turn important to assist the legislative effort to ban new compounds and the update of toxicological and analytical methods.
Collapse
Affiliation(s)
- Flaminia Vincenti
- Sapienza University of Rome, Department of Chemistry, 00185 Rome, Italy; Sapienza University of Rome, Department of Public Health and Infectious Diseases, 00185 Rome, Italy
| | - Adolfo Gregori
- Carabinieri, Department of Scientific Investigation (RIS), 00191 Rome, Italy
| | - Martina Flammini
- Dipartimento di Chimica, Università di Torino, 10125 Torino, Italy
| | - Fabiana Di Rosa
- Carabinieri, Department of Scientific Investigation (RIS), 00191 Rome, Italy
| | - Alberto Salomone
- Dipartimento di Chimica, Università di Torino, 10125 Torino, Italy; Centro Regionale Antidoping e di Tossicologia, 10043 Orbassano (TO), Italy.
| |
Collapse
|
9
|
Capillary Sensor for Detection of Amphetamine Precursors in Sewage Water. Polymers (Basel) 2021; 13:polym13111846. [PMID: 34199443 PMCID: PMC8199614 DOI: 10.3390/polym13111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
This paper deals with the problem of detecting benzyl methyl ketone (BMK), which is a precursor of amphetamine that can be synthesized in home labs. The focus of our work was to identify an improvement for the analysis of sewage introduced into the municipal sewage system. The sensors used to detect BKM in these systems are often clogged and therefore cannot function properly. In this article, a new method of detecting BMK and other chemicals in wastewater is presented. A system containing capillary polypropylene, hydrophobized with polysiloxane coating fibers was prepared. These solutions were used for continuous online measurements by ion mobility spectrometry. The use of pipes with a polysiloxane coating reduces the permeation of water and significantly increases the BMK permeation due to its high solubility in the polymer.
Collapse
|
10
|
Saldaña-Shumaker SL, Grenning AJ, Cunningham CW. Modern approaches to the development of synthetic cannabinoid receptor probes. Pharmacol Biochem Behav 2021; 203:173119. [PMID: 33508249 DOI: 10.1016/j.pbb.2021.173119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/13/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
The endocannabinoid system, which spans the central and peripheral nervous systems and regulates many biologic processes, is an important target for probe discovery and medications development. Whereas the earliest endocannabinoid receptor probes were derivatives of the non-selective phytocannabinoids isolated from Cannabis species, modern drug discovery techniques have expanded the definitions of what constitutes a CB1R or CB2R cannabinoid receptor ligand. This review highlights recent advances in synthetic cannabinoid receptor chemistry and pharmacology. We provide examples of new CB1R- and CB2R-selective probes, and discuss rational approaches to the design of peripherally-restricted agents. We also describe structural classes of positive- and negative allosteric modulators (PAMs and NAMs) of CB1R and CB2R. Finally, we introduce new opportunities for cannabinoid receptor probe development that have emerged in recent years, including biased agonists that may lead to medications lacking adverse effects.
Collapse
Affiliation(s)
- Savanah L Saldaña-Shumaker
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI 53097, USA
| | - Alexander J Grenning
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Christopher W Cunningham
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI 53097, USA.
| |
Collapse
|
11
|
Norman C, McKirdy B, Walker G, Dugard P, NicDaéid N, McKenzie C. Large-scale evaluation of ion mobility spectrometry for the rapid detection of synthetic cannabinoid receptor agonists in infused papers in prisons. Drug Test Anal 2021; 13:644-663. [PMID: 33058556 DOI: 10.1002/dta.2945] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/10/2022]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs), colloquially known as "spice," are commonly used in prisons and enter establishments via the mail in the form of infused papers. Many prisons use benchtop ion mobility spectroscopy (IMS) instruments to screen mail and seized materials for the presence of SCRAs and other controlled substances. The selectivity and sensitivity of Rapiscan Itemiser® 3E and Itemiser® 4DN Ion Trap Mobility Spectroscopy™ (ITMS™) systems were evaluated using 21 SCRA reference standards. Some differences in the SCRA reduced mobility (K0 ) values were observed between this study and those reported previously using IMS detection systems, particularly for cumyl and quinolinyl SCRAs (e.g., 5F-PB-22, Cumyl-4CN-BINACA, and 5F-Cumyl-PEGACLONE), although this was found to have little effect at an operational level. Operational reliability of the systems was evaluated by analyzing 392 paper and card samples with known drug content. ITMS™ system results (e.g., detect or nondetect) were in agreement with gas chromatography-mass spectrometry (GC-MS) analysis in up to 95% of samples tested. Overall, this study found the ITMS™ systems tested to be effective instruments when deployed for the rapid detection of SCRA-infused papers. Used effectively and with up-to-date substance libraries, they will help reduce the supply of SCRAs into prisons and identify emerging threats as they arise. Several emerging SCRAs (5F-MPP-PICA, 5F-EMB-PICA, and 4F-MDMB-BICA) were detected for the first time in Scottish prisons between May and August 2020 as a result of routine monitoring, and all were detected using the ITMS™ systems tested.
Collapse
Affiliation(s)
- Caitlyn Norman
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Brian McKirdy
- HMP Inverness, Scottish Prison Service, Inverness, UK
| | - Gillian Walker
- Public Protection Unit, Scottish Prison Service, Edinburgh, UK
| | - Pat Dugard
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Niamh NicDaéid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Craig McKenzie
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| |
Collapse
|
12
|
Davidsen A, Mardal M, Linnet K, Dalsgaard PW. How to perform spectrum-based LC-HR-MS screening for more than 1,000 NPS with HighResNPS consensus fragment ions. PLoS One 2020; 15:e0242224. [PMID: 33180844 PMCID: PMC7660508 DOI: 10.1371/journal.pone.0242224] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/28/2020] [Indexed: 01/31/2023] Open
Abstract
INTRODUCTION The ever-changing market of new psychoactive substances (NPS) poses challenges for laboratories worldwide. Analytical toxicologists are constantly working to keep high-resolution mass spectrometry (HR-MS) screening libraries updated for NPS. This study sought to use the online crowd-sourced HighResNPS database for spectrum comparison screening, thereby broadening its utility to all HR-MS instruments. METHOD HighResNPS allows formation of a set of consensus fragment ions for a NPS and prioritises among multiple entries of collision-induced fragment ions. A subset of 42 NPS samples was analysed in data-independent acquisition (DIA) and data-dependent acquisition (DDA) modes on two different instruments. HighResNPS-computed spectra were generated with either Absolute (all fragment ions set to 100%) or Fractional (50% intensity reduction of former fragment ion) intensity. The acquired NPS data were analysed using the consensus library with computed ion intensities and evaluated with vendor-neutral screening software. RESULTS Overall, of the 42 samples, 100% were identified, with 88% identified as the top candidate. Three samples had the correct candidate proposed as the second highest ranking NPS. In all three of those samples, the top proposed candidate was a positional isomer or closely related compound. Absolute intensity assignment provided identical scoring between the top two proposed compounds in two samples with DIA. DDA had a slightly higher identification rate in the spectra comparison screening with fractional intensity assignment, but no major differences were observed. CONCLUSION The fractional intensity assignment was slightly more advantageous than the absolute assignment. It was selective between proposed candidates, showed a high identification rate and had an overall higher fragmentation scoring. The candidates proposed by the HighResNPS library spectra comparison simplify the determination of NPS for researchers and toxicologists. The database provides free monthly updates of consensus spectra, thereby enabling laboratories to stay at the forefront of NPS screening by LC-HR-MS with spectra screening software.
Collapse
Affiliation(s)
- Anders Davidsen
- Department of Forensic Medicine, Faculty of Health and Medical Sciences, Section of Forensic Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Marie Mardal
- Department of Forensic Medicine, Faculty of Health and Medical Sciences, Section of Forensic Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Linnet
- Department of Forensic Medicine, Faculty of Health and Medical Sciences, Section of Forensic Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Petur Weihe Dalsgaard
- Department of Forensic Medicine, Faculty of Health and Medical Sciences, Section of Forensic Chemistry, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Sorribes-Soriano A, Armenta S, Esteve- Turrillas F, Herrero-Martínez J. Tuning the selectivity of molecularly imprinted polymer extraction of arylcyclohexylamines: From class-selective to specific. Anal Chim Acta 2020; 1124:94-103. [DOI: 10.1016/j.aca.2020.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022]
|
14
|
Wiśnik-Sawka M, Budzyńska E, Puton J. Application of Ion Mobility Spectrometry for Permeability Studies of Organic Substances through Polymeric Materials. Molecules 2020; 25:molecules25132983. [PMID: 32610631 PMCID: PMC7411691 DOI: 10.3390/molecules25132983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
Drift tube ion mobility spectrometers (DT IMS) allow the concentration of different organic compounds to be measured. This gives the opportunity to use these detectors in measuring the penetration of various substances through polymer membranes. Permeation measurements of two substances (2-heptanone and dimethyl methylphosphonate (DMMP)) through a cylindrical silicone rubber membrane were carried out. The membrane separated the aqueous solution from the air. The analyte was introduced into water, and then its concentration in air on the opposite side of the membrane was recorded. Based on the dynamics of detector signal changes, the diffusion coefficients for both tested substances were determined. Determination of permeability coefficients was based on precise quantitative measurements, which took into account the non-linearity of the detector characteristics and the effect of water on detection sensitivity. The analysis of measurement results was based on a mathematical description of diffusion process.
Collapse
|
15
|
Jones NS, Comparin JH. Interpol review of controlled substances 2016-2019. Forensic Sci Int Synerg 2020; 2:608-669. [PMID: 33385148 PMCID: PMC7770462 DOI: 10.1016/j.fsisyn.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
This review paper covers the forensic-relevant literature in controlled substances from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
| | - Jeffrey H. Comparin
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| |
Collapse
|
16
|
Sorribes-Soriano A, Monedero A, Esteve-Turrillas FA, Armenta S. Determination of the new psychoactive substance dichloropane in saliva by microextraction by packed sorbent – Ion mobility spectrometry. J Chromatogr A 2019; 1603:61-66. [DOI: 10.1016/j.chroma.2019.06.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 11/25/2022]
|
17
|
Bianchi F, Agazzi S, Riboni N, Erdal N, Hakkarainen M, Ilag LL, Anzillotti L, Andreoli R, Marezza F, Moroni F, Cecchi R, Careri M. Novel sample-substrates for the determination of new psychoactive substances in oral fluid by desorption electrospray ionization-high resolution mass spectrometry. Talanta 2019; 202:136-144. [DOI: 10.1016/j.talanta.2019.04.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 11/28/2022]
|
18
|
Wang W, Wang S, Xu C, Li H, Xing Y, Hou K, Li H. Rapid Screening of Trace Volatile and Nonvolatile Illegal Drugs by Miniature Ion Trap Mass Spectrometry: Synchronized Flash-Thermal-Desorption Purging and Ion Injection. Anal Chem 2019; 91:10212-10220. [DOI: 10.1021/acs.analchem.9b02309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Weimin Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People’s Republic of China
| | - Shuang Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People’s Republic of China
| | - Chuting Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People’s Republic of China
| | - Hong Li
- Yunnan Police Officer Academy, 249 Jiaochang North Road, Kunming 650223, China
| | - Yuming Xing
- Yunnan Police Officer Academy, 249 Jiaochang North Road, Kunming 650223, China
| | - Keyong Hou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| |
Collapse
|
19
|
Strong evidence of drug-facilitated crimes by hair analysis using LC–MS/MS after micro-segmentation. Forensic Toxicol 2019. [DOI: 10.1007/s11419-019-00472-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Metternich S, Zörntlein S, Schönberger T, Huhn C. Ion mobility spectrometry as a fast screening tool for synthetic cannabinoids to uncover drug trafficking in jail via herbal mixtures, paper, food, and cosmetics. Drug Test Anal 2019; 11:833-846. [DOI: 10.1002/dta.2565] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/30/2018] [Accepted: 12/30/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Sonja Metternich
- State Office of Criminal Investigation Rhineland‐PalatinateDepartment of Forensic Science Mainz Germany
| | - Siegfried Zörntlein
- State Office of Criminal Investigation Rhineland‐PalatinateDepartment of Forensic Science Mainz Germany
| | | | - Carolin Huhn
- Eberhard Karls Universität TübingenInstitute for Physical and Theoretical Chemistry Tübingen Germany
| |
Collapse
|